MAT 136, Dr. Carol JVF Burns, Exam \#4, Chapter 5, 100 pts
This exam is closed book, closed notes, closed neighbor, and open mind.
Only a basic, four-function calculator is allowed (but is not required).
Show work leading to answers to receive full credit. Good luck!

1. The graph of a function f is given below. The graph consists of straight-line segments and a semi-circle. Evaluate the following integrals:
$(2 \mathrm{pts}) \int_{0}^{1} f(x) d x$
(2 pts) $\int_{1}^{4} f(t) d t$
(2 pts) $\int_{4}^{0} f(x) d x$
$(2 \mathrm{pts})$ Let $g(x)=\int_{0}^{x} f(t) d t$. Find $g(1)$.
2. Consider the definite integral $\int_{a}^{b} f(t) d t$.
(1 pt) What is the lower limit of integration?
(1 pt) What is the integrand?
(2 pts) Rewrite the integral using the dummy variable w.
3. (7 pts) Let $g(x)=\int_{2 x}^{x^{2}} \sqrt{1-t^{3}} d t$.

Find $g^{\prime}(x)$.
4. (5 pts) Evaluate the following definite integral by interpreting it in terms of area: $\int_{-3}^{3} \sqrt{9-x^{2}} d x$
5. (6 pts) Estimate $\int_{0}^{2} x^{2} d x$ using left endpoints; use four approximating rectangles. Show work leading to your answer.
6. (5 pts) Suppose that $\int_{0}^{1} f(t) d t=5, \quad \int_{0}^{4} f(t) d t=-3, \quad$ and $\quad \int_{3}^{4} f(t) d t=2$. Find $\int_{3}^{1} f(t) d t$.
7. (4 pts) Suppose that the derivative of a function f is known, and one point on the graph of f is known. That is, suppose you are given both $f^{\prime}(x)$ and a point $(a, f(a))$. Write a formula for $f(x)$.
8. (3 pts) In the space provided below, graph $y=\ln |x|$.
(2 pts) What is the slope of the tangent line to the graph of $y=\ln |x|$ when $x=-3$?
(3 pts) What is the most general antiderivative of $\frac{1}{x}$?
(3 pts) Does $\int_{-1}^{3} \frac{1}{x} d x$ exist? Why or why not?
9. Compute the following integrals. Be sure to show work leading to your answers.
(5 pts) $\int \frac{1+x^{3}}{x} d x$
(5 pts) $\int \frac{2}{\sqrt[3]{x}} d x$
(4 pts) $\int\left(\frac{4}{\sqrt{1-x^{2}}}+3 \sec x \tan x\right) d x$
(8 pts) $\int_{0}^{1} x\left(1+x^{2}\right)^{23} d x$
(8 pts) $\int x \mathrm{e}^{3 x} d x$
10. (3 pts) What is the Integration by Parts formula?
(4 pts) Use the Integration by Parts formula to find $\int \ln (x) d x$.
11. (11 pts) (As promised!) Use words from the "word bank" given below to fill in the blanks, giving a discussion of the relationship between area and antiderivatives:

Let \qquad be \qquad on \qquad (and assume for this motivation).

Let \quad denote the \quad under the \quad of f on \qquad .

It's that \qquad is an \qquad for f, since for \qquad
\qquad ,
\qquad \simeq \qquad
\qquad
WORD BANK

EXTRA CREDIT (6 pts)

As on card 69 b, prove that if f^{\prime} is integrable on $[a, b]$, then $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$.

