
SECTION 3.2 Limits—Making it Precise

IN-SECTION EXERCISES:

EXERCISE 1.

1. Whenever x is within ε
2 of 3, then f(x) will be within ε of 6 . We can certainly restrict x to any smaller

interval about 3, if desired. That is, δ can be taken to be any positive number less than ε
2 .

2. ε
2 − .01 is not necessarily positive; indeed:

ε

2
− .01 > 0 ⇐⇒ ε

2
> .01

⇐⇒ ε > .02

In particular, if ε < .02, then ε
2 − .01 is negative!

3. As long as ε is a positive number, ε
3 is always less than ε

2 .

4. Every number ε
n , where n > 2, is less than ε

2 .

EXERCISE 2.

1. Step 1. It must be shown that we can get 4x as close to 8 as desired, by requiring that x be sufficiently
close to 2 .

Step 2. Let ε > 0; we want to get 4x in the interval (8− ε, 8 + ε).

Step 3. When y = 8− ε, we have x = 8−ε
4 = 2− ε

4 . When y = 8 + ε, we have x = 8+ε
4 = 2 + ε

4 . (Note
that for this line, when x changes by a given amount, y changes by 4 times that amount. Equivalently,
when y changes by some amount, x changes by one-fourth that amount.)

Step 4. Take δ = ε
4 . Then, whenever x is within δ of 2, 4x is within ε of 8 .

2. Step 1. It must be shown that we can get 2x + 3 as close to 5 as desired, by requiring that x be
sufficiently close to 1 .

Step 2. Let ε > 0; we want to get 2x+ 3 in the interval (5− ε, 5 + ε).

Step 3. Refer to the mapping diagram below.

When y = 5− ε, we have x = (5−ε)−3
2 = 1− ε

2 . When y = 5 + ε, we have x = (5+ε)−3
2 = 1 + ε

2 . (Note
that for this line, when x changes by a given amount, y changes by 2 times that amount. Equivalently,
when y changes by some amount, x changes by one-half that amount. Thus, when y changes by ε, x
changes by ε

2 .)
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Step 4. Take δ = ε
2 . Then, whenever x is within δ of 1, 2x+ 3 is within ε of 5 .

EXERCISE 3.

1. The function f takes an input x, and outputs the number 5 .

2. The ‘black box’ below describes f .

3. limx→2 f(x) = 5 ; when x is close to 2, f(x) is close to 5

4. The 4-step process can be greatly simplified for this function. We need to get the function values within
ε of 5, by requiring that x be close enough to 2 . But the function values are always 5, regardless of
what x is! So, we can take δ to be any positive number. For example, take δ := 1 . Then, when x is
within 1 unit of 2, f(x) = 5 is within ε of 5 !

5. We can take δ to be any positive number!

EXERCISE 4.

1. Step 1. It must be shown that we can get x3 as close to 27 as desired, by requiring that x be sufficiently
close to 3 .

Step 2. Let ε > 0. We want to get x3 in the interval (27− ε, 27 + ε).

Step 3. Refer to the mapping diagram at right.

When y = 27− ε, we have x = 3
√

27− ε . When y = 27 + ε, we have x = 3
√

27 + ε .

Step 4. Take δ := 3
√

27 + ε− 3, since this is the shorter distance. Then, whenever x is within δ of 3, x3

is within ε of 27 .

2. Step 1. It must be shown that we can get x3 as close to c3 as desired, by requiring that x be sufficiently
close to c.

Step 2. Let ε > 0. We want to get x3 in the interval (c3 − ε, c3 + ε).

Step 3. When y = c3 − ε, we have x = 3
√
c3 − ε . When y = c3 + ε, we have x = 3

√
c3 + ε .
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Step 4. Take δ := 3
√
c3 + ε− c, since this is the shorter distance. Then, whenever x is within δ of c, x3

is within ε of c3.

EXERCISE 5.

1. Step 1. Let c < 0 . It must be shown that we can get x3 as close to c3 as desired, by requiring that x
be sufficiently close to c .

Step 2. Let ε > 0 . We want to get x3 in the interval (c3 − ε, c3 + ε).

Step 3. When y = c3 − ε, we have x = 3
√
c3 − ε . When y = c3 + ε, we have x = 3

√
c3 + ε .

Step 4. Take δ := c − 3
√
c3 − ε, since now THIS is the shorter distance. Then, whenever x is within δ

of c, x3 is within ε of c3.

2. Step 1. It must be shown that we can get x2 as close to 4 as desired, by requiring that x be sufficiently
close to 2 .

Step 2. Let ε > 0 . We want to get x2 in the interval (4− ε, 4 + ε).

Step 3. When y = 4− ε, the corresponding input that lies near 2 is x =
√

4− ε . When y = 4 + ε, the
corresponding input that lies near 2 is x =

√
4 + ε .

Step 4. The curve y = x2 rises more steeply to the right of 2 . Thus, take δ :=
√

4 + ε− 2, since this is
the shorter distance. Then, whenever x is within δ of 2, x2 is within ε of 4 .

EXERCISE 6.

1. Step 1. Define f(x) :=
√
x + 2 . It must be shown that we can get f(x) as close to 2 as desired, by

requiring that x be in the domain of f , and sufficiently close to 0 .

Step 2. Let ε > 0 . We must get
√
x+ 2 in the interval (2− ε, 2 + ε).

Step 3. When y = 2+ ε, we have x = ((2+ ε)−2)2 = ε2. There is no input corresponding to the output
y = 2− ε .

Step 4. Referring to the sketch, we see that whenever x is within ε2 of 0, and x is in the domain of f ,
then f(x) is within ε of 2 . So, take δ := ε2.
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2. Step 1. It must be shown that we can get f(x) as close to 4 as desired, by requiring that x be in the
domain of f , and sufficiently close to 2 .

Step 2. Let ε > 0 . We must get f(x) in the interval (4− ε, 4 + ε).

Step 3. When y = 4+ ε, we have x =
√

4 + ε . There is no input corresponding to the output y = 4− ε .

Step 4. Take δ :=
√

4 + ε− 2 . Then, whenever x is within δ of 2, AND x is in the domain of f , then
f(x) is within ε of 4 .

EXERCISE 7.

1. The subsentence ‘|x| < δ’ says that x must be within δ of 0 .

2. The subsentence ‘0 < |x|’ says that x must not equal 0 .

EXERCISE 8.

1. The graph of f is shown below.

2. D(f) = [1,∞) ; the function f IS defined at x = 1

3. Step 1. It must be shown that we can get f(x) as close to −2 as desired, by requiring that x be in the
domain of f and sufficiently close to 1, but not equal to 1 .

Step 2. Let ε > 0 . We must get f(x) in the interval (−2− ε,−2 + ε).

Step 3. When y = −2 + ε, we have x = ((−2+ε)+5)
3 = 1 + ε

3 . There is no input corresponding to the
output y = −2− ε .

Step 4. Take δ := ε
3 . Then, whenever 0 < |x− 1| < δ and x ∈ D(f), then |f(x)− (−2)| < ε .

4. For this example, c = 1 and δ = ε
2 . For the given function f , the sentence

0 < |x− 1| < ε

3
and x ∈ D(f)

is true precisely when x ∈ (1, 1 + ε
3 ).

EXERCISE 9.

1. DEFINITION. Let f be a function that is defined at least on an interval of the form (a, c), where
a < c. Then:

lim
x→c−

f(x) = l ⇐⇒ for every ε > 0, there exists δ > 0, such that if
x ∈ (c− δ, c), then |f(x)− l| < ε

There are other correct ways to phrase this definition.
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2. The graph of f is shown below.

3. lim
x→3+

f(x) = 5

lim
x→3−

f(x) = 9

4. The two-sided limit does not exist, because it is impossible to get f(x) simultaneously close to both 9
and 5 .

5. If f is redefined so that f(x) = 9 for x > 3, then both one-sided limits will equal 9, and the two-sided
limit will also exist and equal 9 .

END-OF-SECTION EXERCISES:

In questions 1–4, the 4-step process is summarized via the given sketch, and the required δ is given.

1. When ‘undoing’ the output −4 − ε, it is important to take the input that lies near −2 ! Take δ :=
−2 +

√
4 + ε .

2. Take: δ := 3
√

8 + ε− 2

3. Take δ := 16− (2− ε)4, since this is the shorter distance.
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4. Take: δ := ε

5. lim
x→1

f(x) = 3

lim
x→1+

f(x) = 3

lim
x→1−

f(x) is not defined, since f is not defined to the left of 1

6. lim
x→1

f(x) = 3

lim
x→1+

f(x) is not defined, since f is not defined to the right of 1

lim
x→1−

f(x) = 3

7. lim
x→−1

g(x) = −1

lim
x→−1+

g(x) = −1

lim
x→−1−

g(x) = −1

8. lim
x→2

g(x) does not exist

lim
x→2+

g(x) = 3

lim
x→2−

g(x) = 1

9. TRUE! Indeed, if lim
x→c

f(x) = l and f is defined on both sides of c, then both one-sided limits must also

exist and equal l.

10. FALSE! (See, for example, problem #8.) However, if both one-sided limits exist and are equal, then
the two-sided limit exists and has the same value.


