
4.4 Instantaneous Rates of Change

Introduction The number f ′(x) gives the slope of the tangent line to the graph of f at the
point (x, f(x)) (when the tangent line exists and is not vertical).

Let’s think about this information, from a practical viewpoint. Suppose, in a
certain laboratory, there are two machines; call them machine 1 and machine 2.
Each day, you must take a reading x from machine 1. This reading is then input
into machine 2, which produces an output f(x). Suppose that the relationship
between the input x and the output f(x) is shown below.

When the input is 20, the slope of the tangent line to the graph of f is of
small magnitude. That is, when x changes from 20 by some small amount,
the function value will not change very much. So, if you have misread the
information from machine 1 slightly, this will not dramatically affect the output
from machine 2.

However, when the input is 5, the slope of the tangent line to the graph of f is
of large magnitude. Thus, when x changes from 5 by some small amount, the
function value will change dramatically. So, if you have misread the information
from machine 1 slightly, this will dramatically affect the output from machine
2 (a bad situation).

Thus, the information about how fast the function is changing at a point can
be vitally important.

instantaneous
rates of change

There is an important interpretation of the information that f ′(x) gives us:
f ′(x) tells us how fast the function f is changing at the point (x, f(x)).

More precisely, for a fixed value of c, the number f ′(c) gives the instanta-
neous rate of change of the function values f(x) with respect to x, at the point
(c, f(c)).

That is, f(x) changes f ′(c) times as fast as x at the point (c, f(c)).

In many situations, we can use this information to approximate nearby function
values, as illustrated in the next example.
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using f ′(x) to
predict nearby
function values

Consider the function f(x) = x2, with derivative f ′(x) = 2x. The point (3, 9)
lies on the graph of f , and the slope of the tangent line at this point is f ′(3) =
2(3) = 6 .

Suppose that knowledge of the function f is lost; all you now know is that the
point (3, 9) lies on some graph, and the slope of the tangent line at this point
is 6 .

You are asked to approximate the function value when x = 3.1 . This is certainly
possible. You know that when x = 3, the function values are changing 6 times
as fast as the x values. So, if x changes by some small amount, it is reasonable
to expect that f(x) will change by approximately 6 times this amount.

The change in x from x = 3 to x = 3.1 is ∆x = 0.1 . So we expect f(x)
to change by approximately 6(∆x) = 6(0.1) = 0.6 . Thus, it is reasonable to
approximate the new function value by the old function value, plus 0.6 . Thus,
f(3.1) ≈ 9 + 0.6 = 9.6 .

Now, you find the missing paper and remember that f(x) = x2. Thus, it
is now possible to compute the actual value of the function when x = 3.1 :
f(3.1) = (3.1)2 = 9.61 . How far off were you? You had estimated the value at
9.6; the actual value was 9.61. Not bad!

So we can use the information about the value of the derivative at a single point
to approximate values of the function that are nearby!

the slopes of the
tangent lines
are changing
as we move
from point to point

Observe that the approximation we got in the previous example was just that—
an approximation. That is because our answer was based on the fact that the
slope of the tangent line at the point (3, 9) is 6; but as soon as we move away
from that point, this is no longer true. Indeed, the slopes of the tangent lines
increase as we travel from x = 3 to x = 3.1; they increase from 6 to 6.2. So,
actually, the rate of change of the function is faster than 6 over the interval
from x = 3 to x = 3.1 . This is why our approximation of 9.6 was a bit low.
The actual function value is 9.61 .

EXERCISE 1 Suppose that all you know about a function f is that the point (3, 7) lies on
the graph, and the slope of the tangent line at this point is 5 .

♣ 1. Approximate, as best you can, f(3.2) and f(2.9).

♣ 2. Sketch two curves that satisfy f(3) = 7 and f ′(3) = 5 . On your sketches,
show your approximation to f(3.2), and the actual value f(3.2).

♣ 3. Suppose you now learn that f(x) = x2 − x + 1 . Verify that the point
(3, 7) lies on the graph of f , and that the slope of the tangent line here is
5 .

♣ 4. How far off were your estimates? That is, compare the actual values of
f(3.2) and f(2.9) to your estimates from (1).
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FF

f ′ must be
continuous

An underlying assumption in this scheme is that f ′ is continuous in the interval
about x under investigation. It is of course possible for a function f to be
differentiable at x, and yet have f ′ NOT be continuous at x. Take, for example:

f(x) =

{
x2 sin 1

x if x 6= 0

0 if x = 0

This function has as its derivative:

f ′(x) =

{
2x sin 1

x − cos 1
x if x 6= 0

0 if x = 0

So, f is differentiable at 0 and f ′(0) = 0. However, f ′ is not continuous at 0.

In a motivated class, this importance of the continuity of f ′ could be discussed.
Perhaps note that, in analysis, the class of functions that are both differentiable
on a set S AND have the property that f ′ is continuous on S are given a special
name, C1(S), due to their importance!

DEFINITION

average
rate of change

Given a function f and two points P1 = (x1, f(x1)), P2 = (x2, f(x2)) on the
graph of f , we define:

the average rate of change of f from x1 to x2 :=
f(x2)− f(x1)

x2 − x1

Thus, the average rate of change of f from x1 to x2 represents the slope of the
secant line through P1 and P2.

This seems entirely reasonable: if the points are (3, 10) and (5, 30), then the
function has changed by 20 when x has changed by 2, and it seems reasonable
to say that, on average, the function has changed by 20

2 (per a unit change in
x). Of course, as illustrated below, the function may behave entirely differently
between these two points, and yet still exhibit the same average rate of change.

∆f := f(x2)− f(x1)

∆x := x2 − x1

average ROC = ∆f
∆x

Letting ∆f denote the change in function values f(x2)− f(x1), and ∆x denote
the change in x-values x2 − x1, one can write:

average rate of change of f =
∆f

∆x

as ∆x→ 0,
the average ROC
approaches the
instantaneous ROC

Suppose that, for a given function f , there IS a tangent line at the point P1.
If we fix this point P1, and let the second point P2 slide closer and closer to
P1 (thus letting ∆x → 0), then the secant line through P1 and P2 approaches
the tangent line at P1. In words, the average rate of change approaches the
instantaneous rate of change, as ∆x approaches 0 .
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further
appreciation for the
Leibniz notation

Whereas the notation ∆x is used to denote a finite change in x (say from
x = 3 to x = 3.1), it is common in calculus to let (intuitively) dx denote
an infinitesimal change in x . That is, somehow, dx is meant to represent an
arbitrarily small change in x .

Similarly, df is used to denote an arbitrarily small change in function values.

Armed with this intuition, we can gain a further appreciation for the Leibniz
notation for the derivative: As ∆x approaches 0, ∆f

∆x approaches the slope of

the tangent line at x. In general, the closer ∆x is to 0, the closer ∆f
∆x will be to

the slope of the tangent line at x. The Leibniz notation df
dx , therefore, is meant

to connote the image of an infinitesimal change in f divided by an infinitesimal
change in x .

More precisely, of course, the notation df
dx should conjure the image of ∆x going

to 0: it should conjure up the process of the second point sliding ever closer to
the first. If the notation df

dx succeeds in reminding you of this process each time
you see it, then the notation is a good notation.

EXERCISE 2 For the function f(x) = x3, find the average rate of change of f from:

♣ 1. x = 1 to x = 2

♣ 2. x = 1 to x = 1.5

♣ 3. x = 1 to x = 1.2

♣ 4. Find the instantaneous rate of change at x = 1 . Compare with the
average rates of change you just found, and comment.

♣ 5. Why were all of the average rates of change higher than the instantaneous
rate of change?

EXERCISE 3 For the function f(x) = −x2, find the average rate of change of f from:

♣ 1. x = −2 to x = −1

♣ 2. x = −2 to x = −1.5

♣ 3. x = −2 to x = −1.8

♣ 4. Find the instantaneous rate of change at x = −2 . Compare with the
average rates of change you just found, and comment.

♣ 5. Why were all of the average rates of change lower than the instantaneous
rate of change?

EXERCISE 4 ♣ 1. Sketch the graph of a function f that satisfies the following properties:

• The average rate of change from x = 0 to x = 1 is 5 .

• The instantaneous rate of change at x = 0 is −1
and the instantaneous rate of change at x = 1 is 2 .

• f(0.5) = 6

♣ 2. Now, sketch a different curve that satisfies the same properties.

relationship between
differentiability
and
continuity

This section is closed with a very important theorem, stating a relationship
between differentiability and continuity.
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THEOREM
differentiable at x
implies
continuous at x

If a function is differentiable at x, then it is continuous at x.

differentiability is
‘stronger’ than
continuity

One often refers to this fact by saying that differentiability is a stronger condi-
tion than continuity. That is, requiring a tangent line to exist at a point, forces
the function to be continuous at that point.

proving an
implication

This theorem is an implication; that is, it is of the form ‘If A, then B’. Re-
member that a sentence of this form is automatically true whenever A is false;
in such cases, it is called vacuously true. To verify that the sentence is always
true, then, we need only verify that whenever A is true, so is B.

direct proof of
A =⇒ B

The proof of an implication ‘If A, then B’ often takes the following form:

HYPOTHESIS: Suppose A is true.
BODY OF PROOF: Use the fact that A is true (and other necessary

tools) to show that B is true.
CONCLUSION: Conclude that B is true.

This form of proof, where we assume that A is true and then show that B must
also be true, is called a direct proof of A =⇒ B.

In preparation for the proof of the preceding theorem, the next exercise ad-
dresses equivalent characterizations of continuity.

EXERCISE 5

equivalent
characterizations
of continuity at x

Recall that, by definition:

f is continuous at c ⇐⇒ lim
x→c

f(x) = f(c)

This limit statement makes precise the following intuition: whenever the inputs
to f are close to c, the corresponding outputs are close to the number f(c).

♣ 1. What is the dummy variable in the limit statement limx→c f(x) = f(c)?

♣ 2. Rewrite limx→c f(x) = f(c) with dummy variable y .

♣ 3. Now, using dummy variable y, write the limit statement corresponding
to the sentence: f is continuous at x .

♣ 4. Convince yourself that the following sentences are all equivalent ways
to say that ‘f is continuous at x’:

f is continuous at x ⇐⇒ lim
y→x

f(y) = f(x)

⇐⇒ lim
h→0

f(x + h) = f(x)

⇐⇒ lim
h→0

(
f(x + h)− f(x)

)
= 0

For example, if the sentence limh→0 f(x + h) = f(x) is true, then when h
is close to 0, f(x + h) must be close to f(x). But when h is close to 0,
x + h is close to x. So this says that when the inputs are close to x, the
corresponding outputs must be close to f(x), as desired.

One of these equivalent characterizations is used in the next proof.
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PROOF

that f differentiable at x
implies
f continuous at x

Proof. Suppose that f is differentiable at x. That is,

lim
h→0

f(x + h)− f(x)

h

exists, and is given the name f ′(x).

BODY OF PROOF To show that f is continuous at x, it is shown equivalently that:

lim
h→0

(
f(x + h)− f(x)

)
= 0

To this end:

lim
h→0

(
f(x + h)− f(x)

)
= lim

h→0

f(x + h)− f(x)

h
· h (for h 6= 0,

h

h
= 1)

= lim
h→0

f(x + h)− f(x)

h
· lim
h→0

h (property of limits)

= f ′(x) · 0
= 0

CONCLUSION Thus, f is continuous at x.

EXERCISE 6 ♣ 1. What is the hypothesis of the theorem just proved?

♣ 2. Where was this hypothesis used in the previous proof?

short form
of the previous proof

As mathematicians get more and more proficient at writing proofs, typically
the proofs become shorter and shorter. The previous result could be proven
more briefly as follows:

Proof. Let f be differentiable at x. Then

lim
h→0

f(x + h)− f(x) = lim
h→0

f(x + h)− f(x)

h
· h = f ′(x) · 0 = 0.

Observe that all the excess has been cut out of this proof; only the hypothesis
and the ‘heart’ of the body of the proof remain.

the contrapositive
of the previous theorem

The previous result is an implication:

IF f is differentiable at x, THEN f is continuous at x. (1)

The contrapositive of this implication is:

If f is not continuous at x, then f is not differentiable at x. (2)

Since an implication is equivalent to its contrapositive, and since (1) is true
(♣ Why?), sentence (2) is also true. Thus, whenever a function f is NOT
continuous at x, we can conclude that f is NOT differentiable at x. This often
gives an elegant way to prove that a function is not differentiable at a point, as
illustrated next.
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EXAMPLE

not continuous =⇒
not differentiable

Consider the function f : [0, 1]→ R defined by:

f(x) =

{
2x x ∈ [0, 1)

3 x = 1

Since f is not continuous at x = 1, it is not differentiable at x = 1 .

The fact that f is not differentiable at x = 1 could also be proven directly: the
limit

lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−

2(1 + h)− 3

h

= lim
h→0−

2h− 1

h

= lim
h→0−

2− 1

h

does not exist.

However, citing the previous result is more elegant.

QUICK QUIZ

sample questions

1. Let f(x) = x3. Find the average rate of change of f from x = 1 to x = 2 .
What is the graphical interpretation of this number?

2. Let f(x) = x3. Find the instantaneous rate of change of f at x = 1 . What
is the graphical interpretation of this number?

3. Consider the function f graphed below. You are not given enough infor-
mation to find average or instantaneous rates of change. However, you can
answer the following question:

the instantaneous rate of change of f at x = 1 is

(circle one) (less than greater than equal to)

the average rate of change of f from x = 1 to x = 2 .

4. Sketch the graph of a function f that satisfies the following properties:
f(x) < 0 for all x ∈ [1, 3]; f(1) = −5; the average rate of change of f from
x = 1 to x = 3 is 2; and f ′(2) = −1 .

5. Prove that the function f shown below is not differentiable at x = 1 .

KEYWORDS

for this section

Instantaneous rate of change, using f ′(x) to predict nearby function values, av-
erage rates of change, relationship between the instantaneous and average rates
of change, What process should the Leibniz notation df

dx conjure up?, relationship
between differentiability and continuity, direct proof of A =⇒ B, equivalent
characterizations of continuity.
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END-OF-SECTION
EXERCISES

♣ In each question below, you are given a point on the graph of a function f ,
and the instantaneous rate of change of the function at this point.

♣ Use this limited information to predict the value of f at the given nearby
point.

♣ Make a sketch that illustrates what you are doing.

1. point: (1, 3)

instantaneous ROC at this point: 2

nearby point: (2, ?)

2. point: (2, 5)

instantaneous ROC at this point: −1

nearby point: (3, ?)

3. point: f(3) = −1

instantaneous ROC at this point: f ′(3) = 5

nearby point: x = 4

4. point: f(−3) = 2

instantaneous ROC at this point: f ′(−3) = 1

nearby point: x = −4.


