
SECTION 5.1 Increasing and Decreasing Functions

IN-SECTION EXERCISES:

EXERCISE 1.

It is assumed that the pattern illustrated at the graph boundaries continues. Some approximation is neces-
sary.

f increases on (−∞,−3) ∪ (0, 2) ∪ (4, 6)

f decreases on (−3, 0) ∪ (6, 10) ∪ (10,∞)

f neither increases nor decreases on (2, 4)

EXERCISE 2.

There are many possible correct answers.

EXERCISE 3.

1. Read this as ‘x1 less than x2 implies f(x1) is less than or equal to f(x2)’.

Alternately, read as: ‘If x1 is less than x2, then f(x1) is less than or equal to f(x2)’.

The hypothesis is the sentence ‘x1 < x2’; the conclusion is ‘f(x1) ≤ f(x2)’.

2. The hypothesis ‘x1 < x2’ becomes ‘1 < 3’, which is true.

The conclusion ‘f(x1) ≤ f(x2)’ becomes ‘−1 ≤ −0.5’, which is true.

When both the hypothesis and conclusion of an implication are true, then the implication is true. Thus,
the sentence

true︷ ︸︸ ︷
1 < 3︸ ︷︷ ︸
true

=⇒ −1 ≤ −0.5︸ ︷︷ ︸
true

is true.

3. The hypothesis is still ‘1 < 3’, which is true.

The conclusion is ‘−0.5 ≤ −1’, which is false.

When the hypothesis is true, but the conclusion is false, the implication is false. Thus, the sentence

false︷ ︸︸ ︷
1 < 3︸ ︷︷ ︸
true

=⇒ −0.5 ≤ −1︸ ︷︷ ︸
false

is false.
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4. The sentence
for all x1, x2 ∈ I, x1 < x2 =⇒ f(x1) ≤ f(x2) (∗)

is FALSE, if there is at least one choice for x1 and x2 from the interval I that makes ‘x1 < x2 =⇒
f(x1) ≤ f(x2)’ false.

Plot the three known points: choosing x1 to be 2, and x2 to be 3, then the hypothesis ‘2 < 3’ is true,
but the conclusion ‘2 ≤ 1’ is false. Thus, the sentence (*) is false.

5. No matter what choices of x1 and x2 are made from the three given points, the sentence

x1 < x2 =⇒ f(x1) ≤ f(x2)

is true. (Remember: if the hypothesis of an implication is false, then the sentence is automatically
(vacuously) true.) HOWEVER, THERE ARE MANY OTHER POSSIBLE CHOICES FROM THE
INTERVAL I THAT WE DO NOT KNOW ABOUT. Thus, without additional information about f ,
the truth of the sentence

for all x1, x2 ∈ I, x1 < x2 =⇒ f(x1) ≤ f(x2)

cannot be decided.

6.

7. If f is continuous at x = 1, increases on (0, 1) and is nondecreasing on (1, 2), then it must be nonde-
creasing on (0, 2). However, if f is not continuous at x = 1, then f may not be nondecreasing on (0, 2).
Both cases are illustrated above.

8. TRUE. Whenever the sentence ‘f(x1) < f(x2)’ is true, so is the sentence ‘f(x1) ≤ f(x2)’.

FALSE. The sentence ‘f(x1) ≤ f(x2)’ can be true, without having the sentence ‘f(x1) < f(x2)’ true,
as illustrated below.

9. DEFINITION. A function f is nonincreasing on an interval I if and only if:

for all x1, x2 ∈ I, x1 < x2 =⇒ f(x1) ≥ f(x2)

EXERCISE 4.

Proof. Let f be differentiable on (a, b) and suppose that f ′(x) < 0 ∀ x ∈ (a, b). Choose any x1, x2 in (a, b)
with x1 < x2 (so that x2− x1 > 0). Observe that x1 cannot be a, since a /∈ (a, b). Similarly, x2 cannot be b.

Since f is differentiable at x1 and x2 (by hypothesis), f must also be continuous at x1 and x2. Thus, f is
not only differentiable on the open interval (x1, x2), but also continuous on the closed interval [x1, x2]. Thus,
the Mean Value Theorem guarantees existence of a number c in (x1, x2) for which:

f ′(c) =
f(x2)− f(x1)

x2 − x1
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But since c ∈ (a, b) and f ′(x) < 0 ∀ x ∈ (a, b), we have f ′(c) < 0 . Thus:

f(x2)− f(x1)

x2 − x1
< 0

Multiplying both sides of this inequality by the positive number x2 − x1 yields the equivalent inequality

f(x2)− f(x1) < 0 ,

that is, f(x2) < f(x1). It has been shown that whenever x1, x2 ∈ I satisfy x1 < x2, it is also true that
f(x1) > f(x2). So, f is decreasing on I.

EXERCISE 5.

Proof. Let f be differentiable on (a, b) with f ′(x) ≥ 0 ∀ x ∈ (a, b). Choose any x1, x2 ∈ (a, b) with x1 < x2.
Since f is differentiable on (x1, x2) and continuous on [x1, x2], the MVT guarantees existence of a number
c ∈ (x1, x2) for which:

f ′(c) =
f(x2)− f(x1)

x2 − x1

But f ′(c) ≥ 0 yields the desired conclusion that x1 < x2 =⇒ f(x1) ≤ f(x2) .

EXERCISE 6.

1. The product ab is positive if both factors are positive, or if both factors are negative.

2. If a = 1 and b = 2, the sentence ‘ab > 0’ becomes ‘1 · 2 > 0’, which is true. The sentence

(a > 0 and b > 0) or (a < 0 and b < 0)

becomes the true sentence:

true︷ ︸︸ ︷
true︷ ︸︸ ︷

(

true︷ ︸︸ ︷
1 > 0 and

true︷ ︸︸ ︷
2 > 0) or

false︷ ︸︸ ︷
(

false︷ ︸︸ ︷
1 < 0 and

false︷ ︸︸ ︷
2 < 0)

3. If a = 1 and b = −2, the sentence ‘ab > 0’ becomes ‘1 · (−2) > 0’, which is false. The sentence

(a > 0 and b > 0) or (a < 0 and b < 0)

becomes the false sentence:

false︷ ︸︸ ︷
false︷ ︸︸ ︷

(

true︷ ︸︸ ︷
1 > 0 and

false︷ ︸︸ ︷
−2 > 0) or

false︷ ︸︸ ︷
(

false︷ ︸︸ ︷
1 < 0 and

true︷ ︸︸ ︷
−2 < 0)

EXERCISE 7.

1. The number 6 is always positive, and hence does not contribute to the sign of P ′(x). Only the variable
factors need be considered when finding the sign of P ′(x).

2. The fact was used to replace the set

{x | x > 1 and x > −2}

with the set:
{x | x > 1}

In order for the sentence ‘x > 1 and x > −2’ to be true, BOTH component sentences must be true.
This happens only when x is greater than 1. Thus, the sentences ‘x > 1 and x > −2’ and ‘x > 1’ have
precisely the same solution sets.
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EXERCISE 8.

Here’s a correct solution, phrased in terms of equivalence of sentences, rather than equality of sets:

P ′(x) < 0 ⇐⇒ 6x2 + 6x− 12 < 0

⇐⇒ 6(x− 1)(x + 2) < 0

⇐⇒ (x− 1 < 0 and x + 2 > 0) or (x− 1 > 0 and x + 2 < 0)

⇐⇒ (x < 1 and x > −2) or (x > 1 and x < −2)

Observe that ‘x > 1 and x < −2’ is always false. The only time that ‘x < 1 and x > −2’ is true is for
x ∈ (−2, 1). Thus, P decreases on (−2, 1).

END-OF-SECTION EXERCISES:

1. P (x) = (x + 2)(x− 1); P (x) = 0 ⇐⇒ (x = −2 or x = 1)

Test Points: P (−3) = (−)(−) > 0 ; P (0) = (+)(−) < 0 ; P (2) = (+)(+) > 0

2. P (x) = (x− 2)(x + 1); P (x) = 0 ⇐⇒ (x = 2 or x = −1)

Test Points: P (−2) = (−)(−) > 0 ; P (0) = (−)(+) < 0 ; P (3) = (+)(+) > 0

3. P (x) = 2(x2 − 2x− 3) = 2(x− 3)(x + 1); P (x) = 0 ⇐⇒ (x = 3 or x = −1)

Test Points: P (−2) = (−)(−) > 0 ; P (0) = (−)(+) < 0 ; P (4) = (+)(+) > 0

4. P (x) = 3(x2 + 2x− 3) = 3(x + 3)(x− 1); P (x) = 0 ⇐⇒ (x = −3 or x = 1)

Test Points: P (−4) = (−)(−) > 0 ; P (0) = (+)(−) < 0 ; P (2) = (+)(+) > 0

5. Try to find a pair of integers with product (12)(3) = 36 and sum −13 ; use −4 and −9 . Then:

12x2 − 13x + 3 = 12x2 − 4x− 9x + 3

= 4x(3x− 1)− 3(3x− 1)

= (4x− 3)(3x− 1)

Then:

P (x) = 0 ⇐⇒ (4x− 3 = 0 or 3x− 1 = 0) ⇐⇒ x =
3

4
or x =

1

3

Test Points: P (0) = (−)(−) > 0 ; P ( 1
2 ) = (−)(+) < 0 ; P (1) = (+)(+) > 0
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6. Try to find a pair of integers with product (14)(−2) = −28 and sum 3 ; use 7 and −4 . Then:

14x2 + 3x− 2 = 14x2 + 7x− 4x− 2

= 7x(2x + 1)− 2(2x + 1)

= (7x− 2)(2x + 1)

Then:

P (x) = 0 ⇐⇒ (7x− 2 = 0 or 2x + 1 = 0) ⇐⇒ x =
2

7
or x = −1

2

Test Points: P (−1) = (−)(−) > 0 ; P (0) = (−)(+) < 0 ; P (1) = (+)(+) > 0

7. P (x) = x(x2 + 2x + 1) = x(x + 1)2; P (x) = 0 ⇐⇒ (x = 0 or x = −1)

Test Points: P (−2) = (−)(+) < 0 ; P (− 1
2 ) = (−)(+) < 0 ; P (1) = (+)(+) > 0

8. P (x) = x(x2 − 2x + 1) = x(x− 1)2; P (x) = 0 ⇐⇒ (x = 0 or x = 1)

Test Points: P (−1) = (−)(+) < 0 ; P ( 1
2 ) = (+)(+) > 0 ; P (2) = (+)(+) > 0

9. Division by x− 1 yields: P (x) = (x− 1)(x2 + 5x + 4) = (x− 1)(x + 4)(x + 1)

Then: P (x) = 0 ⇐⇒ (x = 1 or x = −4 or x = −1)

Test Points: P (−5) = (−)(−)(−) < 0 ; P (−2) = (−)(+)(−) > 0 ; P (0) = (−)(+)(+) < 0 ; P (2) =
(+)(+)(+) > 0

10. Division by x + 1 yields: P (x) = (x + 1)(x2 − x− 12) = (x + 1)(x− 4)(x + 3)

Then: P (x) = 0 ⇐⇒ (x = −1 or x = 4 or x = −3)

Test Points: P (−4) = (−)(−)(−) < 0 ; P (−2) = (−)(−)(+) > 0 ; P (0) = (+)(−)(+) < 0 ;
P (5) = (+)(+)(+) > 0

11. f(x) = x2(ex − 1)

f(x) = 0 ⇐⇒ x2 = 0 or ex − 1 = 0

⇐⇒ x = 0 or ex = 1

⇐⇒ x = 0 or x = 0

⇐⇒ x = 0

Test Points: f(−1) = (−1)2(e−1 − 1) = (+)(−) < 0 ; f(1) = 12(e1 − 1) = (+)(+) > 0
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12. f(x) = ex(x2 − 1) = ex(x− 1)(x + 1); f(x) = 0 ⇐⇒ (x = 1 or x = −1)

(Remember that ex is never equal to 0 .)

Test Points: f(−2) = (+)(−)(+) < 0 ; f(0) = (+)(−)(+) < 0 ; f(2) = (+)(+)(+) > 0

13. The only time a logarithm equals zero is when its input is 1 .

Thus: ln(2x− 1) = 0 ⇐⇒ (2x− 1 = 1) ⇐⇒ (x = 1) . There are two test intervals: ( 1
2 , 1) and (1,∞)

Test Points: f( 3
4 ) = ln(2 · 34 − 1) = ln( 1

2 ) < 0 ; f(2) = ln(4− 1) = ln(3) > 0

14. The only time a logarithm equals zero is when its input is 1 .

Thus: ln(1− 2x) = 0 ⇐⇒ (1− 2x = 1) ⇐⇒ (x = 0). There are two test intervals: (−∞, 0) and (0, 1
2 )

Test Points: f(−1) = ln(1 + 2) > 0 ; f( 1
4 ) = ln(1− 1

4 ) < 0

15. Apply the ‘number line test’ to f ′.

f ′(x) = 6x2 + 6x− 12

= 6(x2 + x− 2)

= 6(x + 2)(x− 1)

f ′(x) = 0 ⇐⇒ x = −2 or x = 1

Test Points: f ′(−3) = (−)(−) > 0 ; f ′(0) = (+)(−) < 0 ; f ′(2) = (+)(+) > 0

Thus: f increases on (−∞,−2) ∪ (1,∞) and decreases on (−2, 1)

16. Apply the ‘number line test’ to f ′.

f ′(x) = 3x2 − 6x− 9

= 3(x2 − 2x− 3

= 3(x− 3)(x + 1)

f ′(x) = 0 ⇐⇒ x = 3 or x = −1

Test Points: f ′(−2) = (−)(−) > 0 ; f ′(0) = (−)(+) < 0 ; f ′(4) = (+)(+) > 0

Thus: f increases on (−∞,−1) ∪ (3,∞) and decreases on (−1, 3)

17. f ′(x) = xex + ex = ex(x + 1); f ′(x) = 0 ⇐⇒ (x = −1)

Test Points: f ′(−2) = (+)(−) < 0 ; f ′(0) = (+)(+) > 0

Thus: f decreases on (−∞,−1) and increases on (−1,∞)



132 copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org

18. f ′(x) = x2ex + 2xex = xex(x + 2); f ′(x) = 0 ⇐⇒ (x = 0 or x = −2)

Test Points: f ′(−3) = (−)(+)(−) > 0 ; f ′(−1) = (−)(+)(+) < 0 ; f ′(1) = (+)(+)(+) > 0

Thus: f increases on (−∞,−2) ∪ (0,∞) and decreases on (−2, 0)

19. f ′(x) = x · 1x + lnx = 1 + lnx ; f ′(x) = 0 ⇐⇒ (lnx = −1) ⇐⇒ (x = e−1)

Note that D(f) = (0,∞). There are two test intervals: (0, 1
e ) and (1

e ,∞)

Test Points: f ′( 1
3 ) = 1 + ln( 1

3 ) < 0 ; f ′(1) = 1 + ln 1 > 0

Thus: f decreases on (0, 1
e ) and increases on ( 1

e ,∞)

20. f ′(x) = x2 · 1x + 2x lnx = x(1 + 2 lnx)

f ′(x) = 0 ⇐⇒ (x = 0 or 2 lnx = −1) ⇐⇒ (x = 0 or x = e−
1
2 )

Here, D(f) = (0,∞). Note that x = 0 is not in the domain of f .

Test Points: Choosing any number in c ∈ (0, 1√
e
), ln c < − 1

2 , so that: 1 + 2 ln c < 0

f ′(1) = (1)(1 + 2 ln 1) > 0

Thus: f decreases on (0, 1√
e
) and increases on ( 1√

e
,∞)

21. a) The solid dots are providing a picture of each summand. The first row has 1 dot, the second row 2
dots, the nth row has n dots. The resulting ‘triangular’ shape is not easy to count; instead, duplicate
this triangle (with the x’s) to get a rectangular shape. The number of rows is n; the number of columns
is n + 1 . Thus, the total number of solids dots and x’s is (n)(n + 1); the number of solid dots is half
this amount!

b) 1 + 2 + · · ·+ 67 = (67)(67+1)
2 = 2278

c)

64 + 65 + · · ·+ 108 =

add zero︷ ︸︸ ︷
(1 + 2 + · · ·+ 63)− (1 + 2 + · · ·+ 63) +(64 + 65 + · · ·+ 108)

= (1 + 2 + · · ·+ 108)− (1 + 2 + · · ·+ 63)

=
(108)(109)

2
− (63)(64)

2
= 5886− 2016 = 3870

22. a) The function S is the same as the function f , except restricted to the positive integers. See the
graph below.
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b) f ′(x) = 1
2 [x(1) + (1)(x + 1)] = 1

2 [2x + 1] = x + 1
2

Note that:

f ′(x) > 0 ⇐⇒ x +
1

2
> 0

⇐⇒ x > −1

2

Thus: f increases on (− 1
2 ,∞)

23. a) x · S = x(1 + x + · · ·+ xn) = x + x2 + · · ·+ xn+1

b)
xS − S = x + x2 + · · ·+ xn + xn+1

− (1 + x + x2 + · · ·+ xn)

= xn+1 − 1

Thus, S · (x− 1) = xn+1 − 1, so that solving for S yields:

S =
xn+1 − 1

x− 1

c) Apply the formula with x = 2 and n = 4 . Thus:

1 + 2 + 22 + 23 + 24 =
24+1 − 1

2− 1
=

32− 1

1
= 31

Also: 1 + 2 + 22 + 23 + 24 = 1 + 2 + 4 + 8 + 16 = 31

d) Again, add zero in an appropriate form:

26 + · · ·+ 210 = (1 + 2 + 22 + · · ·+ 210)− (1 + 2 + · · ·+ 25)

=
210+1 − 1

2− 1
− 25+1 − 1

2− 1

= (211 − 1)− (26 − 1)

= 2047− 63 = 1984

Direct addition yields:

26 + 27 + 28 + 29 + 210 = 64 + 128 + 256 + 512 + 1024 = 1984

24. a) If 0 < x < y, then 0 < xn < yn for every positive integer n.

b) Letting n = 2, S(x) = 1 + x + x2. Then, S′(x) = 1 + 2x ; observe that S′(x) = 0 ⇐⇒ (x = − 1
2 ).

A quick sketch of this line shows that S′(x) > 0 on (− 1
2 ,∞), and S′(x) < 0 on (−∞,− 1

2 ). Thus, S

increases on (− 1
2 ,∞) and decreases on (−∞,− 1

2 ).

Of interest to us is that S increases on (0,∞). This shows that as x increases (for positive numbers x),
S(x) also increases, as suspected.

c) Letting n = 3, S(x) = 1 + x+ x2 + x3. Then, S′(x) = 1 + 2x+ 3x2, which is always positive (check
that the discriminant is negative). Thus, S increases everywhere.

25. a) There is an equal probability of getting each of the six sides. Letting n = 1 : P (1) = 1
6 (1) = 1

6

b) P (2) = 1
6 [1 + ( 5

6 )2−1] = 1
6 [1 + 5

6 ] = 1
6 + ( 1

6 )( 5
6 )
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c) The more times you throw the dice, the better the chance of getting a 2 . Computing the first few
values:

P (1) =
1

6
≈ 0.1667

P (2) =
1

6
[1 +

5

6
] ≈ 0.3056

P (3) =
1

6
[1 +

5

6
+ (

5

6
)2] ≈ 0.4213

d) Let n ≥ 1 . Since the number ( 5
6 )n is always positive:

P (n) =
1

6
[1 +

5

6
+ (

5

6
)2 + · · ·+ (

5

6
)n−1]

<
1

6
[1 +

5

6
+ (

5

6
)2 + · · ·+ (

5

6
)n−1 + (

5

6
)n]

:= P (n + 1)

Thus, P (n) < P (n + 1), so P is an increasing function.


