﻿ More Practice with the Form a(b/c)
MORE PRACTICE WITH THE FORM   $\displaystyle a\cdot\frac{b}{c}$

by Dr. Carol JVF Burns (website creator)
Follow along with the highlighted text while you listen!
• PRACTICE (online exercises and printable worksheets)
Want more detail, more exercises?
• Need some basic practice with the form $\,a\cdot\frac{b}{c}\,$ first?
Practice with the form $\,a\cdot\frac{b}{c}$

EXAMPLES:
Simplify: $\displaystyle\,4\cdot\frac{3}{2}$
Solution:

$\displaystyle \cssId{s8}{4\cdot\frac{3}{2}} \cssId{s9}{= \frac{4}{2}\cdot 3} \cssId{s10}{= 2\cdot 3} \cssId{s11}{= 6}$

You should be able to go from the original expression to the final answer without writing anything down.
The solution above shows the thought process.
Always be on the lookout for factors in the denominator that go into factors in the numerator evenly!
Simplify: $\displaystyle \,\frac{-3}{-5}\cdot -10$
Solution:

$\displaystyle \cssId{s18}{\frac{-3}{-5}\cdot -10} \cssId{s19}{= - \frac{10}{5}\cdot 3} \cssId{s20}{= -2\cdot 3} \cssId{s21}{= -6}$

Here, use a two-step process:
• figure out the sign first (negative); type in the minus sign
• then, do the mental arithmetic with positive numbers
Master the ideas from this section