SECTION 3.7 The Max-Min Theorem
IN-SECTION EXERCISES:
EXERCISE 1.

There are many possible correct answers.
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EXERCISE 2.

1. If a function has a minimum value, then it must be unique.

2. However, a minimum point certainly need NOT be unique. The functions sketched below have, going
from left to right, 1, 2, 3, and an infinite number of minimum points on 1.
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EXERCISE 3.
There are many possible correct answers.
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5. If f is NOT continuous on [a,b], then the Max-Min Theorem cannot be used to reach any conclusion
about extreme values of f on [a,b]. Indeed, f MAY or MAY NOT have extreme values, as the previous
examples illustrate.
EXERCISE 4.

1. If f IS continuous on the closed interval I, then it would HAVE to attain a maximum value (by the
Max-Min Theorem). Therefore, it must be that f is NOT continuous on I.

2. If f does NOT attain a maximum value on [a, b], then it must NOT be continuous on [a,b]. However,
it is known that f is defined on [a,b] and continuous on (a,b). Therefore, it must be that f ‘goes bad’

at an endpoint. This is illustrated below.
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EXERCISE 5.

1. TRUE. Whenever x is a number in the interval [1,2], then z is positive.
Contrapositive: If x <0, then = ¢ [1,2]
Alternately: If z <0, then z € (—o00,1) U (2, 00)

2. FALSE. Let = 0. Then the hypothesis ‘0 € [0,1)’ is TRUE, but the conclusion ‘0 > 0’ is false.
Contrapositive: If <0, then x ¢ [0, 1)
Alternately: If z <0, then z € (—00,0) U [1, 00)

3. TRUE. Whenever z is a number in the interval [0, 1), then x is a number that is greater than or equal
to 0.
Contrapositive: If z < 0, then z € (—o00,0) U [1, 00)

4. TRUE. This is a consequence of the Max-Min Theorem.

Contrapositive: If f does not attain a minimum value on [a, b], then f is not continuous on [a, b].

5. TRUE. This is a consequence of the Intermediate Value Theorem.

Contrapositive: If there does NOT exist a number ¢ € [a,b] with f(c) = D, then f is not continuous
on [a,b]. (There are other correct ways to state this.)
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END-OF-SECTION EXERCISES:

1. The minimum value of f on I is 0; there is no maximum value. The only minimum point is (0, 0).
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2.  There is no minimum or maximum value.
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3. The maximum value of f on [ is 4; the minimum value of f on I is 4. The points (x,4) for z € R are
all both maximum and minimum points.
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4. The maximum and minimum value is —2; the points (x,—2) for € I are all both maximum and
minimum points.
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5. The minimum value of f on I is 1; there is no maximum value. The point (2,1) is the only minimum

point.
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6. The minimum value of f on [ is 1; the maximum value is 2. The point (2,1) is the only minimum
point; the point (1,2) is the only maximum point.
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7. There are two nice ways to sketch the graph of f(x) = |22 + 1|. One way is illustrated here; the next
way in the problem (8). First, write:
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Then, the graph of f is found by a series of transformations:
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The minimum value of f on I is 0; the maximum value is 5. The only minimum point is (f%, 0); the
only maximum point is (2, 5).

8. Here’s a second way to graph the function f(x) = |2z + 1|. First, graph the line y = 2z + 1. Then, ‘flip
up’ the part of the line that has negative y-values:
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The minimum value is 0; there is no maximum value. The only minimum point is (—%, 0).

9. TRUE. This is a consequence of the Max-Min Theorem.

Contrapositive: If f does not attain a maximum value on [a,b], then f is not continuous on [a, b].

10. TRUE. This is a consequence of the Max-Min theorem.
Contrapositive: If f is continuous on [a,b], then f attains a maximum value on [a, b].
11. FALSE. There are functions that are continuous on (a, b], but do not attain a maximum value on [a, b].

(You have probably guessed what it means to be ‘continuous on (a,b]’. It means that f is continuous
on (a,b), and well-behaved at the right-hand endpoint.)

Counterexample: Let f be the function graphed below. Then, the hypothesis ‘f is continuous on (a, b]’
is TRUE, but the conclusion ‘f attains a maximum value on (a, ]’ is FALSE.
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Contrapositive: If f does not attain a maximum value on (a, b], then f is not continuous on (a, b].
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FALSE. There are functions that are continuous on [a, b), but do not attain a minimum value on [a, b].
(You have probably guessed what it means to be ‘continuous on [a,b)’. It means that f is continuous
on (a,b), and well-behaved at the left-hand endpoint.)

Counterexample: Let f be the function graphed below. Then, the hypothesis ‘f is continuous on [a, b)’
is TRUE, but the conclusion ‘f attains a minimum value on [a,b)’ is FALSE.
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Contrapositive: If f does not attain a minimum value on [a,b), then f is not continuous on [a, b).

TRUE. Whenever f is continuous on (0, 5), then it is also continuous on the closed interval [1,2]. Thus,
by the Max-Min theorem, f attains both a maximum and minimum value on [1,2].

Contrapositive: If f does NOT attain both a maximum and minimum value on [1,2], then f is not
continuous on (0, 5).

TRUE. See (13).

FALSE

Counterexample: Let f be the function graphed below. Then the hypothesis ‘f is continuous on R’ is
TRUE, but the conclusion ‘f attains a maximum value on R’ is FALSE.
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Contrapositive: If f does not attain a maximum value on R, then f is not continuous on R.

FALSE. See (15).




