
7.1 Using Antiderivatives to find Area

Introduction In this section a formula is obtained for finding the area of the region bounded
between the graph of a continuous, nonnegative function f and the x-axis. As
mentioned in the previous chapter, it is seen that the antiderivatives of f play
a crucial role in this process.

finding the area
under the graph
of a nonnegative,
continuous function f

Let f be a function that is continuous on [a, b]. Also suppose that f is nonneg-
ative, so that its graph lies on or above the x-axis. In this case, it makes sense
to talk about the area under the graph of f ; we seek the area between x = a
and x = b .

the area function;

A(x)

First, define:

A(x) := the area under the graph of f , from a to x

Observe that A(a) = 0, and A(b) is the area being sought.

in the pictures,
h is positive

Now, let x be a number between a and b, and let h be a small positive number.
In the exercises accompanying this section, you will consider the case where h
is a small negative number.

∆A;

a little piece of area

Focus attention on the little piece of area between x and x+h, as shown below.

This area can be obtained as follows: take the area under the graph from a to
x + h, and subtract off the area from a to x . What’s left is the area under the
graph between x and x + h, as shown.

Thus, this little piece of area can be written in terms of the area function A as:

∆A := A(x + h)−A(x)

The symbol ∆A is read as ‘delta A’ and denotes a change in A.

EXERCISE 1 ♣ 1. If h is a small negative number, where is x + h in relation to x?

♣ 2. Make a sketch showing x and x + h. What is the correct formula for
∆A in this case?
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using the
Max-Min Theorem

By hypothesis, f is continuous on the entire interval [a, b], so it is also continuous
on the subinterval [x, x+h]. Therefore, the Max-Min Theorem guarantees that
f attains a minimum value f(m) and a maximum value f(M) on [x, x + h], as
illustrated below. Observe that both m and M come from the interval [x, x+h].

under- and
over-approximating
the area
with rectangles

The actual area ∆A of the little piece under inspection is under-approximated
by the rectangle of height f(m) and width h . Also, ∆A is over-approximated
by the rectangle of height f(M) and width h . That is:

f(m) · h ≤ ∆A ≤ f(M) · h

Division by the positive number h yields

f(m) ≤ ∆A

h
≤ f(M) ,

and substituting in the definition of ∆A yields:

f(m) ≤ A(x + h)−A(x)

h
≤ f(M)

Be aware!

The numbers
m and M
depend on:
the function f
the number x
the number h

What is about to be said applies to both m and M . For simplicity, it is stated
only for m .

It’s important that you understand that the number m depends on:

• the function ( f ) that you’re working with

• the small interval [x, x + h] that is currently under investigation;

this interval depends on both x and h

Change any of these ( f , x , or h ) and the number m could change!

For this reason, a name like ‘mf,x,h ’ (with three subscripts) might be better
than just m . But then the notation would be so cumbersome that it could
make things appear harder than they really are! So, we’ll stick with just ‘m ’.
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EXERCISE 2 You should have discovered in the previous exercise that if h < 0, then ∆A =
A(x)−A(x + h), and the picture becomes the one shown below:

♣ 1. Why is the area of the under-approximating rectangle given by the
formula f(m) · (−h) in this case?

♣ 2. What is the formula for the area of the over-approximating rectangle?

♣ 3. Provide a justification for each step in the mathematical sentence below.
Remember that h < 0, and ∆A = A(x)−A(x + h).

f(m)(−h) ≤ ∆A ≤ f(M)(−h) ⇐⇒ f(m) ≤ ∆A

−h
≤ f(M)

⇐⇒ f(m) ≤ A(x)−A(x + h)

−h
≤ f(M)

⇐⇒ f(m) ≤ A(x + h)−A(x)

h
≤ f(M)

Thus, precisely the same inequality is obtained as when h is positive.

let h
approach 0; then

m must approach x

Now let h approach 0 (from the right-hand side, since h is positive). Remember
that m is trapped in the interval [x, x+h], so as h approaches zero, m is forced
to get close to x. That is, as h→ 0+, it must be that m→ x+.

Note: Here, we’re holding x fixed and letting h change. Since h is changing,
m can change! The same label, ‘h ’, is used in all four sketches above, even
though h is getting smaller. The same label, ‘m ’, is used, even though it can
change. This can be confusing—same labels, different numbers—so be aware!

EXERCISE 3 ♣ Rewrite the previous paragraph so that it applies when h < 0 .

using the
continuity of f

By hypothesis, f is continuous at x. Therefore, when the inputs are close to
x, the corresponding outputs must be close to f(x). In particular, when m is
close to x, f(m) must be close to f(x). More precisely, as m → x+, we must
have f(m)→ f(x).
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as h approaches 0,
both m and M
must get close to x

Similarly, since M is trapped between x and x+ h, as h approaches 0, M must
approach x. And as M gets close to x, the continuity of f at x tells us that
f(M) approaches f(x).

the quotient
A(x+h)−A(x)

h
is pinched between
numbers that are both
going to f(x)

Reconsider the previous inequality in light of our new information:

f(m) ≤ A(x + h)−A(x)

h
≤ f(M)

As h approaches 0 (from the right-hand side), both f(m) and f(M) are ap-
proaching f(x). So the quotient

A(x + h)−A(x)

h

is pinched between numbers which are both going to the same number, f(x)!

Therefore, A(x+h)−A(x)
h must also be getting close to f(x)! (This observation

is sometimes formalized in a result called the Pinching Theorem for Limits.)
That is, it must be that:

lim
h→0+

A(x + h)−A(x)

h
= f(x)

EXERCISE 4 ♣ Rewrite the necessary paragraphs, and conclude that:

lim
h→0−

A(x + h)−A(x)

h
= f(x)

the limit

lim
h→0

A(x + h)−A(x)

h

exists

Now it is known that

lim
h→0+

A(x + h)−A(x)

h
= f(x) ;

and, if you’ve been doing the exercises, it is also known that:

lim
h→0−

A(x + h)−A(x)

h
= f(x)

Putting these two pieces of information together, we conclude that the two-sided
limit exists and equals f(x) :

lim
h→0

A(x + h)−A(x)

h
= f(x)

But when the limit

lim
h→0

A(x + h)−A(x)

h

exists, it is given a special name: A′(x)! So it is now known that:

A′(x) = f(x)

That is, the area function A is a function which, when differentiated, yields f .
That is, A is an antiderivative of f .
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A(x) is an
antiderivative of f(x)

The fact just discovered is so important that it is worth repeating. The area
function A is an antiderivative of f . In particular, it has been shown that
whenever f is continuous and nonnegative on [a, b], an antiderivative of f always
exists! This is an extremely beautiful and important result.

now we know
what all the
antiderivatives
look like

Getting our hands on one antiderivative is always the hard part; now we know
what all the antiderivatives of f must look like—they must differ from A by at
most a constant. That is, if F denotes any antiderivative of A, then:

A(x) = F (x) + C (*)

solving for
the constant C

Remember that we want to find A(b), since this represents the area under the
graph of f between a and b. Using the fact that A(a) = 0, equation (*) yields

0 = A(a) = F (a) + C

so that C = −F (a). Then (*) can be rewritten as:

A(x) = F (x)− F (a)

Now, letting x equal b, we obtain:

desired area = A(b) = F (b)− F (a)

This is the formula for the desired area, given in terms of any antiderivative of
f . The result is summarized below.

formula for the area
beneath the graph of
a nonnegative,
continuous
function f
on [a, b]

Let f be nonnegative and continuous on the interval [a, b]. Let F be any
antiderivative of f on [a, b]. Then:

the area under the graph of f on [a, b] = F (b)− F (a)
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EXAMPLE

testing the formula
in a case where
the answer
is already known

It’s always a good idea to test a new result in a situation where you can find the
answer by alternate means. So let’s find the area under the graph of f(x) = 2x
between x = 0 and x = 3 .

Calculus is certainly not needed, since the area is just a triangle:

1

2
(base)(altitude) =

1

2
(3)(6) = 9

Now, use the formula. An antiderivative of f(x) = 2x is needed; the easiest one
is F (x) = x2. Then,

F (b)− F (a) = F (3)− F (0) = 32 − 0 = 9 ,

which agrees with the first result.

EXERCISE 5 ♣ 1. Show that F (x) = x2 + 7 is an antiderivative of f(x) = 2x .

♣ 2. Find the area discussed in the previous example, using the antiderivative
F (x) = x2 + 7. What happens to the ‘7’?

EXERCISE 6 Find the area under the graph of f(x) = 2x between x = 1 and x = 4 in two
ways:

♣ 1. Show that the desired area is a trapezoid; find the area of this trapezoid.

♣ 2. Use an antiderivative of f to find the area.

EXAMPLE Problem: Find the area beneath the graph of f(x) = x2 on [1, 3].

Solution: Here, the area of the region is not easily obtainable from geometry.
However, we can get some rough bounds on the desired area, as follows.

The minimum value of f on [1, 3] is 12 = 1 . Thus, the desired area is under-
approximated by a rectangle of width 3− 1 = 2 and height 1 .

The maximum value of f on [1, 3] is 32 = 9 . Thus, the desired area is over-
approximated by a rectangle of width 2 and height 9 . Together:

(1)(2) ≤ actual area ≤ (9)(2)

The actual area must lie between 2 and 18. Also, from the sketch, we expect
the actual area to be near the middle of this range of numbers.

applying the formula Now apply the formula. We need any antiderivative of f(x) = x2; take F (x) =
x3

3 , since it’s the simplest one. Then:

F (b)− F (a) = F (3)− F (1) =
33

3
− 13

3
= 9− 1

3
= 8

2

3

The answer is certainly believable, based on the earlier estimates.
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EXERCISE 7 ♣ 1. Consider the function f(x) = x2 on the interval [2, 5]. As in the previous
example, get an under-approximation and an over-approximation of the
area under f on [2, 5].

♣ 2. Find the area, using an antiderivative of f .

♣ 3. Find the area, using a different antiderivative of f .

EXERCISE 8 ♣ Use calculus to find the area under the graph of f(x) = x2 on [−2,−1]. Here,
[a, b] = [−2,−1], so a = −2 and b = −1. Make a sketch of the graph of f , and
the area that you are finding.

EXERCISE 9 ♣ 1. Graph f(x) = −x2. Show the area trapped between the graph of f and
the x-axis on [1, 3].

♣ 2. Using any antiderivative F of f , compute F (3)− F (1). How does your
answer compare to the area under the graph of f(x) = x2 on [1, 3]?

♣ 3. Make a conjecture, based on this example.

QUICK QUIZ

sample questions

1. Suppose h > 0, and f is continuous on the interval [x, x + h]. What does
the Max-Min Theorem guarantee?

2. Under what condition(s) does a function f have the property that as x→ a,
f(x)→ f(a)?

3. Make a sketch that illustrates a function f , and a ∈ D(f), for which f(x) 6→
f(a) as x→ a.

4. Find the area under the graph of y = 3x2 on the interval [0, 2] .

5. Suppose f is continuous and nonnegative on [c, d], and F is an antiderivative
of f . Give a formula for the area under the graph of f on [c, d] .

KEYWORDS

for this section

Finding the area under the graph of a continuous, nonnegative function f on
the interval [a, b]; a formula for this area in terms of any antiderivative F of f .

END-OF-SECTION
EXERCISES

In each problem below, an area is described.

♣ Sketch the area that is described.

♣ Approximate the area in any reasonable way.

♣ Use calculus to find the area.

1. area bounded between the graph of y = lnx and the x-axis on the interval
[1, e]

2. area under the graph of y = 1
t on [1, 2]

3. area bounded by the graph of y =
√
x, the x-axis, the line x = 1, and the

line x = 4

4. area bounded by the graph of y = x2 + 1, the line y = 1, the y-axis, and
the line x = 1


