NAME: (1 pt)	NUMBER: (1 pt)
--------------	----------------

MAT 136, Dr. Carol JVF Burns, Exam #4, Chapter 5, 100 pts This exam is closed book, closed notes, closed neighbor, and open mind. Only a basic, four-function calculator is allowed (but is *not* required). Show work leading to answers to receive full credit. Good luck!

1. The graph of a function f is given below. The graph consists of straight-line segments and a semi-circle. Evaluate the following integrals:

(2 pts)
$$\int_0^1 f(x) dx$$

(2 pts)
$$\int_1^4 f(t) dt$$

(2 pts)
$$\int_4^0 f(x) dx$$

(2 pts) Let $g(x) = \int_0^x f(t) dt$. Find g(1).

- 2. Consider the definite integral $\int_{a}^{b} f(t) dt$. (1 pt) What is the lower limit of integration?
 - (1 pt) What is the integrand?
 - (2 pts) Rewrite the integral using the dummy variable w.

3. (7 pts) Let $g(x) = \int_{2x}^{x^2} \sqrt{1-t^3} dt$. Find g'(x).

4. (5 pts) Evaluate the following definite integral by interpreting it in terms of area: $\int_{-3}^{3} \sqrt{9 - x^2} dx$

5. (6 pts) Estimate $\int_0^2 x^2 dx$ using left endpoints; use four approximating rectangles. Show work leading to your answer.

6. (5 pts) Suppose that $\int_0^1 f(t) dt = 5$, $\int_0^4 f(t) dt = -3$, and $\int_3^4 f(t) dt = 2$. Find $\int_3^1 f(t) dt$.

- 7. (4 pts) Suppose that the derivative of a function f is known, and one point on the graph of f is known. That is, suppose you are given both f'(x) and a point (a, f(a)). Write a formula for f(x).
- 8. (3 pts) In the space provided below, graph $y = \ln |x|$.

- (2 pts) What is the slope of the tangent line to the graph of $y = \ln |x|$ when x = -3?
- (3 pts) What is the most general antiderivative of $\frac{1}{x}$?
- (3 pts) Does $\int_{-1}^{3} \frac{1}{x} dx$ exist? Why or why not?

9. Compute the following integrals. Be sure to show work leading to your answers.

(5 pts)
$$\int \frac{1+x^3}{x} dx$$

(5 pts)
$$\int \frac{2}{\sqrt[3]{x}} dx$$

(4 pts)
$$\int \left(\frac{4}{\sqrt{1-x^2}} + 3\sec x \tan x\right) dx$$

(8 pts)
$$\int_0^1 x(1+x^2)^{23} dx$$

(8 pts)
$$\int x e^{3x} dx$$

10. (3 pts) What is the Integration by Parts formula?

(4 pts) Use the Integration by Parts formula to find $\int \ln(x) dx$.

11. (11 pts) (As promised!) Use words from the "word bank" given below to fill in the blanks, giving a discussion of the relationship between area and antiderivatives:

Let	be	on	(and assume
<u> </u>	for this motivation).		
Let <i>f</i> on	denote the	under the _	of
It's	that	is an	for <i>f</i> ,
since for		,	
	~		

WORD BANK

 $\frac{f(x)\Delta x}{\Delta x}$ area antiderivative [a,x] Δx \boldsymbol{A} f[a,b] \simeq f(x)continuous A'(x) $f \ge 0$ A(x)plausible small = $A(x+\Delta x) - A(x)$ graph Δx

EXTRA CREDIT (6 pts)

As on card 69b, prove that if f' is integrable on [a,b], then $\int_a^b f'(x) dx = f(b) - f(a)$.