Loading [MathJax]/extensions/TeX/cancel.js
header hamburger icon
header search icon

audio read-through Introduction to Asymptotes

Index card: 35b

DEFINITION asymptote
An ‘asymptote’ (pronounced AS-sim-tote) is a curve (usually a line) that another curve gets arbitrarily close to as $\,x\,$ approaches $\,+\infty\,,$ $\,-\infty\,,$ or a finite number.

Rational functions usually have interesting asymptote behavior.

Asymptotes exhibited by rational functions come in different flavors, as shown below:

a horizontal asymptote horizontal asymptote

The dashed red line is horizontal.

The blue curve is getting closer and closer to this horizontal red line as $\,x\rightarrow\infty\,$ and as $\,x\rightarrow -\infty\,.$

Thus, the red line is
a horizontal asymptote.

a vertical asymptote vertical asymptote

The dashed red line is vertical.

The blue curve is getting closer and closer to this vertical red line as $\,x\,$ approaches a finite number (from the right, and from the left).

Thus, the red line is a vertical asymptote.

a slant asymptote slant asymptote

The dashed red line is not horizontal, and not vertical. It is ‘slanted’.

The blue curve is getting closer and closer to this ‘slanted’ red line as $\,x\rightarrow\infty\,.$

Thus, the red line is a slant asymptote.

an asymptote that is not a line asymptotes that are not lines

The dashed red curve is not a line.

The blue curve is getting closer and closer to this red curve as $\,x\rightarrow\infty\,$ and as $\,x\rightarrow -\infty\,.$

Thus, the red curve is an asymptote that is not a line.

Vertical, horizontal and slant asymptotes are studied in more detail in the next few sections.

Note from Dr. Burns (the website creator)
Welcome—so glad you're here!

After more than 25 years of developing this site, I am now seeking a successor organization to acquire OneMathematicalCat.org and carry it forward into the future. Learn more about this opportunity ➜

Want to say hello? Sign my guestbook!

Master the ideas from this section by practicing below:

down arrow icon
When you're done practicing, move on to:

Introduction to Puncture Points (Holes)
right arrow icon

Concept Practice

  1. Choose a specific problem type, or click ‘New problem’ for a random question.
  2. Think about your answer.
  3. Click ‘Check your answer’ to check!
PROBLEM TYPES:
1
2
3
AVAILABLE
MASTERED
IN PROGRESS
To get a randomly-generated practice problem, click the ‘New problem’ button above.

Think about your answer, and then press ‘Enter’ or ‘Check your answer’.
Desired # problems:
(MAX is 3)
Extra work-space?
(units are pixels):