NAME: $(1 \mathrm{pt})$	NUMBER: $(1 \mathrm{pt})$

MAT 136, Dr. Carol JVF Burns, Final Exam
This final exam will be scaled so that it is 20% of your final grade.
This exam is closed book, closed notes, closed neighbor, and open mind.
Only a basic, four-function calculator is allowed (but is not required).
Show work leading to answers to receive full credit. Good luck!

1. Let $f(x)=3 x^{2}-5$.

- (2 pts) Find $f^{\prime}(x)$ using differentiation shortcuts.
- (6 pts) Use the limit definition of derivative to find $f^{\prime}(x)$.

2. (6 pts) The graph of a function f is given below.

In the space provided, graph its derivative, f^{\prime}.

3. The graph of the equation $5 x^{2}-2 x y+y^{2}=-y+4 x+6$ is given below.

(2 pts) Verify that the point $(0,2)$ lies on the graph.
(6 pts) Find the slope of the tangent line to the graph at $(0,2)$.
(Hint: use implicit differentiation.)
4. (40 pts) The graph of a function f is shown below.

Read the following information from the graph; if something does not exist, write DNE. (2 pts each)

$f(0)$	$f(-1.5)$	$f^{\prime}(-1.5)$	$f^{\prime \prime}(4)$
$\lim _{x \rightarrow-1^{+}} f(x)$	$\lim _{x \rightarrow-1} f(x)$	$\operatorname{dom}(f)$	$\operatorname{ran}(f)$
$\{x \mid f(x)=0\}$	$\int_{3}^{5} f(x) d x$	$\int_{-1}^{-2} f(t) d t$	$\lim _{t \rightarrow 1} f(t)$

the coordinates of a point (x, y) where f has a global maximum value (if such a point exists)
the coordinates of a point (x, y) which is a local min, but not a global min
give a value of x in the domain of f where f is continuous, but not differentiable
average rate of change of f on $[0,2]$
instantaneous rate of change of f at $x=1$
all value(s) of x where f is NOT continuous
slope of tangent line to f at $x=4$
$\left\{t \mid t>0\right.$ and $\left.f^{\prime}(t)=0\right\}$
5. (8 pts) An open rectangular box with a square base is to be made from 48 square feet of material. Find the dimensions of the box that gives the largest possible volume.

DIMENSIONS OF BOX (use correct units): \qquad
VOLUME OF DESIRED BOX (use correct units): \qquad
6. (6 pts) We have studied several "named theorems" this term.

Choose your favorite, and give a precise statement.
Include a sketch, if appropriate.

7. DIFFERENTIATION PROBLEMS:

- $(5 \mathrm{pts}) \frac{d}{d x}\left(\mathrm{e}^{x}-5^{x}+\frac{1}{x}+7 x^{5}-\sqrt{3}\right)$
- $(4 \mathrm{pts}) \frac{d}{d x} \sqrt[3]{5 x^{2}-1}$
- (5 pts) $\frac{d}{d t}(\ln (\cos (3 t-1)))$
- $(4 \mathrm{pts}) \frac{d}{d x}\left(\frac{2 x-1}{x+5}\right)$
- (4 pts) Let $f(x)=5 \sin (x) \tan (x)$. Find $f^{\prime}(0)$.

8. INTEGRATION PROBLEMS:

- (5 pts) $\int\left(\frac{2-x^{3}}{x^{2}}+5\right) d x$
- (4 pts) $\int \frac{x}{\sqrt{5 x^{2}-1}} d x$
- (5 pts) $\int x \mathrm{e}^{x} d x$
- $(4 \mathrm{pts}) \int \frac{1}{1+t^{2}} d t$
- (4 pts) $\int_{2 / 5}^{7} \frac{1}{5 x-1} d x$

9. LIMITS:

- (3 pts) $\lim _{x \rightarrow 0} \frac{3+\sin (x)}{\cos (x)}$
- Find $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$ in two ways:
(3 pts) using l'Hopital's rule
(3 pts) not using l'Hopital's rule
- (3 pts) $\lim _{x \rightarrow \infty} \frac{1-3 x^{5}+4 x}{7 x^{5}+x^{2}-2}$
- (2 pts) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
- (3 pts) $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}$

10. Let $f(x)=2 x^{3}-9 x^{2}+12 x-4=(x-2)^{2}(2 x-1)$.

The following questions guide you through a complete function analysis for f :

- $(1 \mathrm{pt}) \operatorname{dom}(f)=$
- $(2 \mathrm{pts}) f^{\prime}(x)=$
- (3 pts) critical points for f (both x and y values):
- (2 pts) $f^{\prime \prime}(x)=$
- (2 pts) candidate(s) for inflection point(s) for f (both x and y values):
- (8 pts) Fill in the function analysis table. Some columns may be left blank. Add additional columns if needed.

x								
$f(x)$								
$f^{\prime}(x)$								
$f^{\prime \prime}(x)$								

- (2 pts) x-intercept(s) of f :
- (1 pt) y-intercept of f :
- (2 pts) end behavior of f :
as $x \rightarrow \infty, y \rightarrow$ \qquad as $x \rightarrow-\infty, y \rightarrow$ \qquad
- (4 pts) sketch a graph of f :

