INTRODUCTION TO THE TWO-COLUMN PROOF

Deductive reasoning uses logic, and statements that are already accepted to be true, to reach conclusions.
The methods of mathematical proof are based on deductive reasoning.

A proof is a convincing demonstration that a mathematical statement is necessarily true.
Proofs can use:

In higher-level mathematics, proofs are usually written in paragraph form.
When introducing proofs, however, a two-column format is usually used to summarize the information.
True statements are written in the first column.
A reason that justifies why each statement is true in written in the second column.

This section gives you practice with two-column proofs.
You will be proving very simple algebraic statements—the goal is to practice with structure and style, and not be distracted by difficult content.
You will also practice with the methods of direct proof, indirect proof, and proof by contraposition.

Here are your first two-column proofs:

PROVE:

If [beautiful math coming... please be patient] $\,2x + 1 = 7\,$, then [beautiful math coming... please be patient] $\,x = 3\,$.
Use a direct proof.

PROOF:

STATEMENTS REASONS
1.   Assume: $\,2x + 1 = 7\,$ hypothesis of direct proof
2.   $2x = 6$ Addition Property of Equality; subtract $\,1\,$ from both sides
3.   $x = 3$ Multiplication Property of Equality; divide both sides by $\,2$

PROVE:

If [beautiful math coming... please be patient] $\,2x + 1 = 7\,$, then [beautiful math coming... please be patient] $\,x = 3\,$.
Use an indirect proof.

In this case, an indirect proof is much longer than a direct proof.
Whenever you give a reason that uses anything except the immediately preceding step, then cite the step(s) that are being used.

PROOF:

STATEMENTS REASONS
1.   Assume: $\,2x + 1 = 7\,$ AND $\,x\ne 3\,$ hypothesis of indirect proof
2.   $2x + 1 = 7$ $(A\text{ and }B)\Rightarrow A$
3.   $2x = 6$ Addition Property of Equality; subtract $\,1\,$ from both sides
4.   $x = 3$ Multiplication Property of Equality; divide both sides by $\,2$
5.   $x \ne 3$ $(A\text{ and }B)\Rightarrow B\,$   (step 1)
6.   $x = 3\,$ and $\,x\ne 3\,$; CONTRADICTION (steps 4 and 5)
7.   Thus, $\,x = 3\,$. conclusion of indirect proof

PROVE:

If [beautiful math coming... please be patient] $\,2x + 1 = 7\,$, then [beautiful math coming... please be patient] $\,x = 3\,$.
Use a proof by contraposition.

In this case, the proof seems somewhat convoluted.
For this statement, a direct proof is best.

PROOF:

STATEMENTS REASONS
1.   Assume: $\,x\ne 3\,$ hypothesis of proof by contraposition
2.   $2x \ne 6$ Multiplication Property of Equality; multiply both sides by $\,2$
3.   $2x + 1 \ne 7$ Addition Property of Equality; add $\,1\,$ to both sides
Master the ideas from this section
by practicing the exercise at the bottom of this page.

When you're done practicing, move on to:
the Pythagorean Theorem

 
 
On this exercise, you will not key in your answer.
However, you can check to see if your answer is correct.
(MAX is 14; there are 14 different problem types.)