LINEAR INEQUALITIES IN TWO VARIABLES

• Need some basic understanding of sentences in two variables first? <u>Introduction to Equations and Inequalities in Two Variables</u>

(more mathematical cats)

Here's what this lesson offers:

- Going from Linear Equations to Linear Inequalities: the graphs change dramatically!
- Important Concepts for Graphing Linear Inequalities in Two Variables
- The Test Point Method for Graphing Linear Inequalities in Two Variables
- Special Linear Inequalities in Two Variables: you only see one variable

Going from Linear Equations to Linear Inequalities

You've already learned that the graph of y = x + 1 is the line shown at right.

This line is the picture of all the points (x, y) that make the equation 'y = x + 1' **true**.

How can ' y = x + 1 ' be true? For a given x-value, the y-value must equal x + 1 .

For each x-value, there is **exactly one** corresponding y-value—whatever x is, plus 1.

The line is the picture of all the points (x, x + 1), as x varies over all real numbers:

graph of y = x + 1: all points of the form (x, x + 1)

the line 'y = x + 1' is all points of the form:

the *y*-value EQUALS
$$x+1$$
 (x , $\overbrace{x+1}$

Question:

What happens if the verb in the sentence 'y = x + 1' is changed from '=' to <, >, \le , or \ge ?

Answer:

You go from a linear *equation* in two variables, to a linear *inequality* in two variables.

The solution set changes dramatically!

What was a line now becomes an entire half-plane:

graph of y < x + 1:

all points of the form (x, y)where the y-value is **less than** x + 1

line is dashed; shade *below* the line

graph of y > x + 1:

all points of the form (x, y)where the y-value is greater than x + 1

line is dashed; shade *above* the line

graph of $y \le x + 1$:

all points of the form (x, y)where the y-value is *less than or equal to* x + 1

line is solid; also shade *below* the line

graph of $y \ge x + 1$:

all points of the form (x, y)where the y-value is greater than or equal to x + 1

line is solid; also shade *above* the line

Important Concepts for Graphing Linear Inequalities in Two Variables

• DEFINITION: LINEAR INEQUALITY IN TWO VARIABLES

A linear inequality in two variables is a sentence of the form

$$ax+by+c<0\,,$$

where a and b are not **both** zero; c can be any real number.

The inequality symbol can be any of these: <, >, \le , or \ge

Remember: a 'sentence of the form ...' really means a 'sentence that can be put in the form ...'

• EXAMPLES OF LINEAR INEQUALITIES IN TWO VARIABLES

$3x-4y+5>0 \qquad \qquad y\leq 5x-1$	$x \geq 2$ (shorthand for $x + 0y \geq 2$)	y < 5 (shorthand for $0x + y < 5$)
--------------------------------------	---	-------------------------------------

Key ideas for recognizing linear inequalities in two variables:

- the verb must be an *inequality* symbol: <, \leq , >, or \geq
- the variables must be raised *only to the first power*: no squares, no variables in denominators, no variables under square roots, and so on
- \circ you don't need to have **both** x and y, but you must have at least one of these variables

• LINEAR INEQUALITIES GRAPH AS HALF-PLANES

Every linear inequality in two variables graphs as a half-plane:

- o if the verb is < or >, the boundary line is *not included* (dashed)
- o if the verb is < or >, the boundary line *is included* (solid)

WHICH HALF-PLANE TO SHADE?

If the linear inequality is in slope-intercept form (like y < mx + b), then it's easy to know which half of the line to shade:

- \circ if the sentence is y < mx + b or $y \le mx + b$, shade BELOW the line
- \circ if the sentence is y > mx + b or y > mx + b, shade ABOVE the line

This only works if the inequality is in slope-intercept form!

Of course, you can always put a sentence in slope-intercept form, by solving for y.

Then, you can use this method.

But, the 'test point method' (below) is usually quicker-and-easier, if the sentence isn't already in slope-intercept form.

The Test Point Method for Graphing Linear Inequalities in Two Variables

So, what about graphing something like 2x - y < 3, which isn't in slope-intercept form?

You can (if desired) solve for y, and then use the method above:

$$2x - y < 3$$
 $-y < -2x + 3$
 $y > 2x - 3$

(Remember to change the direction of the inequality symbol when you multiply/divide by a negative number.)

The graph of 2x - y < 3 is the same as the graph of y > 2x - 3.

Graph the line y = 2x - 3 (dashed), and then shade everything above (see right).

However, there's an easier way. Keep reading!

graph of 2x - y < 3 (which is equivalent to y > 2x - 3)

The 'Test Point Method' is so-called because it involves choosing a 'test point' to decide which side of the line to shade.

The process is illustrated with an example: graphing 2x - y < 3.

The Test Point Method is usually easiest to use with sentences that aren't in slope-intercept form.

GRAPH, USING THE TEST POINT METHOD: 2x - y < 3

Step 1: IDENTIFICATION

Recognize that '2x - y < 3' is a linear inequality in two variables.

Therefore, you *know* the graph is a half-plane.

You need the boundary line; you need to know which side to shade.

Step 2: BOUNDARY LINE

Graph the boundary line 2x - y = 3 using the <u>intercept</u> method.

 $\overline{\text{When } x} = 0, \ y = -3.$

When y = 0, $x = \frac{3}{2}$.

Since the verb in '2x - y < 3' is '<', this line is *not* included in the solution set.

Therefore, the line is dashed.

graph the boundary line using the intercept method

Step 3: TEST POINT TO DECIDE WHICH SIDE TO SHADE

Choose a simple point that is NOT on the line. Whenever (0,0) is available, choose it! Zeroes are *very* easy to work with.

Is (0,0) in the solution set?

Substitute x = 0 and y = 0 into the original sentence (2x - y < 3), to see if it is true or false.

Put a question mark over the inequality symbol, since you're asking a question:

$$2(0)-0\stackrel{?}{<}3$$

If the result is TRUE, shade the side containing the test point.

If the result is FALSE, shade the other side.

Since '0 < 3' is TRUE, shade the side containing (0,0). Done!

With so many *zeroes* involved in this method, computations can often be done in your head, making this QUICK and EASY!

choose test point (0,0): since ${}^{\prime}2(0)-0<3 \text{ 'is TRUE,}$ shade the side containing the test point

Special Linear Inequalities in Two Variables: You only *see* one variable

Out of context, sentences like ' $x \ge 2$ ' and ' y < 5 ' can be confusing.

You only *see* one variable, but that doesn't necessarily mean that there isn't another variable with a zero coefficient!

Out of context, here are *clues* to what is likely wanted:

- 'Solve: $x \geq 2$ ' probably wants you to treat this as an inequality in ONE variable.
- 'Graph: $x \ge 2$ ' probably wants you to treat this as an inequality in TWO variables.

As shown below, there is a BIG difference in the nature of the solution set!

Viewed as an inequality in *one* variable, the solution set of ' $x \geq 2$ ' is the set of all *numbers* that are greater than or equal to 2.

The solution set is the interval $[2, \infty)$, shown at left.

graph of $x \ge 2$, viewed as an inequality in TWO variables

Viewed as an inequality in *two* variables, ' $x \ge 2$ ' is really a shorthand for ' $x + 0y \ge 2$ '.

The solution set is the set of all **points** (x, y), where the x-value is greater than or equal to 2. The y-value can be anything!

Here are examples of substitution into ' $x + 0y \ge 2$ ': The point (2,5) is in the solution set, since ' $2 + 0(5) \ge 2$ ' is TRUE. The point (3.5, -7.4) is in the solution set, since ' $3.5 + 0(-7.4) \ge 2$ ' is TRUE.

The graph is the half-plane shown at left. This is the picture of all the points with x-value greater than or equal to 2.

 $\begin{array}{c} \text{graph of } y < 5 \,, \\ \text{viewed as an inequality in TWO} \\ \text{variables} \end{array}$

Viewed as an inequality in *two* variables, 'y < 5' is really a shorthand for '0x + y < 5'.

The solution set is the set of all **points** (x, y), where the y-value is less than 5. The x-value can be anything!

Here are examples of substitution into '0x+y<5': The point (2,4) is in the solution set, since '0(2)+4<5' is TRUE.

The point (-7.4, -3) is in the solution set, since ' 0(-7.4) - 3 < 5' is TRUE.

The graph is the half-plane shown at left. This is the picture of all the points with y-value less than 5.