SOLUTIONS TO EXERCISES: HOLDING THIS, HOLDING THAT

IN-SECTION EXERCISES:

- 2. w can 'hold' any of the numbers in the set [0,1]
- 3. w can 'hold' any of the numbers in the set [0,2]
- 4. The order that you multiply two numbers does not affect the result. That is, you can 'commute' the numbers in a multiplication problem without affecting the result.
- 5. For all real numbers x, y, and z, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.
- 6. For all $x \in \mathbb{R}$ and $y \in \mathbb{R}$, $x \cdot y = y \cdot x$.

For all $x \in \mathbb{R}$, $y \in \mathbb{R}$, and $z \in \mathbb{R}$, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

- 7. ab, 3x, 5ac, 12
- 8a. 3x 4
- 8b. 3(x-4)
- 8c. $\frac{x}{2} + 1$
- 8d. $\frac{x+1}{2}$
- 9a. Take a number, multiply by 5, then subtract 3.
- 9b. Take a number, subtract 3, then multiply by 5.
- 9c. Take a number, divide by 4, then subtract 1.
- 9d. Take a number, subtract 1, then divide by 4.
- 10. (a) d (b) t (c) s (d) v
- 11a. (0.7)(170) = 119; you owe \$119
- 11b. (0.8)(119) = 95.2; you owe \$95.20
- 11c. (1.05)(95.2) = 99.96; you owe \$99.96
- 11d. You'll get 4¢ change!
- 12a. What number is equal to 5? ANS: 5
- 12b. What numbers are not equal to 2? ANS: All real numbers except 2:

- $12c. \,$ Three times what number gives $12\,?$ ANS: 4
- 12d. What number, divided by 3, gives 4? ANS: 12
- 12e. What number, plus itself, plus itself again, gives 12? ANS: 4
- 12f. Two plus what number is the same as two minus that number? ANS: 0
- 12g. Fifteen, divided by what number, gives 3? ANS: 5
- 12h. Twelve, minus some number, minus the number again, gives 10. What is the number? ANS: 1

- 13a. Since the universal set is \mathbb{R} , the best choice is 'Let $x \in \mathbb{R}$ '. Read as: 'Let x be in arr' or 'Let x be a real number'.
- 13b. Since the universal set is \mathbb{Z} , the best choice is 'Let $k \in \mathbb{Z}$ '. Read as: 'Let k be in zee' or 'Let k be an integer'.
- 13c. Since [0,2] is an interval of real numbers, the best choice is 'For all $t \in [0,2]$ '. You could read this as: 'For all real numbers t between 0 and 2 (including the endpoints)'.
- 13d. Since $\{1, 2, 3, ...\}$ is a subset of the integers, the best choice is 'For all $i \in \{1, 2, 3, ...\}$ '. You could read this as: 'For all positive integers i'.
- 14a. number
- 14b. set
- 14c. number with universal set \mathbb{R} (or some *interval* of real numbers)
- 14d. number with universal set \mathbb{Z} (or some subset of \mathbb{Z})
- 14e. set
- 14f. number with universal set \mathbb{R} (or some *interval* of real numbers)

END-OF-SECTION EXERCISES:

- 16. EXP, number
- 17. SEN, T
- 18. EXP, number
- 19. SEN, T
- 20. EXP, set
- 21. SEN, F
- 22. EXP, number
- 23. SEN, T
- 24. EXP, set
- 25. SEN, true
- 26. SEN, ST/SF
- 27. Twenty, divided by what number, gives 5? ANS: 4
- 28. What number, subtracted from 20, gives 2? ANS: 18
- 29. What number has the property that 3 times it is the same as 4 times it? ANS: 0
- 30. What number(s) have the property that 3 times them is not the same as 4 times them? ANS: all real numbers except 0

31. What number(s) have the property that when you add one to them, you get something different than when you add two to them? ANS: all real numbers