MAT 136, Dr. Carol JVF Burns, EXAM \#1
This exam is closed book, closed notes, closed neighbor, and open mind.
Only a basic, four-function calculator is allowed (but is not required).
Show work leading to answers to receive full credit. Good luck!

1. (48 pts) The graph of a function f is shown below.

Read the following information from the graph; if something does not exist, write DNE.
(2 pts each)

$f(0)$	$f(-1.5)$	$f^{\prime}(-1.5)$	$f(2)$
$f^{\prime}(2)$	$f(3)$	$f^{\prime}(3)$	$f(5)$
dom (f) (use interval notation)	$\operatorname{ran}(f)$ (use interval notation)		
$\lim _{x \rightarrow-1^{+}} f(x)$	$\lim _{x \rightarrow-1} f(x)$	$\lim _{x \rightarrow 2} f(x)$	
$\{x \mid f(x)=0\}$	$f(x)$	$f(t)<0\}$	
the coordinates of a point (x, y) where f has a global maximum value (if such a point exists)			
the coordinates of a point (x, y) which is a local max, but not a global max			
give a value of x in the domain of f where f is continuous, but not differentiable			
average rate of change of f on $[1,2]$			
instantaneous rate of change of f at $x=1$			
all value(s) of x in the domain of f where f is NOT continuous			
slope of tangent line to f at $x=4$			
the local linearization, $\ell(x)$, to the graph of f at $x=2$			

2. (3 pts) Give a precise definition: ' f is continuous at a ' if and only if
(2 pts) When is evaluating a limit (as x approaches a) as easy as direct substitution? Answer (fill in the blank): when f is \qquad at \qquad .
(2 pts) Under what condition(s) (if any) is the following statement true?

$$
\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)
$$

3. As we did in class, create a graph that matches the story below.

You live on a long, straight, road (i.e., a number line). Your house is at position 0.
You always leave your house and turn in the positive direction (i.e., towards $1,2, \ldots$).
Let $p(t)$ denote the position of the car at time t.
Put $p(t)$ along the vertical axis, and t along the horizontal axis.
" I ALWAYS FORGET SOMETHING! "

- (2 pts) Leave your house at $t=0$.

Gradually speed up, reaching 40 miles per hour at $t=a$.

- (2 pts) Drive at a constant speed of 40 mph , with your thoughts wandering, until $t=b$.
- (2 pts) You suddenly realize that you've forgotten a homework assignment that needs to be passed in today!
So, at $t=c$, start slowing down, and come to a complete stop by $t=d$.
- (2 pts) Turn around, and start speeding up, heading back towards home. At $t=e$ you reach 40 mph , and remain at 40 mph until you arrive back home at $t=f$.
- (2 pts) Run into your house and grab your homework.

While there, the phone rings, which takes a few more minutes.
Then, get back out to your car, and at $t=g$ take off again!
PUT YOUR GRAPH HERE:
4. (16 pts) Compute the following limits. If a limit does not exist, state DNE.

- $\lim _{x \rightarrow 1} \sqrt{x^{3}-2 x^{2}+5}$
- $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}$
- $\lim _{x \rightarrow-\infty} \frac{1-6 x^{2}+3 x}{7-x^{5}}$
- $\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}$

5. (10 pts) Use the definition of the derivative (not a differentiation shortcut!) to find $f^{\prime}(x)$ if $f(x)=x^{2}-3 x+2$.
6. (6 pts) Determine the values of a and b if f is continuous:

$$
f(x)= \begin{cases}x^{2} & \text { if } x<-4 \\ a x+b & \text { if }-4 \leq x<5 \\ \sqrt{x+31,} & \text { if } x \geq 5\end{cases}
$$

8. (9 pts) In each space below, sketch the graph of a function f satisfying the given requirements:

f increasing, f^{\prime} increasing	f decreasing, f^{\prime} increasing	f both decreasing and concave
down		

9. (6 pts) Give a precise statement of the Squeeze Theorem. Include a sketch that illustrates what the theorem is saying.
10. (6 pts) Suppose that $h(2)=5$ and the average rate of change of h on $[2,7]$ is 3 . Find $h(7)$. Be sure to show some work leading to your answer.
