MAT 136, Dr. Carol JVF Burns, Exam \#4, cards 65
This exam is closed book, closed notes, closed neighbor, and open mind.
Only a basic, four-function calculator is allowed (but is not required).
Show work leading to answers to receive full credit. Good luck!

1. (3 pts) In the space provided below, graph the function f defined by:

$$
f(x)= \begin{cases}2 & \text { if } 0 \leq x<1 \\ 3-x & \text { if } 1 \leq x<3 \\ g(x) & \text { if } 3 \leq x<5\end{cases}
$$

where $g(x)$ is the upper half of a circle with center $(4,0)$ and radius 1 .

Then, evaluate the following definite integrals:
(3 pts) $\int_{0}^{1} f(x) d x$
$(4 \mathrm{pts}) \int_{3}^{5} f(t) d t$
(5 pts) $\int_{3}^{1} f(x) d x$
2. Consider the definite integral $\int_{c}^{d} g(x) d x$.
$(1 \mathrm{pt})$ What is the lower limit of integration?
(1 pt) What is the integrand?
(2 pts) Rewrite the integral using the dummy variable t.
3. (7 pts) Let $g(x)=\int_{2-x}^{3 x}\left(t^{2}-1\right)^{5} d t$. Find $g^{\prime}(x)$.
4. (4 pts) Suppose that $f^{\prime}(t)=\sin ^{3} t$, and $f(1)=5$.

That is, you know both the derivative of a function f, and a single point on the graph of f. Write a formula for $f(x)$. You do not need to evaluate any integral that might appear in your formula.
5. (6 pts) Estimate $\int_{0}^{4} \sqrt{x} d x$ using right endpoints; use four approximating rectangles. Include a sketch that illustrates what you are finding. Give an exact answer, not a decimal approximation.
6. (5 pts) Suppose that $\int_{0}^{1} f(t) d t=-2, \int_{0}^{4} f(t) d t=3$, and $\int_{3}^{4} f(t) d t=5$. Find $\int_{1}^{3} f(t) d t$.
7. (5 pts) Use the technique of substitution to evaluate the following integral:

$$
\int \frac{(\ln x)^{5}}{x} d x
$$

8. (3 pts) In the space provided below, graph $y=\ln |x|$.
(2 pts) What is the slope of the tangent line to the graph of $y=\ln |x|$ when $x=-2$?
(3 pts) What is the most general antiderivative of $\frac{1}{x}$?
(3 pts) Evaluate: $\int_{-3}^{-1} \frac{1}{x} d x$
9. Compute the following integrals. Be sure to show work leading to your answers.
(6 pts) $\int\left(\frac{4}{1+x^{2}}-\sec x \tan x\right) d x$
(6 pts) $\int \frac{1-x^{2}}{x} d x$
(8 pts) $\int_{0}^{1} x\left(1-x^{2}\right)^{13} d x$
(8 pts) $\int \ln x d x$
(6 pts) $\int \frac{3}{\sqrt[5]{x}} d x$
10. (5 pts) What is the Integration by Parts formula?
(8 pts) Use the Integration by Parts formula to find $\int x \mathrm{e}^{x} d x$.

EXTRA CREDIT:

(6 pts) As on card 68b, use the definition of definite integral as a limit of Riemann sums to find $\int_{0}^{2} f(x) d x$, where:
$f(x)= \begin{cases}5 & \text { if } x=0 \\ 0 & \text { if } 0<x<2 \\ 3 & \text { if } x=2\end{cases}$
(8 pts) As on card 69b, prove that if f^{\prime} is integrable on $[a, b]$, then $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$.

