PRACTICE WITH RATIONAL EXPONENTS
LESSON READ-THROUGH
by Dr. Carol JVF Burns (website creator)
Follow along with the highlighted text while you listen!
Thanks for your support!
 

Here, you will practice simplifying expressions involving rational exponents.

EXAMPLES:
$\cssId{s9}{9^{1/2}} \cssId{s10}{= \sqrt{9}} \cssId{s11}{= 3}$
$\cssId{s12}{(-9)^{1/2}} \cssId{s13}{= \sqrt{-9}} \cssId{s14}{= \text{nd}}$     Input “nd” if an expression is not defined.
$\cssId{s16}{-9^{1/2}} \cssId{s17}{= -\sqrt{9}} \cssId{s18}{= -3}$
$\displaystyle \cssId{s19}{9^{-1/2}} \cssId{s20}{= \frac{1}{9^{1/2}}} \cssId{s21}{= \frac{1}{\sqrt{9}}} \cssId{s22}{= \frac{1}{3}}$     Use fraction names, not decimal names.
$\cssId{s24}{(-8)^{1/3}} \cssId{s25}{= \root 3\of{-8}} \cssId{s26}{= -2}$
$\displaystyle \cssId{s27}{(-8)^{-1/3}} \cssId{s28}{= \frac{1}{(-8)^{1/3}}} \cssId{s29}{= \frac{1}{\root 3\of{-8}}} \cssId{s30}{= \frac{1}{-2}} \cssId{s31}{= -\frac{1}{2}}$
$\cssId{s32}{16^{3/4}} \cssId{s33}{= (16^{1/4})^3} \cssId{s34}{= (\root 4\of{16})^3} \cssId{s35}{= 2^3} \cssId{s36}{= 8}$
$\displaystyle \cssId{s37}{16^{-3/4}} \cssId{s38}{= \frac{1}{16^{3/4}}} \cssId{s39}{= \frac{1}{(16^{1/4})^3}} \cssId{s40}{= \frac{1}{(\root 4\of{16})^3}} \cssId{s41}{= \frac{1}{2^3}} \cssId{s42}{= \frac{1}{8}}$
Master the ideas from this section
by practicing the exercise at the bottom of this page.


When you're done practicing, move on to:
Practice with $\,x\,$ and $\,-x\,$

 
 
Feel free to use scrap paper and pencil to compute your answers.
Do not use a calculator for these problems.
Simplify:
    
(MAX is 22; there are 22 different problem types.)