NAME SAMPLE TEST, worth 100 points, Chapter 3 Show all work that leads to your answers. Good luck!

 $\lim_{x \to c} f(x) = l$ 5 ptsGive a precise $(\epsilon - \delta)$ definition of the mathematical sentence: All the following questions have to do with the true limit statement $\lim_{x \to 2} x^2 = 4$. 15 ptsVery roughly, $\lim_{x\to 2} x^2 = 4$ says (fill in the blanks): (2 pts)Whenever ______ is close to ______, it must be that _____. (2 pts)More precisely, the sentence says (fill in the blanks): It is possible to get ______ as close to ______ as desired, merely by requiring that ______ be sufficiently close to ______. The precise definition of $\lim_{x\to 2} x^2 = 4$ involves the sentence $0 < |x-2| < \delta$. For what value(s) of x is the sentence $0 < |x-2| < \delta$ true? Show these numbers (3 pts)on the number line below. € Fill in the boxes on the graph below with appropriate numbers/symbols that (8 pts)illustrate the '4-step process' showing that the limit statement $\lim_{x\to 2} x^2 = 4$ is true. Be sure to conclude with a ' δ that works'. 12 ptsTRUE or FALSE. (2 pts each) (Circle the correct response.) Т F For all real numbers a and b, $|a + b| \le |a| + |b|$. If direct substitution into $\lim_{x\to c} f(x)$ yields a $(\frac{0}{0})$ situation, then the limit does Т F not exist. (2 = 1) and $(1 + 1 = 2) \implies 4 = 3$ Т \mathbf{F} Т \mathbf{F} If an interval of real numbers is not open, then it is closed. Т \mathbf{F} If f is continuous on [a, b], then f must attain a maximum value on [a, b]. If f is continuous on [a, b], then there exists $c \in [a, b]$ for which $f(c) = \frac{f(a) + f(b)}{2}$. Т \mathbf{F}

 $8 \ \mathrm{pts}$

Evaluate the following limits, if they exist: (3 pts) $\lim_{t \to -1} (t^3 - 2t^2 + 3)$

(5 pts)
$$\lim_{x \to 2} \frac{x^3 - x^2 - x - 2}{x^2 - 4}$$

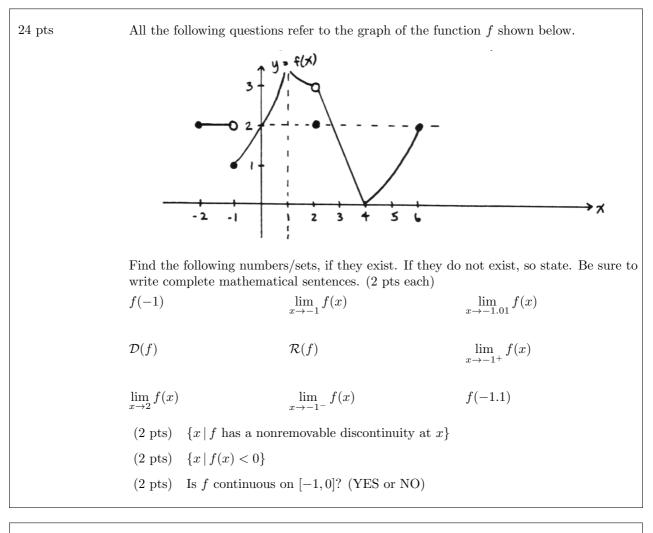
4 pts	Prove that an implication $A \implies B$ is equivalent to its contrapositive. (HINT: Make a truth table! I've got you started.)
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
6 pts	(4 pts) The implication

	IF $x^2 = 4$, THEN $x = 2$				
	is false. Give a c	ounterexample, b	y filling in	n the blanks:	
	Let $x = $ is false.	Then		is true, but	
(2 pts)	TRUE or FALSE		\implies	$x^2 = 4$	

6 pts

Graph $f(x) = \frac{x^2 - 1}{x - 1}$ in the space provided below.

Γ



10 pts	Sketch the graph of a function f satisfying each set of requirements:				
	(5 pts) $\mathcal{D}(f) = (a, b), f$ is continuous on $(a, b), \lim_{x \to a^+} f(x) = 3, \lim_{t \to b^-} f(t) = -1$				
	(5 pts) f is continuous on $[0,2], f(0) = 1, f(2) = -1$. Must f attain a maximum				
	value on $[0, 2]$? Why or why not?				

10 pts	FILL IN THE BLANKS.
	(5 pts) The Intermediate Value Theorem says: Let f be on $[a, b]$. If D is any number between and, then a number d between and for which
	(5 pts) A function f has a <i>removable discontinuity at c</i> whenever exists, but is not equal to