MAT 136, Dr. Carol JVF Burns, Final Exam

This final exam will be scaled so that it is 20% of your final grade. This exam is closed book, closed notes, closed neighbor, and open mind. Only a basic, four-function calculator is allowed (but is *not* required). Show work leading to answers to receive full credit. Good luck!

1. Let  $f(x) = 3x^2 - 5$ .

- (2 pts) Find f'(x) using differentiation shortcuts.
- (6 pts) Use the limit definition of derivative to find f'(x).



3. The graph of the equation  $5x^2 - 2xy + y^2 = -y + 4x + 6$  is given below.



(2 pts) Verify that the point (0,2) lies on the graph.

(6 pts) Find the slope of the tangent line to the graph at (0,2). (Hint: use implicit differentiation.)



5. (8 pts) An open rectangular box with a square base is to be made from 48 square feet of material. Find the dimensions of the box that gives the largest possible volume.

DIMENSIONS OF BOX (use correct units):

VOLUME OF DESIRED BOX (use correct units):

6. (6 pts) We have studied several "named theorems" this term. Choose your favorite, and give a precise statement. Include a sketch, if appropriate.

7. DIFFERENTIATION PROBLEMS:  
• (5 pts) 
$$\frac{d}{dx} (e^x - 5^x + \frac{1}{x} + 7x^5 - \sqrt{3})$$
  
• (4 pts)  $\frac{d}{dx} \sqrt[3]{5x^2 - 1}$   
• (5 pts)  $\frac{d}{dt} (\ln(\cos(3t - 1)))$   
• (4 pts)  $\frac{d}{dx} \left(\frac{2x - 1}{x + 5}\right)$   
• (4 pts) Let  $f(x) = 5\sin(x)\tan(x)$ . Find  $f'(0)$ .

8. INTEGRATION PROBLEMS:

• (5 pts) 
$$\int \left(\frac{2-x^3}{x^2}+5\right) dx$$
  
• (4 pts)  $\int \frac{x}{\sqrt{5x^2-1}} dx$   
• (5 pts)  $\int xe^x dx$   
• (4 pts)  $\int \frac{1}{1+t^2} dt$   
• (4 pts)  $\int_{2/5}^7 \frac{1}{5x-1} dx$ 

## 9. LIMITS:

• (3 pts) 
$$\lim_{x \to 0} \frac{3 + \sin(x)}{\cos(x)}$$
  
• Find 
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$
 in two ways:  
(3 pts) using l'Hopital's rule  
(3 pts) not using l'Hopital's rule  
• (3 pts) 
$$\lim_{x \to \infty} \frac{1 - 3x^5 + 4x}{7x^5 + x^2 - 2}$$
  
• (2 pts) 
$$\lim_{n \to \infty} (1 + \frac{1}{n})^n$$
  
• (3 pts) 
$$\lim_{x \to 0^-} \frac{|x|}{x}$$

10. Let  $f(x) = 2x^3 - 9x^2 + 12x - 4 = (x - 2)^2(2x - 1)$ .

The following questions guide you through a complete function analysis for f:

- $(1 \text{ pt}) \operatorname{dom}(f) =$
- (2 pts) f'(x) =
- (3 pts) critical points for f (both x and y values):
- (2 pts) f''(x) =
- (2 pts) candidate(s) for inflection point(s) for f (both x and y values):
- (8 pts) Fill in the function analysis table. Some columns may be left blank. Add additional columns if needed.

| x      |  |  |  |  |
|--------|--|--|--|--|
| f(x)   |  |  |  |  |
| f'(x)  |  |  |  |  |
| f''(x) |  |  |  |  |

- (2 pts) *x*-intercept(s) of *f*:
- (1 pt) y-intercept of f:
- (2 pts) end behavior of f: as  $x \to \infty$ ,  $y \to \_$ as  $x \to -\infty$ ,  $y \to \_$
- (4 pts) sketch a graph of *f*: