
3.3 Properties of Limits

This section establishes some useful properties of limits, the development of
which provides additional practice with the concept of the limit of a function.

existence
versus
uniqueness

Mathematicians are extremely fond of existence and uniqueness arguments. An
existence argument shows that a certain object exists, but does not address the
issue: How many? A uniqueness argument answers the question ‘How many?’
with a definitive: Exactly one.

existence of
lim
x→c

f(x)
When does the limit limx→c f(x) exist? The definition answers this question:
it exists when there is a number l with the property that one can get f(x) as
close to l as desired, by requiring that x ∈ D(f) be sufficiently close to c, but
not equal to c.

When
limx→cf(x)
exists,
is it unique?

Is it possible that there are two different numbers l and k, both satisfying the
definition of the limit of a function? Or, is the limit unique? If you stop to think
about this for a moment, you’ll probably conclude that f(x) can’t be close to
two different numbers at the same time. But how can this be argued precisely?

the way
mathematicians
show uniqueness

The way mathematicians usually establish uniqueness is to:

• Suppose that there are two;

• Show that these two are the same.

a typical
uniqueness argument

That is, suppose a mathematician is asked to prove the following theorem.
(Remember, a theorem is a mathematical result that is both important and
true.)

Theorem. An object with property P is unique.

Don’t worry about what property P is; here we are discussing the form of a
typical uniqueness argument, and are not concerned with specific content.

Here’s how the proof would go:

Proof. Suppose that x and y both satisfy property P . (More stuff here.) Then,
x = y.

Early on in the proof, x could potentially be different from y; all that is known
is that they both satisfy ‘property P ’. But then, information about ‘property
P ’ is used to show that x must equal y.

the symbol
is used to mark
the end of proofs

The symbol is an end-of-proof marker. It is really just a courtesy to the
reader; a gentle reminder that the author has finished showing whatever was
set out to be shown.

EXERCISE 1 ♣ Prove that there is a unique solution to the linear equation

ax+ b = c, a 6= 0 ,

by supposing that both X and Y are solutions, and showing that X = Y . Be
sure to write down complete mathematical sentences.

The next theorem states, in the language of mathematics, that limits are unique.
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THEOREM

limits are unique

Suppose that:
lim
x→c

f(x) = l and lim
x→c

f(x) = k

Then, l = k.

a motivation for
the proof

Before jumping into the rigorous proof, just stop and think. How could it be
shown that l must equal k?

If l is not equal to k, then there’s some positive distance between them; call it
ε. Since ε is positive, so is ε/3. Looking back at the precise definition of the
limit of a function, one observes that ε represents any positive number. The
definition can certainly be applied, taking this positive number to be ε/3. (If
this seems awkward to you, rewrite the definition, using ω instead of ε. Then,
take ω to be ε/3.)

Since it is being assumed that both

lim
x→c

f(x) = l and lim
x→c

f(x) = k ,

one must be able to get f(x) within ε/3 of both l and k, by requiring that x be
sufficiently close to c.

So, get a number δ1 such that whenever x is within δ1 of c, f(x) must be within
ε/3 of l.

And, get a number δ2 so that whenever x is within δ2 of c, then f(x) must be
within ε/3 of k.

a contradiction Take the minimum of δ1 and δ2, and call it δ. Then, whenever x is within δ of
c, f(x) must be within ε/3 of both l and k. This is impossible; it is an example
of what mathematicians call a contradiction. By assuming that k and l are
different, one is led to a contradiction. Thus, it must be that k and l are NOT
different; that is, they must be equal.

EXERCISE 2 ♣ In the preceding argument, the author chose to get the function values f(x)
within ε/3 of both l and k. Would ε/2 have worked? How about ε/4? Why do
you suppose the author chose ε/3?
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The following proof ‘formalizes’ the ideas discussed above.

PROOF

limits are unique

Suppose that:
lim
x→c

f(x) = l and lim
x→c

f(x) = k

If l = k, we’re done. So suppose that l 6= k. Then, there is some positive dis-
tance between l and k; call it ε. Since ε is positive, so is ε/3. Since limx→c f(x) =
l, there exists δ1 such that whenever x ∈ D(f) and 0 < |x− c| < δ1, it must be
that |f(x)− l| < ε/3.

Since limx→c f(x) = k, there exists δ2 such that whenever x ∈ D(f) and 0 <
|x− c| < δ2, it must be that |f(x)− k| < ε/3.

Take δ to be the minimum of δ1 and δ2 . Then, for any x ∈ D(f) with 0 <
|x − c| < δ, we must have both |f(x) − l| < ε/3 and |f(x) − k| < ε/3, which is
impossible.

Thus, it must be that k = l.

EXERCISE 3 ♣ Get another calculus book, and look up the uniqueness of limits theorem.
Compare with what has been discussed here. Is the statement of the theorem
the same? Read the proof (slowly and carefully). Is the proof exactly the
same? Not every proof uses a contradiction argument. How does the other
proof establish that l = k?

FF
the logical justification
for
proof by contradiction

The form of proof, called proof by contradiction, is justified by the following
logical equivalence:

A⇒ B ⇐⇒ (notB ∧A) =⇒ (S ∧ notS) ,

where S is any statement.

In the previous proof, the statement A is

lim
x→c

f(x) = l and lim
x→c

f(x) = k ;

the statement B is:
l = k

The contradiction (S∧notS) is the fact that f(x) must be IN a certain interval
(say, around l) and NOT IN this interval, at the same time.

Next, some rules are developed that tell us many situations in which limits are
‘easy’ to find.
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in many cases,
evaluating limits
is easy;

direct substitution

For many ‘nice’ functions f , evaluating limits is as easy as direct substitution;
that is:

lim
x→c

f(x) = f(c)

This is called direct substitution because, to evaluate the limit, one need only
substitute the number c into the expression for f .

For example:

lim
x→1

(x2 − 4) = 12 − 4 = −3

and

lim
x→4

√
x =
√

4 = 2

(Functions that are ‘nice’ like this are given a special name—they are called
continuous! This will be studied in more detail in the next section on continu-
ity.)

The next two theorems tell us many ‘nice’ functions for which evaluating lim-
its is this easy! The numbering scheme (e.g., P1, P2, P3) is merely for easy
reference in the exercises and examples.

THEOREM

Properties
of Limits

Let b and c denote real numbers; n is a positive integer.

P1) lim
x→c

b = b (The limit of a constant function is the constant.)

P2) lim
x→c

x = c

P3) lim
x→c

xn = cn

some remarks on
proving theorems

The proofs of theorems that appear in mathematics books are usually precise,
slick, clean, beautiful. Too often, students think that these proofs merely ‘jump
onto’ the paper from the pencils of mathematicians. Not true. Mathematicians
rarely ‘jump into’ a proof. Instead, they play with what they’re trying to prove.
They do things that help them believe that it is true. They may ‘try out’ the
theorem in some simple cases, in an attempt to figure out what makes it work.

how you,
as a reader,
should approach theo-
rems

When you read a theorem, you should do the following:

• Ask yourself: Do I understand what this is telling me that I can DO?
Remember, theorems are usually statements of fact. But, facts can tell you
what to do, if you understand the language.

• Ask yourself: Do I BELIEVE this result? Play with it. Try it in some
simple cases. Draw some graphs. Read and understand the proof.
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investigating the
limit properties
of the previous theorem

Let’s investigate the properties in the previous theorem, the way a good reader
should. Begin with property P1:

lim
x→c

b = b

What does this say that you can DO? In words, this property states that the
limit of a constant function is the constant. It tells you that evaluating the
limit of a constant function is easy; just write down the constant.

Next, is this result BELIEVABLE? Recall that the graph of the constant func-
tion f(x) = b is a horizontal line, that crosses the y-axis at the number b. No
matter what the x-value happens to be, the function value is constant at b.
Certainly the result is believable.

A precise proof of property P1 must appeal to the definition. It must be shown
that one can get the function values as close to b as desired, by requiring that x
be sufficiently close to c. Indeed, in this case, no matter what positive number
one chooses for ε, any δ will work. Here’s a precise proof:

PROOF of (P1)
lim
x→c

b = b
Let b and c be real numbers. Choose ε > 0, and let δ = 1. If 0 < |x − c| < 1,
then |b− b| = 0 < ε. Thus, limx→c b = b.

EXERCISE 4 ♣ Are there any other values of δ that would work in the previous proof? Why
do you suppose the author chose δ to be 1?

EXERCISE 5 Consider property P2:
lim
x→c

x = c

♣ 1. What is this telling you that you can DO?

♣ 2. Do you believe it? Make a sketch that might help you believe this result.

♣ 3. Prove that limx→c x = c, by writing down a precise ε-δ argument. Use
the 4-step process discussed in section 3.2 to find a ‘δ that works’.
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investigating
lim
x→c

xn = cn
Finding the ‘δ that works’ is more delicate when investigating limx→c x

n, in
part due to the fact that different values of c and n will lead to different choices
for δ. However, the sketches below certainly make plausible the idea that as x
approaches c, xn must approach cn.

Next, some Operations with Limits.

THEOREM
Operations
with Limits

Let b and c be real numbers; n is a positive integer. Suppose that both lim
x→c

f(x)

and lim
x→c

g(x) exist. Then:

O1) lim
x→c

bf(x) = b
[
lim
x→c

f(x)
]

(You can ‘pull constants out’ of the limit.)

O2) lim
x→c

[
f(x) + g(x)

]
= lim
x→c

f(x) + lim
x→c

g(x)

(The limit of a sum is the sum of the limits.)

O3) lim
x→c

f(x)g(x) =
[
lim
x→c

f(x)
][

lim
x→c

g(x)
]

(The limit of a product is the product of the limits.)

O4) If lim
x→c

g(x) 6= 0, then lim
x→c

f(x)

g(x)
=

lim
x→c

f(x)

lim
x→c

g(x)

(The limit of a quotient is the quotient of the limits.)

O5) lim
x→c

(f(x))n =
[
lim
x→c

f(x)
]n

(Power rule)

EXERCISE 6 ♣ 1. Does this theorem tell us that

lim
x→c

[
f(x)− g(x)

]
= lim
x→c

f(x)− lim
x→c

g(x) ,

whenever both individual limits exist? Why or why not?

♣ 2. Does this theorem tell us that

lim
x→c

f(x) + lim
x→c

g(x) = lim
x→c

[
f(x) + g(x)

]
,

whenever both individual limits exist? Why or why not?
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EXERCISE 7 ♣ 1. Evaluate the limit:

lim
x→0

x · 1

x

(Hint: Remember that x is not allowed to equal 0. What is the value of
x · 1x for values of x near 0?)

♣ 2. Find the flaw in this student’s argument.

Student’s answer:

By O3:

lim
x→0

x · 1

x
=
(

lim
x→0

x
)
·
(

lim
x→0

1

x

)
Since limx→0

1
x does not exist, it must be that limx→0 x · 1x also does not

exist.

investigating the
operations with limits

Let’s investigate property O1:

lim
x→c

bf(x) = b
[
lim
x→c

f(x)
]

the hypotheses
of a theorem;

singular: hypothesis

The hypotheses of a theorem are the things that are assumed to be true. (Sin-
gular: hypothesis.) One hypothesis of the previous theorem is that limx→c f(x)
exists. Thus, there is some number that f(x) gets close to as x approaches c;
in keeping with tradition, let’s call this number l. How do the numbers bf(x)
differ from f(x)? They are each multiplied by b. Thus, as f(x) gets close to l,
bf(x) must get close to b · l. That is, if

lim
x→c

f(x) = l

then:
lim
x→c

bf(x) = b · l = b · lim
x→c

f(x)

So the result does indeed seem plausible.

Similar reasoning should make the remaining operations plausible. We will look
at one precise proof, which makes use of the triangle inequality, discussed next.

the triangle inequality,

|a+ b| ≤ |a|+ |b|
Let a and b be real numbers. Then:

|a+ b| ≤ |a|+ |b|
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PARTIAL PROOF

of the
triangle inequality

Let a and b be real numbers. Since every real number is either nonnegative
(≥ 0) or negative (< 0), there are several cases to be considered, as suggested
by the ‘tree diagram’ below.

Recall the precise definition of the absolute value function:

|x| =
{
x for x ≥ 0

−x for x < 0

Also recall that the number |x| is often called the magnitude of x.

Case 1 (a ≥ 0 and b ≥ 0). In this case, |a| = a and |b| = b. (Why?) Also, since
both a and b are nonnegative, so is a + b, so that |a + b| = a + b. In this case
one actually obtains equality:

|a+ b| = a+ b = |a|+ |b|

Case 2 (a ≥ 0 and b < 0). In this case, writing down all the details often seems
to obscure the simple idea, illustrated by the sketches below. The point is that
when a and b have different signs, |a+ b| is either |a| − |b| (if the magnitude of
a is bigger) or |b| − |a| (if the magnitude of b is bigger). But in either case, the
difference is less than or equal to |a|+ |b|.

EXERCISE 8 ♣ 1. Write down the proof of

|a+ b| ≤ |a|+ |b|

in the case when a < 0 and b < 0. Be sure to write complete mathematical
sentences.

♣ 2. Is the case
a < 0 and b ≥ 0

really any different from the case

a ≥ 0 and b < 0 ?

Why or why not?
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F

Why the name
‘triangle inequality’?

F The triangle inequality also holds when a and b are ordered pairs of real
numbers. The ‘length’ of an ordered pair is found using Pythagorean’s theorem:

‖(a1, a2)‖ :=
√
a21 + a22

Although the absolute value symbol | · | is used to talk about the ‘length’
(magnitude) of a real number, the norm symbol ‖ · ‖ is traditionally used to
talk about other lengths.

In this setting, the fact that

‖a+ b‖ ≤ ‖a‖+ ‖b‖

has a nice geometric interpretation: in a triangle, the length of a side cannot
exceed the sum of the lengths of the remaining two sides. This is the motivation
for the name triangle inequality.

With the triangle inequality in hand, the precise proof of operation (O2) is now
presented.

PROOF of (O2)

that the
limit of a sum
is the
sum of the limits

Suppose that both lim
x→c

f(x) and lim
x→c

g(x) exist, say:

lim
x→c

f(x) = l and lim
x→c

g(x) = k

Choose ε > 0. Then, ε/2 is also positive, and there exists a corresponding δ1
such that when x ∈ D(f) and 0 < |x− c| < δ1, it must be that |f(x)− l| < ε/2.
(♣ Why?)

Also, there exists δ2 such that when x ∈ D(g) and 0 < |x− c| < δ2, it must be
that |g(x)− k| < ε/2. (♣ Why?)

Let δ := minimum(δ1, δ2). Then, if x ∈ D(f) ∩ D(g) and 0 < |x − c| < δ, one
obtains:

|f(x) + g(x)− (l + k)| = |(f(x)− l) + (g(x)− k)|
≤ |f(x)− l|+ |g(x)− k|
< ε/2 + ε/2

= ε

This says that:

lim
x→c

(f(x) + g(x)) = l + k

= lim
x→c

f(x) + lim
x→c

g(x)
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EXERCISE 9 ♣ In the proof above, supply reasons for each of these lines:

|f(x) + g(x)− (l + k)| = |(f(x)− l) + (g(x)− k)| Reason:

≤ |f(x)− l|+ |g(x)− k| Reason:

< ε/2 + ε/2 Reason:

= ε Reason:

EXERCISE 10 ♣ Let a and b be positive numbers. Convince yourself that if
m := minimum(a, b), then m ≤ a and m ≤ b. (A number line sketch may be
all you need to convince yourself of this fact.)

Where was this fact used in the proof of of (O2)?

extending the
operations to
more than
two functions:

the ‘treat it as
a singleton’
technique

Mathematicians realize that facts like

lim
x→c

[
f(x) + g(x)

]
= lim
x→c

f(x) + lim
x→c

g(x) ,

although seemingly holding only for two functions, actually hold for any finite
number of functions. The proof uses a very common ‘treat it as a singleton’
technique. Assume in what follows that all the individual limits exist.

lim
x→c

f(x) + g(x) + h(x) = lim
x→c

[
f(x) + g(x)

]
+ h(x) (associative law)

= lim
x→c

[
f(x) + g(x)

]
+ lim
x→c

h(x) (O2)

= lim
x→c

f(x) + lim
x→c

g(x) + lim
x→c

h(x) (O2 again)

EXERCISE 11 ♣ Assuming that all the individual limits exist, show that:

lim
x→c

f(x)g(x)h(x) =
[
lim
x→c

f(x)
]
·
[
lim
x→c

g(x)
]
·
[
lim
x→c

h(x)
]

Be sure to write complete mathematical sentences, and give reasons supporting
each step in your argument.

In closing, the tools developed in this section are used to show that evaluating
limits of ANY polynomial is as easy as direct substitution:

THEOREM

Evaluating limits
of polynomials

Let P be any polynomial:

P (x) = anx
n + · · ·+ a1x+ a0

Then:
lim
x→c

P (x) = P (c)
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PROOF

lim
x→c

P (x) = lim
x→c

(anx
n + · · ·+ a1x+ a0) (definition of P )

= lim
x→c

anx
n + · · ·+ lim

x→c
a1x+ lim

x→c
a0 (O2)

= an lim
x→c

xn + · · ·+ a1 lim
x→c

x+ a0 (O1) and (P1)

= anc
n + · · ·+ a1c+ a0 (P3)

= P (c) (polynomial P , evaluated at c)

EXAMPLE For example:

lim
x→1

(x2 − 3x+
√

2) = 12 − 3(1) +
√

2 = −2 +
√

2

QUICK QUIZ

sample questions

1. Explain, in a couple English sentences, how a mathematician often shows
that an object is UNIQUE.

2. Under what condition(s) is the limit of a sum equal to the sum of the limits?

3. Give a precise statement of the ‘triangle inequality’ for real numbers.

4. Suppose you are told that, for a given function f and constant c, ‘evaluating
the limit lim

x→c
f(x) is as easy as direct substitution’. What does this mean?

5. Suppose that:

lim
x→1

f(x) = 3, lim
t→1

g(t) = 5, and lim
y→1

h(y) = 2

Can you evaluate the following limit?

lim
z→1

−2f(z) + g(z)

h(z)

If so, do it.

KEYWORDS

for this section

Existence and uniqueness arguments, the end-of-proof symbol , uniqueness
of limits, direct substitution, properties of limits, how you should approach the-
orems, operations with limits, the triangle inequality, extending operations to
more than two functions, limits of polynomials.
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END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a sentence (SEN).

♣ For any sentence, state whether it is TRUE, FALSE, or CONDITIONAL.

1. If lim
x→c

f(x) = l and lim
y→c

f(y) = m, then l = m.

2. If lim
t→c

f(t) = q and lim
x→c

f(x) = r, then q = r.

3. lim
x→c

f(x) = lim
y→c

f(y)

4. lim
x→c

f(x) = lim
x→d

f(x)

5. If ε > 0, then ε
2 > 0.

6. If ε
2 > 0, then ε > 0.

7. ε > 0 ⇐⇒ ε
2 > 0

8. ε > 0 ⇐⇒ 2ε > 0

9. ε > 0 ⇐⇒ (ε− .1) > 0

10. lim
x→c

d = d (Here, it is assumed that c and d are real numbers.)

11. lim
x→2

x100 = 2100

12. lim
y→−1

y = −1

13. lim
x→c

[f(x) + g(x)] = lim
x→c

f(x) + lim
x→c

g(x)

14. If the limits limx→c f(x) and limx→c g(x) both exist, then
lim
x→c

[f(x) + g(x)] = lim
x→c

f(x) + lim
x→c

g(x).

For the remaining problems, suppose that:

lim
x→c

f(x) = −1, lim
x→c

g(x) = 2, and lim
x→c

h(x) = 0

If possible, evaluate the following limits. If you don’t have enough informa-
tion to evaluate the limit, so state. Be sure to write complete mathematical
sentences.

15. lim
t→c

[f(t) + g(t)]

16. lim
t→c

(f − g)(t)

17. lim
y→d

[f(y)g(y)]

18. lim
x→c

(
[3g(x)− f(x)] · h(x)

)


