SECTION 5.4 Graphing Functions—Some Basic Techniques

IN-SECTION EXERCISES:

EXERCISE 1.

FIRST GRAPH:

global minimum value: -3global maximum value: none global minimum point: (2, -3)

SECOND GRAPH:

global minimum value: -1global maximum value: 4 global minimum points: $\{(x, -1) \mid x \in [1, 3]\}$ global maximum point: (-1, 4)

EXERCISE 2.

- 1. FALSE. Not every local maximum is a global maximum. See the sketch below.
- 2. TRUE. Every global maximum point is a local maximum point.
- 3. TRUE.
- 4. FALSE. There may be many places where the greatest function value is attained. See the sketch below.

EXERCISE 3.

The first graph cannot be correct, since P must have a horizontal tangent line at (1,0).

The second graph cannot be correct, since P must have a horizontal tangent line at (1,0), and not further to the right.

EXERCISE 4.

$$\begin{split} \mathcal{D}(P) &= \mathbb{R}. \text{ Plot a few points:} \\ P(0) &= 1, \ P(1) = -4, \ P(-1) = -12 \\ P'(x) &= 12x^3 + 12x^2 - 24x = 12x(x^2 + x - 2) = 12x(x + 2)(x - 1) \\ P'(x) &= 0 \iff x = 0 \text{ or } x = -2 \text{ or } x = 1 \\ P''(x) &= 36x^2 + 24x - 24 = 12(3x^2 + 2x - 2) \\ P''(x) &= 0 \iff x = \frac{-2 \pm \sqrt{4 - 4(3)(-2)}}{2 \cdot 3} \\ \frac{-2 + \sqrt{4 - 4(3)(-2)}}{2 \cdot 3} \approx 0.55 \\ \frac{-2 - \sqrt{4 - 4(3)(-2)}}{2 \cdot 3} \approx -1.22 \\ \text{Sign of } P''(x): \end{split}$$

$$++++++$$
, $----$, $+++++++$, -1.22 , 55

Thus, from left to right, P is concave up, down, up.

For large x, $P(x) \approx 3x^4$; so as $x \to \pm \infty$, $P(x) \to \infty$

Details: The two x-axis intercepts can be 'zeroed in on', using the Intermediate Value Theorem, if desired.

A MATLAB graph is given.

2. Here's one approach, that doesn't use calculus. The graph of f is the same as the graph of $y = x^{1/5}$, except shifted 2 units to the left. And, $y = x^{1/5}$ is the inverse of $y = x^5$, so its graph is a reflection about the line y = x. Just 'build the graph up'!

148

1.

copyright Dr. Carol JV Fisher Burns

3. $\mathcal{D}(f) = \mathbb{R} - \{1, -1\}$

g is an even function, so the graph is symmetric about the x-axis; and for x > 0, $g(x) = \frac{x}{x^2 - 1}$

Plot a few points: g(0) = 0, $g(2) = \frac{2}{3}$, $g(\frac{1}{2}) = -\frac{2}{3}$ As x approaches 1 from the right, g(x) approaches $-\infty$

The wapproaches $\mathbf{1}$ from the right, g(w) approaches

As x approaches 1 from the left, g(x) approaches ∞

(More on limits involving infinity in section 5.6.)

$$g'(x) = \frac{(x^2 - 1)(1) - x(2x)}{(x^2 - 1)^2} = -\frac{x^2 + 1}{(x^2 - 1)^2}$$

Remember that this formula is only valid for $x \ge 0$. Note that g'(x) is never equal to zero. Also, as x approaches 0 from the right, g'(x) approaches -1. By symmetry, as x approaches 0 from the left, g'(x) approaches 1. There is a 'kink' at 0. (This 'comes from' the absolute value curve.)

Computing the second derivative:

$$g''(x) = \frac{(x^2 - 1)^2(-2x) + (x^2 + 1)2(x^2 - 1)(2x)}{(x^2 - 1)^4}$$
$$= \frac{2x(x^2 - 1)[-(x^2 - 1) + 2(x^2 + 1)]}{(x^2 - 1)^4}$$
$$= \frac{2x[x^2 + 3]}{(x^2 - 1)^3}$$

Again, this formula is only valid for $x \ge 0$. Note that g''(x) = 0 only when x = 0, and g'' has a discontinuity at x = 1. Computing the sign of g''(x) for x > 0:

Thus, g is concave down on (0, 1) and concave up on $(1, \infty)$. Details:

As $x \to \infty$, $g(x) \to 0$

A MATLAB graph is given:

4. $\mathcal{D}(f) = \mathbb{R}$

 $\begin{array}{ll} f(0) = 0\,; & f(1) = \frac{1}{e}\,; & f(-1) = -e \\ f'(x) = x(-e^{-x}) + (1)e^{-x} = e^{-x}(1-x) \\ f'(x) = 0 & \Longleftrightarrow & x = 1; \text{ the point } (1,\frac{1}{e}) \text{ is a critical point.} \\ f''(x) = e^{-x}(-1) + (-e^{-x})(1-x) = -e^{-x}[1+1-x] = -e^{-x}(2-x) \\ f''(x) = 0 & \Longleftrightarrow & x = 2; \text{ the point } (2,\frac{2}{e^2}) \text{ is a candidate for an inflection point.} \\ \text{Sign of } f''(x): \end{array}$

Thus, f is concave down on $(-\infty, 2)$ and concave up on $(2, \infty)$. Details:

Note that for x > 0, f(x) > 0. Also, as $x \to \infty$, $f(x) \to 0$ (since e^x gets bigger much faster than x). (1, $\frac{1}{e}$) is a local and global maximum point

There are no local or global minima.

 $(2, \frac{2}{e^2})$ is an inflection point

(0,0) is the only x-axis intercept, and the only y-axis intercept

The graph is concave up on $(2, \infty)$ and concave down on $(-\infty, 2)$.

The graph increases on $(-\infty, 1)$ and decreases on $(1, \infty)$.

Here's a MATLAB graph:

