
4.7 Higher Order Derivatives

Introduction;

smooth functions

When a function f is differentiated, another function, f ′, is obtained. This new
function f ′ may itself be differentiable. Thus, in many cases, one may con-
tinually repeat the differentiation process, obtaining the so-called higher-order
derivatives. This section presents the notation for higher-order derivatives.

If the graph of a function f has a kink at x, then f is not differentiable at x.
Thus, if f is differentiable at every point in some interval, it must not have
any kinks in this interval. In this sense, a differentiable function is smooth.
Mathematicians use the word ‘smooth’ to describe the differentiability of a
function, but the usage is not entirely consistent: to some, ‘smooth’ means once-
differentiable; to others, ‘smooth’ means infinitely differentiable. In general, the
more times a function is differentiable, the ‘smoother’ it is.

higher-order
derivatives;

notation

f ′, f ′′, f ′′′,
f (4), . . . , f (n)

The following prime notation is used for the higher-order derivatives:

differentiate f to get f ′; f ′ is the (first) derivative of f

differentiate f ′ to get f ′ ′; f ′′ is the second derivative of f

differentiate f ′′ to get f ′′′ ; f ′′′ is the third derivative of f

differentiate f ′′′ to get f (4) ; f (4) is the fourth derivative of f

differentiate f (4) to get f (5) ; f (5) is the fifth derivative of f

...

differentiate f (n−1) to get f (n) ; f (n) is the nth derivative of f

The notation f ′′ can be read either as ‘f double prime’, or as ‘the second
derivative of f ’.

It gets unwieldy to count the number of prime marks, so it is conventional
to change to a numerical superscript, in parentheses, from about the fourth
derivative on. The notation f (4) is usually read as ‘the fourth derivative of f ’.
Observe that the name of the nth derivative is f (n); this function, evaluated at
x, is denoted by f (n)(x).

The functions f ′′, f ′′′, f (4), . . . are called the higher-order derivatives of f .

infinitely
differentiable

If a function f has the property that f (n) exists (and has the same domain as
f) for all positive integers n, then we say that f is infinitely differentible.
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EXERCISE 1 What is the prime notation for each of the following?

♣ 1. the second derivative of g

♣ 2. the second derivative of g, evaluated at x

♣ 3. the derivative of f ′′′

♣ 4. the second derivative of f (6), evaluated at 3

EXAMPLE Let P (x) = 2x5 − x4 + 2x− 1. Then:

P ′(x) = 10x4 − 4x3 + 2

P ′′(x) = 40x3 − 12x2

P ′′′(x) = 120x2 − 24x

P (4)(x) = 240x− 24

P (5)(x) = 240

P (n)(x) = 0 , for n ≥ 6

EXERCISE 2 ♣ Find all derivatives of:

P (x) = 2x7 − x3 + 4

Be sure to write complete mathematical sentences.

It’s a good exercise to differentiate an arbitrary polynomial

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0 ,

since this exercise offers an opportunity to introduce some important summation
and factorial notation. So this is our next project. First, summation notation
is introduced.
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summation
notation;
e∑

j=s

aj

the index of the sum
is a dummy variable

Summation notation gives a convenient way to display a sum, when the terms
share some common property.

For nonnegative integers s (‘start’) and e (‘end’) with s < e , one defines:

e∑
j=s

aj := as + a(s+1) + · · ·+ a(e−1) + ae

The symbol
∑e

j=s aj is read as: the sum, as j goes from s to e, of aj .

In particular, if s = 1 and e = n one gets:

n∑
j=1

aj = a1 + a2 + · · ·+ an−1 + an

The variable j in the above notation is called the index of the sum; observe that
once the sum is expanded, this index j no longer appears. In this sense, it is a
dummy variable, and we need not be restricted to use of the letter j for this role.
Traditionally, the letters i, j, k, m and n are used as indices for summation,
precisely because of the strong convention dictating that these letters denote
integer variables.

When summation notation appears in text (as opposed to in a display), it
usually looks like this:

∑n
j=1 aj . This way, it is not necessary to put extra

space between the lines to make room for the ‘j = 1’ and ‘n’.

EXAMPLE

using
summation notation

For example,
7∑

i=3

ai = a3 + a4 + a5 + a6 + a7

and:
5∑

k=2

(k − 3)k = (2− 3)2 + (3− 3)3 + (4− 3)4 + (5− 3)5

Also:
4∑

j=1

5 =

j=1︷︸︸︷
5 +

j=2︷︸︸︷
5 +

j=3︷︸︸︷
5 +

j=4︷︸︸︷
5 = 4 · 5 = 20

The sum
1 + 2 + . . . + 207

could be written as:

207∑
k=1

k or

207∑
n=1

n or

207∑
m=1

m

However, don’t write something like
∑207

i=1 k, unless you really want the expres-
sion below!

207∑
i=1

k =

207 times!︷ ︸︸ ︷
k + k + · · ·+ k = 207k
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EXERCISE 3

practice with
summation notation

♣ 1. Expand the following sums. (You need not simplify the resulting sums.)

6∑
j=1

bj ,

5∑
k=1

(k + 1)k ,

4∑
m=0

(m + 1) ,

n∑
i=1

2i

♣ 2. Write the sum
∑n

i=1 2i using a different index.

♣ 3. Let k be a constant. Prove that:

n∑
j=1

kaj = k

n∑
j=1

aj

(Thus, you can ‘slide’ constants out of a sum.) Be sure to write complete
mathematical sentences.

♣ 4. Write the following sums using summation notation:

1 + 2 + 3 + · · ·+ 100

34 + 35 + 36 + · · ·+ 79

2 + 4 + 6 + · · ·+ 78

52 + 63 + 74 + 85 + · · ·+ 2017

♣ 5. Prove the following statement:

d

dx

n∑
i=1

fi(x) =

n∑
i=1

f ′i(x)

You may assume that the functions fi are all differentiable at x. Be sure to
write complete mathematical sentences, and justify each step of your proof.
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polynomials are
infinitely
differentiable

Now, let P (x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be an arbitrary nth order
polynomial (so, an 6= 0). Using summation notation, one can write:

P (x) =

n∑
i=0

aix
i

(Recall that x0 = 1 .) Differentiating once (and using the fact that the derivative
of a sum is the sum of the derivatives) yields:

P ′(x) =

n∑
i=0

i · aixi−1

=

n∑
i=1

i · aixi−1

The index changed from a starting value of 0 to a starting value of 1 since when
i = 0 the term i · aixi−1 vanishes, and hence contributes nothing to the sum.
Continuing:

P ′′(x) =

n∑
i=2

i(i− 1)aix
i−2

P ′′′(x) =

n∑
i=3

i(i− 1)(i− 2)aix
i−3

...

P (j)(x) =

n∑
i=j

i(i− 1)(i− 2) · · · (i− (j − 1))aix
i−j for 1 ≤ j ≤ n

factorial
notation,
k!

The previous formula for P (j) can be cleaned up a bit by using factorial notation,
discussed next.

For a positive integer k, one defines:

k! := k(k − 1)(k − 2) · · · (1)

The expression ‘ k! ’ is read as ‘k factorial ’. By definition, 0! = 1 .

For example: 3! = 3 · 2 · 1 = 6 and 200! = 200 · 199 · 198 · . . . · 2 · 1
The product 20 · 19 · 18 · . . . · 5 can be written in factorial notation, if one first
multiplies by 1 in an appropriate form:

20 · 19 · 18 · . . . · 5 = 20 · 19 · 18 · . . . · 5 · 4 · 3 · 2 · 1
4 · 3 · 2 · 1

=
20 · 19 · 18 · . . . · 1

4 · 3 · 2 · 1

=
20!

4!

This technique is used below, in order to ‘clean up’ the expression for P (j).
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‘cleaning up’
the expression
for P (j)

Using the same ‘multiply by 1 in an appropriate form’ technique illustrated
above, one gets:

i(i− 1)(i− 2) · · · (i− (j − 1))

= i(i− 1)(i− 2) · · · (i− (j − 1)) · (i− j)(i− (j + 1)) · · · (1)

(i− j)(i− (j + 1)) · · · (1)

=
i!

(i− j)!
for i ≥ j

Thus, all the derivatives of an arbitrary nth order polynomial P can be expressed
as:

P (j)(x) =


n∑

i=j

i!

(i− j)!
aix

i−j for 1 ≤ j ≤ n

0 for j > n

Observe that although this notation is extremely compact, it can (especially
for a beginner) make an easy idea seem difficult. For experts, however, the
compactness of this notation can be extremely beneficial.

EXERCISE 4 Let P (x) =
∑3

i=0 aix
i.

♣ 1. Expand this sum. How many terms does P have?

♣ 2. Show that

P ′(x) =

3∑
i=1

i · aixi−1 ,

by expanding the sum, and verifying that it does indeed give a correct
formula for P ′.

♣ 3. Find formulas for P ′′ and P ′′′, in summation notation.

♣ 4. What is P (n), for n ≥ 4?

EXERCISE 5

practice with
factorial notation

♣ 1. Express the following numbers as products. It is not necessary to mul-
tiply out these products.

5! , 0! , 100!

♣ 2. Write the following products using factorial notation:

10 · 9 · 8 · . . . · 2 · 1
207 · 206 · 205 · . . . · 1

♣ 3. Write the following product using factorial notation:

105 · 104 · 103 · . . . · 50
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Leibniz notation
for higher-order
derivatives

Here is the Leibniz notation for higher-order derivatives. Let y be a function of
x. Then:

d

dx
(y) =

dy

dx
is the first derivative

d

dx
(
dy

dx
) =

d 2y

dx2
is the second derivative

d

dx
(
d2y

dx2
) =

d 3y

dx3
is the third derivative

...

d

dx
(
d n−1y

dxn−1 ) =
d ny

dxn
is the nth derivative

If one wishes to emphasize that the derivative dny
dxn is being evaluated at a specific

value of x, say x = c, then one can write either:

dny

dxn
(c) or

dny

dxn
|x=c

At first glance, the lack of symmetry in this notation is disturbing: for example,

why should we write d2y
dx2 , and not the more symmetric d2y

d2x?

However, it should be clear from the process illustrated above why this ‘un-
symmetry’ arises. At the nth step, one ‘sees’ n ‘factors’ of d upstairs, hence
dny. Also, at the nth step, one ‘sees’ n ‘factors’ of dx downstairs, hence (dx)n,
shortened to the simpler notation dxn. (After all, it is only notation, so we
want it to be as simple as possible, without sacrificing clarity.)

EXERCISE 6 What is the Leibniz notation for each of the following?

♣ 1. the second derivative of y (where y is a function of x)

♣ 2. the second derivative of y (where y is a function of t)

♣ 3. the second derivative of g (where g is a function of x)

♣ 4. the second derivative of g, evaluated at 2

♣ 5. the derivative of d3y
dx3

♣ 6. the second derivative of d3y
dx3 , evaluated at 3

EXERCISE 7 In problems (1) and (2), find the second derivative of the given function. Use
any appropriate notation.

♣ 1. y = x
ex

♣ 2. f(x) = 1
x−1 + 1

x−2
♣ 3. Find the equation of the tangent line to the graph of the first derivative

of f(x) = x
ex at x = 0 .
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QUICK QUIZ

sample questions

1. What is meant by the phrase, ‘the higher derivatives of a function f ’?

2. Write the second derivative of f , evaluated at x, using both prime notation
and Leibniz notation.

3. Expand the sum:
∑3

i=1 i
i+1

4. Write 10 · 9 · 8 · 7 · 6 using factorial notation.

5. State that ‘the derivative of a sum is the sum of the derivatives’, using
summation notation.

KEYWORDS

for this section

Smooth functions, higher-order derivatives, prime notation for higher-order
derivatives, infinitely differentiable, summation notation, factorial notation,
Leibniz notation for higher-order derivatives.

END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a SENTENCE (SEN).

♣ For any sentence, state whether it is TRUE, FALSE, or CONDITIONAL.

1. If f is differentiable at x, then the number f ′(x) gives the slope of the
tangent line to the graph of f at the point (x, f(x)).

2. If f is differentiable at x, then the limit limh→0
f(x+h)−f(x)

h exists, and gives
the slope of the tangent line to the graph of f at the point (x, f(x)).

3. f ′(x)

4. f ′(3)

5. f ′(x) = 2x

6. y′ = 3

7. If f and g are differentiable at x, then d
dx (f(x) + g(x)) = f ′(x) + g′(x).

8. If f is differentiable at c, then f ′(c) = df
dx (c).

9. ln ab

10. For a > 0 and b > 0, ln ab = ln a + ln b .

11. f ′(g(x)) · g′(x)

12. d
dxf(g(x)) = f ′(g(x)) · g′(x)

13. 10 · 9 · 8 · . . . · 1

14. 10! = 10 · 9 · 8 · . . . · 1

15.
∑3

i=0 i = 6

16.
∑n

j=1 aj

17. If f is differentiable at c, then f ′(c) = 2 .

18. f is differentiable at c if and only if f is continuous at c


