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PREFACE

intended audience
for this text

This text is intended to be used for a one-semester (16 week) course introducing
calculus to non-mathematics and non-engineering majors. The course should
meet approximately four hours per week. Alternatively, the text can be used
for a more leisurely-paced two-semester course, meeting about three hours per
week. At Idaho State University, the text has been used for a course that meets
a general education requirement in mathematics.

neglect of
the language
in which mathematics
is expressed

The language in which mathematical ideas are expressed is usually underempha-
sized in the standard curriculum. Emphasis is placed on what is said, not how
it is said. Without an understanding of the language of mathematics, students
can’t read their mathematics books, and can’t express mathematical ideas in a
coherent way.

writing across
the curriculum

Educators have stressed the importance of writing across the curriculum; this
text directly focuses attention on writing skills. As the need arises, students are
exposed to elements of the mathematics language, and are given ample exercises
to practice the language while learning the mathematics concepts. Chapter 1
provides the foundational language issues on which the rest of the text builds,
and hence has a flavor that is very nontraditional.

two-column
format used in
this text

This text is designed to be easy to use for the instructor. The two-column
page format identifies the key concept discussed in almost every paragraph.
Definitions, notation, theorems, examples, and exercises appear bold–faced in
the left-hand column. Key ideas in expository paragraphs appear in italics in
this thin column. Thus, the instructor can skim the sections and easily identify
the topics presented.

how to use
the two-column format

Some people using this text will choose to ignore the left-hand ‘key idea’ column
on a first reading, using the column merely as a feature that enables easy
location of results. Others will choose to read the ‘key idea’ phrase before
reading the companion paragraph, as a way to help maintain focus on the
central idea. (Too often, students lose the forest because of all the trees!)
In addition, the two-column format provides lots of room for writing in the
margins.

review material
is interspersed
throughout the text

Many students learn better when there is an immediate use for the material.
For this reason, necessary review material is included in the sections where it is
needed. Occasionally, review material is purposefully repeated; this saves the
student ‘look-up’ time, and provides an opportunity for the author to give a
slightly different viewpoint to already-introduced ideas.
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two types
of exercises:

There are two types of exercises in this text.

in-section exercises,
to encourage
active reading

In order to learn to read mathematics, students must read mathematics. Unfor-
tunately, too many students rely on lectures alone as a source of information,
and use the book solely for the exercises (and answers to exercises).

To counter this problem, the text has an abundance of ‘in-section’ exercises—
exercises intertwined with the exposition. These exercises directly address con-
cepts discussed in the paragraphs immediately preceding them; thus, in order to
do the exercises, the student must read the book. For example, a student might
be asked to re-write a paragraph so that it is correct for a slight modification
of an idea.

The in-section exercises are designed not only to encourage reading, but also to
encourage active reading—the correct way to read mathematics is with pencil
in hand !

It is intended by the author that every one of the in-section exercises be at-
tempted by every student.

optional
Student’s Solution
Manual

Complete answers to the in-section exercises are available in the supplemental
Complete Solution Manual.

more traditional
end-of-section
exercise sets

Secondly, there are traditional end-of-section exercise sets. These exercises
provide reinforcement of both the calculus and language concepts discussed in
the section.

Abbreviated answers to odd-numbered end-of-section problems are given at
the end of the text. The supplemental Complete Solution Manual contains
answers to all the exercises. These solutions are carefully written in complete
mathematical sentences, to reinforce the correct writing of mathematics that is
emphasized throughout the text.

♣ symbol The clubsuit symbol ♣ identifies the specific part(s) of a question that must be
answered by the student.

Many of the exercises contain a moderate amount of exposition. The question(s)
that the student must answer are often imbedded in this exposition, and the ♣
makes them easier to spot.

F symbol More advanced material in the text is labeled with the star symbol F. This
material may not be appropriate for a first reading. However, this F device
allows the author to say more of the complete truth without interrupting the
exposition.

FF symbol Material that is labeled with FF is probably appropriate for the instructor’s
eyes only.
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the ‘quick quiz’ The author firmly believes that the only way to really learn mathematics is a
little bit at a time. Two hours each day is far superior to a Saturday marathon.
To gently encourage this every-day commitment to the subject, the author has
found the following ‘quick quiz’ technique extremely successful.

At the beginning or end of each class, a very short (1–2 minute) quiz is given,
over material covered in the previous lecture. The question is extremely basic.
The quiz is worth 1 point; to get this point, the student must answer the ques-
tion correctly, using complete and correct mathematical sentences. For example,
a student who is asked to differentiate f(x) = x2 and writes f(x) = x2 = 2x
has not written a correct mathematical sentence, and will not get the point.
The mistake is quickly corrected!

Any points that are accumulated on these quizzes get added on to the student’s
next test grade; thus, they cannot hurt the student, but can certainly help.
This positive reinforcement technique has been extremely successful in getting
students to attend class, and read over their notes before the next lecture.

Some sample ‘quick quiz’ questions are included at the end of each section.
Solutions to the ‘quick quiz’ questions are given at the end of the text.

‘Keywords’ Each section is concluded with a list of ‘keywords’. Students studying for an
exam should look through each ‘keyword’ list to ensure that they have not
missed any important information.

TEX This text was typeset using TEX (pronounced so that it rhymes with blecchhh).
TEX is a typesetting system that is ideally suited to books containing lots of
mathematics. From the TEX output, pdf files were created to be put on the
World Wide Web.
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STUDY STRATEGIES
for Students of Mathematics

• Find out what material is going to be covered the next day, and skim the section before it’s covered in
class. Make note of any questions that you have, and be sure to get those questions answered during
lecture.

• Use your text. Mark in it. Highlight important material. You bought the text—get your $$ worth from
it.

• Ask questions in class! A question that you have is likely to be a question that others have. Be the
person brave enough to ask, and your classmates will thank you for it.

• Take complete class notes, and read them over as soon as possible after the lecture (while you still
remember what was said). Read actively! This means: have pencil and paper beside you, and use
them. In particular, re-work all the problems that were covered in class, without looking at your notes.
If you get stuck, you have your notes to look back at—see where you went wrong, then close the notes
and try again. You may need to repeat this process several times, but it’s worth it.

In the re-reading process, be sure to fill in any gaps in your understanding. This way you will have a
complete set of comprehensible notes when it comes time to study for the exams. Remember that the
topics emphasized in class are likely to be those that your instructor feels are most important.

• Read the section in the text again, thoroughly, after the lecture.

• Do some mathematics almost every day . In this author’s opinion, two hours each day is much better
than a Saturday marathon.

• Find someone with similar study habits with whom to work. Mathematics is much more fun when you
can talk about it with someone.

• Use index cards for important definitions, formulas, key problems; or whenever the instructor says “This
is important!” Keep the stack of cards with you and flip through whenever you’re waiting in line or ‘on
hold’ on the telephone.

• If you don’t understand something, seek help immediately . The material builds, and it will be difficult
to learn new material with gaps in understanding of previous stuff.
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CHAPTER 1

ESSENTIAL PRELIMINARIES

The goal of Chapters 1 and 2 is to review, and
to expose you to some new views of old ideas. In
addition, elements of the language of mathematics
are developed that will be needed throughout the
course.

It is imperative that Chapter 1 be covered thor-
oughly, since it provides the foundational language
issues on which the rest of the text builds. Instruc-
tors and students alike will probably find the fla-
vor of Chapter 1 to be very nontraditional, because
language issues are rarely emphasized in lower level
mathematics courses.
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1.1 The Language of Mathematics
Expressions versus Sentences

a hypothetical
situation

Imagine the following scenario: you are sitting in class, and the instructor passes
a small piece of paper to each student. You are told that the paper contains a
paragraph on Study Strategies for Students of Mathematics; your job is to read
it and paraphrase it. Upon glancing at the paper, however, you observe that it
is written in a foreign language that you do not understand!

the importance
of language

Now, is the instructor being fair? Of course not. Indeed, the instructor is proba-
bly trying to make a point. Although the ideas in the paragraph may be simple,
there is no access to these ideas without a knowledge of the language in which
the ideas are expressed. This situation has a very strong analogy in undergrad-
uate mathematics courses. Students frequently have trouble understanding the
ideas being presented; not because the ideas are difficult, but because they are
being presented in a foreign language—the language of mathematics.

Study Strategies
for Students
of Mathematics

A list of Study Strategies for Students of Mathematics (in English) appears in
this text after the Preface. Be sure to read both of these sections.

characteristics of
the language
of mathematics

The language of mathematics makes it easy to express the kinds of thoughts
that mathematicians like to express. It is:

• precise (able to make very fine distinctions);

• concise (able to say things briefly);

• powerful (able to express complex thoughts with relative ease).

The language of mathematics can be learned. However, it requires the efforts
needed to learn any foreign language.

a major goal of
this text

Throughout this text, attention is paid not only to the ideas presented, but
also to the language in which these ideas are expressed. Besides understanding
calculus, a major goal of this course is for you to improve your skills in reading
and writing mathematics. These skills can be carried with you into any setting
where mathematics is used to express ideas.

complete and correct
mathematical sentences

You can’t learn to read without reading. So read the text. You can’t learn to
write without writing. So you will be given ample opportunities to practice
writing complete and correct mathematical sentences.

We now begin our study of the language of mathematics. The ideas introduced
here will be elaborated on throughout the text.

English nouns
versus
mathematical ‘nouns’

In English, a noun is a word that names something. An English noun is usually
a person, place, or thing; for example, Julia, Idaho, and rat. Note that there
are conventions regarding nouns in English; for example, proper names are
capitalized.

The mathematical analogue of a noun is called an expression.

mathematical
expression

A mathematical expression is a name given to some mathematical object of
interest. The phrase ‘mathematical expression’ is usually shortened to ‘expres-
sion’.

1
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conventions
regarding the
naming of
mathematical ‘nouns’

In mathematics, an ‘object of interest’ is often a number, a set, or a function.
There are conventions regarding the naming of ‘nouns’ in mathematics, just
as there are in English. For example, real numbers are usually named with
lowercase letters (like a,x, t,α,β, and γ), whereas sets are usually named with
capital letters (like A,B, and C). Such conventions are addressed throughout
the text.

Without sets and functions, modern mathematics could not exist. Sets, and the
important sets of numbers, are reviewed throughout Chapter 1. Functions are
discussed in Chapter 2. The Algebra Review at the end of the current section
reviews the most commonly used Greek letters, and the real numbers.

By themselves, nouns are not extremely useful. It is when nouns are used in
sentences to express complete thoughts that things get really interesting.

sentences A declarative English sentence begins with a capital letter, ends with a period,
and expresses a complete thought:

Many students are a bit apprehensive of their first Calculus course.

A mathematical sentence must also express a complete thought. However, there
are a lot of symbols (and layouts) available in the construction of mathematical
sentences that are not available in the construction of English sentences.

Many students have trouble distinguishing between mathematical expressions
and mathematical sentences. Exercises and examples that help you understand
the difference will appear throughout the text.

how to decide
if something is
a sentence

A good way to decide if something is a sentence is to read it out loud, and ask
yourself the question: Does it express a complete thought? If the answer is
‘yes’, it’s a sentence.

The difference between expressions and sentences is explored in the next exam-
ple.
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EXAMPLE

sentences
versus
expressions

Problem: Classify the entries in the list below as:
• an English noun
• a mathematical expression
• a sentence
In any sentence, circle the verb. Try to fill in the blanks yourself before looking
at the solutions.

(For the moment, don’t worry about the truth of sentences. This issue is ad-
dressed in the next example.)

1. cat

2. x

3. The word ‘cat’ begins with
the letter ‘k’.

4. 1 + 2 = 4

5. (a+ b)2

6. 2x− 1 = 0

7. The cat is black.

8. (a+ b)2 = a2 + 2ab+ b2

9. −3t < 2

10. y + y + y

11. y + y + y = 3y

12. (a+ b)2 = a2 + b2

13. This sentence is false.

14. x2 < 0

15. 1 +
√

2

Solution:

1. cat English noun

2. x mathematical expression

3. The word ‘cat’ begins...................................................................................
...........
.......
.........

....................
.................................................................. with

the letter ‘k’.
sentence

4. 1 + 2 =.............................................
.......
........
................................... 4 sentence

5. (a+ b)2 mathematical expression

6. 2x− 1 =.............................................
.......
........
................................... 0 sentence

7. The cat is......................................
.......
.......
........
................................... black. sentence

8. (a+ b)2 =.............................................
.......
........
................................... a2 + 2ab+ b2 sentence

9. −3t <.............................................
.......
........
................................... 2 sentence

10. y + y + y mathematical expression

11. y + y + y =.............................................
.......
........
................................... 3y sentence

12. (a+ b)2 =.............................................
.......
........
................................... a2 + b2 sentence

13. This sentence is......................................
.......
.......
........
................................... false. sentence

14. x2 <.............................................
.......
........
................................... 0 sentence

15. 1 +
√

2 mathematical expression

Note that sentences express a complete thought, but nouns (expressions) do
not. For example, read aloud: x. What about x? Now read aloud: 2x− 1 = 0.
Here, a complete thought about object ‘x’ has been expressed.
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EXAMPLE

truth of sentences

Problem: Consider the entries in the previous example that are sentences.
Which are true? False? Are there possibilities other than true and false?

Solution:

3. The word ‘cat’ begins with
the letter ‘k’.

FALSE

4. 1 + 2 = 4 FALSE

6. 2x− 1 = 0 The truth of this sentence (true or
false) depends on the choice of x.
If x is 1/2, then it is true.
Otherwise, it is false. Sentences such
as these are studied in more detail
in the next section.

7. The cat is black. The truth of this sentence cannot
be determined out of context. If
the cat being referred to is indeed
black, then the sentence is true. Oth-
erwise, it is false.

8. (a+ b)2 = a2 + 2ab+ b2 Here, it is assumed that a and b
represent numbers. Then, this sen-
tence is (always) true: its truth does
not depend on the numbers chosen
for a and b. ♣ Why?

9. −3t < 2 It is assumed that t represents a
number. This sentence is sometimes
true, sometimes false, depending on
the number chosen for t. In sen-
tences such as these, mathemati-
cians are often interested in finding
the choices that make the sentence
TRUE.

11. y + y + y = 3y TRUE, for all real numbers y.

12. (a+ b)2 = a2 + b2 The truth of this sentence depends
on the choices for a and b. For ex-
ample, if a = 0 and b = 1, then it is
true (♣ check). If a = 1 and b = 1,
then it is false (♣ check).

13. This sentence is false. IF this sentence is true, then it would
have to be false. IF this sentence is
false, then it would have to be true.
So this sentence is not true, not
false, and not sometimes true/some-
times false.

14. x2 < 0 It is assumed that x represents a
real number. Since every real num-
ber, when squared, is nonnegative,
this sentence is (always) false.

EXERCISE 1 ♣ Write a few (English) sentences that discuss the difference between math-
ematical expressions and sentences.

(Remember that the ♣ (clubsuit) symbol means that student input is required.)
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EXERCISE 2 ♣ 1. In algebra, how did you go about finding the choice(s) for x that make
the equation 2x− 1 = 0 true? Do it.

♣ 2. In algebra, how did you go about finding the choice(s) for t that make
the inequality −3t < 2 true? Do it.

♣ 3. What happens if you take the usual algebra approach, and try to ‘solve’
the equation y + y + y = 3y?

♣ 4. What are all the possible choice(s) for a and b that make the equation
(a+b)2 = a2+b2 true? Be sure to write complete sentences in your answer.

♣ 5. What name is commonly given to English sentences that are intentionally
false? To English sentences that are nonintentionally false?

EXERCISE 3

sentences
versus
expressions

♣ Classify each entry in the list below as: an English noun (NOUN), a math-
ematical expression (EXP), or a sentence (SEN).

♣ In any sentence, circle the verb.

♣ Classify the truth value of any entry that is a sentence: TRUE (T), FALSE
(F), or SOMETIMES TRUE/SOMETIMES FALSE (ST/SF). The first one
is done for you.

1. a+ b = b+ a SEN, T

2. a+ b

3. a+ b = 5

4. rectangle

5. Every rectangle has three sides.

6. x+ (−x) 6= 0

7. 3 ≤ 3

8. y ≥ y
9. y > y + 1

10. y > y − 1

11. Bob

12. Bob has red hair.

13. For all nonzero real numbers x,
x0 = 1.

14. The distance between real num-
bers a and b is b− a.

15. a(b+ c)

16. a(b+ c) = ab+ ac
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FF Do you really want to be reading this? Remember that the symbol FF means
that the material is probably appropriate for the instructor’s eyes only.

Experienced mathematicians tend to regard sentences with variables as implicit
generalizations; thus a mathematician who reads

‘The distance between real numbers a and b is b− a.’

will automatically interpret it as

‘For all real numbers a and b, the distance between a and b is b− a.’

The latter sentence is, of course, false. However, at this point in the text, the
student is expected to view the sentence

‘The distance between real numbers a and b is b− a.’

as being sometimes true, sometimes false (depending on the choices made for a
and b).

EXERCISE 4 ♣ 1. Use the English noun ‘Julia’ in three sentences: one that is true, one
that is false, and one whose truth cannot be determined without additional
information.

♣ 2. Use the expression x2 + y2 in three mathematical sentences: one that
is (always) true, one that is (always) false, and one that is sometimes
true/sometimes false.

read mathematics
out loud

After you write any mathematics (perhaps you have solved a homework prob-
lem) you should read it back to yourself, out loud, and be sure that

• it expresses a complete thought;

• it expresses a correct thought.
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ALGEBRA REVIEW
Greek letters, the real numbers

Greek letters Mathematicians are extremely fond of Greek letters. Here are some that are
most commonly used, together with their names.

uppercase lowercase Name of Greek letter Pronunciation

α alpha AL-fa
β beta BĀ-ta

Γ γ gamma GAM-a
∆ δ delta DEL-ta

ε epsilon EP-si-lon
θ theta THĀ-ta
λ lambda LAM-da
µ mu mew
π pi pie
ρ rho row
τ tau Ow! with a ‘t’ in front
φ phi fee
ω omega o-MĀ-ga

EXERCISE 5

learn the
Greek letters

♣ Learn to recognize and name all the Greek letters listed in the table above.
Practice writing them. Learn how to correctly pronounce each name (ask
your instructor if you’re uncertain). Once you think you have them mas-
tered, test yourself by filling in the blanks below.

uppercase lowercase Name of Greek letter

alpha
beta
gamma
delta
epsilon
theta
lambda
mu
pi
rho
tau
phi
omega
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EXERCISE 6

R
the real numbers

The real numbers, denoted by the symbol R, can most easily be understood in
terms of a number line:

←−−−−−−−−−−−−−−−−−−−−−→

(The arrows suggest that the line extends infinitely far in both directions.) This
line is a conceptually perfect picture of the real numbers in the following sense:

• Every point on this line is uniquely identified with a real number.

• Every real number is uniquely identified with a point on this line.

It is important to realize that a particular real number may have lots of names:
for example,

2, 32 − 7,
4

2
, 5− 3,

2π

π
, and

−11.4

−5.7

are all names for the unique number shown below:

The name that we choose to use for a number depends on what we are doing.
For example, we will see that when talking about the slope of a line, the ‘names’
2
1 or −4

−2 are often more useful than the shorter name 2.

♣ 1. Give ten more ‘names’ for the number 5.

♣ 2. Give three more ‘names’ for the number 2.3 .

EXERCISE 7

positive
negative

‘negative’ versus
‘minus’

The real numbers to the right of zero on the number line are called positive. For
example, the numbers 3, 1017

23 , 0.00023 and 1052 are positive. The real numbers
to the left of zero are called negative. The number 0 (read this as ‘zero’, not
‘oh’) is not positive or negative.

The symbol ‘−’ is read differently depending upon the context. If the symbol
‘−’ is being used to denote a negative number, it is read as negative:

‘−3’ is read as negative three.

If the symbol − is being used to denote the operation of subtraction, it is read
as minus:

‘3− 5’ is read as three minus five.

Here’s an example that uses both:

‘3− (−5)’ is read as three minus negative five.

♣ 1. How would you read ‘−4− (−3)’?

♣ 2. What is the least positive number that can be represented on your hand-
held calculator? Call it L. What do you get when you use your calculator
to compute L/2?

♣ 3. What is the greatest positive number that can be represented on your
hand-held calculator? Call it G. What happens when you use your calcu-
lator to compute (G+ 1)−G?
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EXERCISE 8

inequality symbols

>, <

One extremely nice property of the real numbers is that they are ordered . This
means the following: given any two real numbers, either

• they are equal, or

• one of the numbers lies further to the left on the real number line.

When a number n lies to the left of a number m, we write

n < m

and read this as

n is less than m.

Never read this as ‘n is smaller than m’. Why not? Well, consider the numbers
−5 and 3. Certainly −5 lies to the left of 3, so that −5 < 3 (read as negative
five is less than three). But would you really want to say that −5 is ‘smaller
than’ 3?

♣ 1. Comment. That is, why might you be uncomfortable saying that −5 is
‘smaller’ than 3?

Similarly, when n lies to the right of m, we write

n > m

and read this as

n is greater than m.

Again, never read this as ‘n is bigger than m’.

♣ 2. Find numbers n and m for which n > m is true, but you would feel
uncomfortable saying that n is ‘bigger’ than m.

♣ 3. Read the following sentences out loud, and determine if they are TRUE
or FALSE:

a) −3 < 2

b) 2
5 >

3
7

c) −3 > −7

EXERCISE 9

reread the section

♣ Reread this section. You will need to read each section in this text at
least twice to fully understand the material. Also, don’t expect to read
mathematics the same way that you read English. You’re probably used to
measuring reading rates in units of ‘pages per hour’. Mathematics is read
in units of ‘hours per page’.

QUICK QUIZ
sample questions

1 What is the mathematical analogue of an English noun?

2 In English, a noun is usually a person, place, or thing. List three common
types of mathematical ‘nouns’.

3 Use the mathematical expression x in a sentence that is always true.

4 Circle the entries that are sentences:
2
y − 1

√
x > 2 4− 3 = 7

KEYWORDS

for this section

English noun, mathematical expression, sentences, Greek letters, the real num-
bers, R, positive, negative, minus, inequality symbols.



10 copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org

END-OF-SECTION
EXERCISES

Classify each entry in the list below as: an expression (EXP), or a sentence
(SEN).

In any sentence, circle the verb.

Classify the truth value of any entry that is a sentence: TRUE (T), FALSE
(F), or SOMETIMES TRUE/SOMETIMES FALSE (ST/SF).

NOTE: The symbol ‘≈’ means ‘is approximately equal to’.

1. 1
3 2. π

3. 1
3 = 0.3 4. 1

3 = 0.33

5. 1
3 = 0.33 6. 1

3 = 0.33333

7. 1
3 ≈ 0.33 8. 1

3 ≈ 0.333333

9. x2 > 0 10. y2 > 0

11. x2 ≥ 0 12. y2 ≥ 0

13. (−3)(−5) 14. (−3) + (−5)

15. −5 < −3 16. −3 < −5

17. |t| > 0 (Need help with absolute
values? You might want to skip
ahead to the Algebra Review in
Section 2.1)

18. |x| > 0

19. |t| ≥ 0 20. |x| ≥ 0

21. |t| < 0 22. |x| < 0

23. |3− π| = π − 3 24. |π − 3| = π − 3

25. |t| = t 26. |t| = −t
27. x

y ÷
z
w 28. x

y ·
w
z

29. x
y ÷

z
w = xw

yz 30. x
y ·

w
z = xw

yz

31. a(bc) = (ab)c 32. a+ (b+ c) = (a+ b) + c

33. 3x2 = (3x)2 34. (2 · 3)2 = 2 · 32

35.
√

(−3)2 = −3 36.
√

(−3)2 = 3
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END-OF-SECTION
EXERCISES

(continued)

37 The sentence below is TRUE. What name does this result usually go by?
(Dust off your algebra book.)

For all real numbers a and b, a+ b = b+ a.

38 The sentence below is TRUE. What name does this result usually go by?

For all real numbers a and b, ab = ba.

39 The sentence below is TRUE. What name does this result usually go by?

For all real numbers a, b, and c, a(b+ c) = ab+ ac.

40 The sentence below is TRUE. What name does this result usually go by?

For all real numbers a, b, and c, a(bc) = (ab)c.

41 To mathematicians, subtraction is just a special kind of addition, since for
all real numbers x and y,

x− y = x+ (−y) .

That is, to subtract a number is the same as to add the opposite of the
number.

♣ What is this result telling you if x = 1 and y = 3? How about if x = 1
and y = −3?

42 (Refer to the previous exercise.) To mathematicians, division is just a
special kind of multiplication. WHY? Be sure to answer in a complete
sentence.

43 (Importance of ASSOCIATIVE laws) The word ‘associative’ has the same
root as the English words sociable and associate. These English words have
to do with groups (e.g., a sociable person is one who enjoys being in a
group of people). Thus it should not be surprising that ‘associative’ laws
in mathematics have to do with grouping.

The associative law of multiplication states: for all real numbers x, y and z,
x(yz) = (xy)z. Thus, the grouping of numbers in a product is irrelevant. It
is because of this property that we are able to write xyz, with no parentheses.

♣ Using complete sentences, comment on why the associative law makes
expressions like xyz unambiguous.

44 (Refer to the previous exercise.) What property of the real numbers allows
us to write things like a+ b+ c with no ambiguity?



1.2 The Role of Variables

variables In this section, a name is given to mathematical sentences that are ‘sometimes
true, sometimes false’—they are called conditional sentences. The truth of
such sentences depends on the choices that are made for the objects that are
allowed to vary in the sentence. In mathematics, an object that is allowed to
vary is appropriately called a variable. Variables play a very important role in
mathematics, and are the focus of the current section.

sentences come in
several flavors

true

As discussed in the previous section, sentences come in several flavors. There
are:

TRUE sentences, such as:

• π + (−π) = 0

• t2 ≥ 0

• (−3)2 = 9

• x+ x+ x = 3x

Note that the sentence x+x+x = 3x is true for any real number x. A sentence
with verb ‘=’ is called an equation.

false FALSE sentences, such as:

• 50 = 5

•
√

(−7)2 = −7

• (3 + 2)2 = 32 + 22

• x2 < 0

Note that the sentence x2 < 0 is false for all real numbers x. A sentence with
verb <, ≤, >, or ≤ is called an inequality. The prefix ‘in’ is commonly used
to mean ‘not’; as in the English words inept, insane, and insecure. Hence,
inequality means, roughly, NOT equal.

Mathematicians hate to see false sentences written down, except perhaps in a
book on logic!

conditional CONDITIONAL sentences, such as:

• x = 3

• x2 + 2x+ 1 > 0

•
√

2x+ 1 6= 5

• y = 2x+ 4

This is a very interesting type of sentence. By definition, a conditional sentence
is one that is sometimes true and sometimes false.

For example, the equation x = 3 is true when x is 3 and false when x is not 3.
Thus, the condition of the sentence depends on the value(s) of the variable(s)
involved.

12
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EXERCISE 1

classifying sentences

♣ Classify the following equations as (always) true, (always) false, or condi-
tional.

♣ For those that are conditional, can you say when they are true? False?

1. 2 · 42 = 32 (See Algebra Review—exponents.)

2. 2x3 = 2 · x · x · x

3. x− 3 = 0

4.
√

9 = −3

5. x+ y = 4

6.
√

(−9)2 = −9

7. |x| > 0

‘place holders’ When working with conditional sentences, the concept of ‘place holder’ becomes
important. To illustrate this point, consider a familiar example.

solving an
equation

Recall from algebra that to solve an equation like

2x+ 4 = 10

means to find the number that makes it true. (You learned in algebra that
equations of this type have only one solution.) To accomplish this, a number
(here denoted by ‘x’) must be found that has the following property: when it
is doubled (multiplied by 2), and 4 is added to it, the result is 10.

Instead of pulling out ‘standard’ algebra techniques right now, just stop and
think. First, what number, when added to 4, yields 10? The number 6. Thus,
twice the desired number x must equal 6. Therefore, x must equal 3.

Now if you are asked to solve the equation 2t + 4 = 10, you should recognize
that it has already been done. The only difference is that the letter ‘t’ is used
as a place holder, instead of ‘x’.

EXERCISE 2

solving
simple equations
mentally

♣ 1. Without writing anything down, solve the equation 2x− 8 = 6.

♣ 2. Now solve the equation (x− 2)2 = 9 mentally.

The notion of ‘place holder’ is much too imprecise for the language of mathe-
matics. To formalize this notion, the concept of variable is introduced.

The word set appears in the next definition. For now, just think of a set as a
collection of things (like numbers). Sets will be discussed in more detail in the
next section.

DEFINITION

variable

universal set

A variable is a symbol (often a letter) that is used to represent a member of a
specified set.

This ‘specified set’ is referred to by mathematicians as the universal set .

Thus, the universal set gives the objects (often numbers) that we are allowed
to draw on for a particular variable.
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symbols traditionally
used to denote
variables

The letters x, y, and t are commonly used in elementary mathematics courses
to denote variables, with universal set R.

the role of
definitions
in mathematics

Definitions are extremely important in mathematics. In order to communicate
effectively, people must agree on the meanings of certains words and phrases.
English occasionally fails in this respect. Consider the following conversation
in a car at a noisy intersection:

Carol: “Turn left!”

Bob: “I didn’t hear you! Left?”

Carol: “Right!”

Question: Which way will Bob turn? It depends on how Bob interprets the
word ‘right’. If he interprets it as the opposite of ‘left’, he will turn right. If he
interprets it as ‘correct’, he will turn left.

Such ambiguity is not tolerated in mathematics. By defining words and phrases,
mathematicians assure that everyone agrees on their meaning.

EXERCISE 3

ambiguity
in English

♣ Come up with another example of an English word or phrase that is ambigu-
ous, and where this could cause communication problems.

EXAMPLE

same equation,
different universal sets

To illustrate the roles that variables and universal sets play in solving equations,
consider the equation:

x2 = −1

You are asked to solve this equation. There is only one variable, x. What is
the universal set? You had better find out, because it will affect your answer.

If the universal set is R, then you must find all real numbers which, when
squared, equal −1. There are none. So in this case, you would say that there
are no solutions to the equation.

Suppose, however, that the universal set is C (the complex numbers). (See
Algebra Review—complex numbers.) In C, there are two numbers that make
the equation x2 = −1 true; i and −i. So in this case two solutions are obtained.

EXERCISE 4

seeing how the
universal set affects
the solutions of
an equation

♣ Solve the equation x4 = 1.

1. First, let R be the universal set. How many solutions do you get?

2. Next, let C be the universal set. How many solutions do you get?

3. Finally, let the integers . . . ,−3,−2,−1, 0, 1, 2, 3, . . . be the universal set.
How many solutions do you get? (See Algebra Review—integers.)

EXERCISE 5 ♣ Solve the equation x2 = 2 taking the universal set to be:

1. R
2. the rational numbers (See Algebra Review—rational and irrational num-

bers.)

3. the irrational numbers

4. the integers
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EXERCISE 6

theorem

the Fundamental
Theorem of Algebra

In mathematics, the word theorem is used to denote a result that is both true
and important .

♣ Look up the Fundamental Theorem of Algebra in an algebra book. What is
it saying? In particular, it tells us that the complex numbers C are ‘nicer’
than the real numbers R in one way. What way is this?

three main uses
of variables

Variables are frequently used:

• in mathematical expressions to denote quantities that are allowed
to change (vary)

For example, let A denote the area of a circle that has radius r. Then, A = πr2.
Here, r and A are variables, because they vary from circle to circle. The symbol
π, on the other hand, is not a variable. It never changes. It is called a constant .

• in equations and inequalities to denote a quantity that is initially
unknown, but that one would like to know

For example, in the equation 2x− 3 = 1, the value of x that makes this true is
(initially) unknown. One goal in algebra is to find the appropriate number.

• to state a general principle

For example, the sentence

For all real numbers x and y, x+ y = y + x.

should be recognized as a precise statement of the Commutative Law Of Addi-
tion. To ‘commute’ means to change places; say, to go from home to work and
then back again. All commutative laws have the same theme: a ‘changing of
places’ of the objects involved does not affect the final answer.

DEFINITION

constant

A constant is a quantity that does not vary (that is, remains the same—
constant) during some discourse.

symbols traditionally
used to denote
constants

All specific real numbers are constants: like 5, 0,
√

2 and π.

Symbols are frequently used to denote constants. This can be confusing, be-
cause symbols are also used to denote variables. However, there are some strong
mathematical conventions that exist when naming constants. No reasonable
person would use x or y to denote a constant, because these letters are too
often used to denote variables.

Frequently, the ‘earlier’ letters in alphabets, like a, A, α or b, B, β or c, C, γ
are used to denote constants.

EXAMPLE

types of equations

2x+
√
x− 5 = 0 is an equation in one variable, x.

x2 − x =
√

3y − 7 is an equation in two variables, x and y.

x+ y
z+x+y = 4 is an equation in three variables, x, y, and z.
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variables vs. constants The equation Ax + By + C = 0, where A and B are not both zero, is an
equation in two variables, x and y. Here, convention dictates that A, B and C
are constants, not variables. If we genuinely wanted A, B and C to be treated
as variables, this would need to be stated explicitly.

The equations that can be expressed in this way Ax + By + C = 0 form a
very important class of equations called the linear equations in two variables.
There is one equation for each choice of the constants A, B, and C. For example,
2x+3y−5 = 0 is a linear equation in the two variables x and y. So is x−y = π,
since it can be written as x− y − π = 0.

EXERCISE 7 ♣ 1. Give an example of a linear equation in the variables w and z.

♣ 2. Give an example of an inequality in the variable x, where this variable
appears three times.

♣ 3. A book defines a quadratic equation as one that can be written in the
form:

αx2 + βx+ γ = 0 , α 6= 0

According to the conventions in mathematics, what should you assume are
variables? What are constants?

solving equations Now that variables, constants, and equations have been discussed, it’s time to
talk more precisely about the solutions of equations.

DEFINITION

solution
of an equation
in one variable

satisfy

A solution of an equation in one variable is a number (from the universal set)
which, when substituted for the variable, makes the equation into a true state-
ment. Such a number is said to satisfy the equation.

In this course, the universal set is R, unless otherwise specified. Thus,
we will be looking only for REAL NUMBER solutions.

EXAMPLE • The number 3 is a solution of the equation x = 3. Are there any others?

• The numbers 2 and −2 both satisfy the equation y2 = 4. Are there any
others?

• The number
√

3 is a solution of the equation t2 + 2 = 5. Are there any
others? (Yes, −

√
3.)

• The equation x2 = −4 has no solutions (in the real numbers).

DEFINITION

solution
of an equation
in two variables

A solution of an equation in two variables is a pair of numbers which, when
substituted for the variables, makes the equation into a true statement.

EXAMPLE The choices x = 2 and y = 2 give a (single) solution of the equation x+ y = 4.
Note that this choice of two numbers yields only one solution; it is incorrect to
say ‘x = 2, y = 2 are solutions of x+ y = 4’.

The pair x = 1, y = 3 is another solution. So is x = 1.1, y = 2.9. Any guesses
as to how many solutions there are? (ANS: an infinite number!)



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 17

n-tuple

ordered pair

To talk about equations in 2 or more variables, the concept of n-tuple is used.
An n-tuple is an ordered list of n numbers. By convention, the n numbers are
separated by commas, and enclosed in parentheses ( , ).

For example, (1, 2) is a 2-tuple, more commonly known as an ordered pair .

The 5-tuple (1, 2, 3, 4, 5) is different from the 5-tuple (5, 4, 3, 2, 1) since the order
is important.

DEFINITION

solution
of an equation
in n variables

A solution of an equation in n variables is an n-tuple of numbers which, when
substituted for the n variables, makes the equation into a true statement.

A convenient way to denote a typical n-tuple is:

(x1, x2, x3, . . . , xn)

Note that the subscript on the variable tells the position in the list. Thus, x3
denotes the third number in this list.

EXERCISE 8 Consider the equation in four variables x1 + 2x2 + 3x3 + x4 = 0.

♣ 1. What are the four variables in this equation?

♣ 2. What is meant by a solution to this equation?

♣ 3. Find a solution to this equation (at least one solution should be obvious).

♣ 4. Find another solution. Any guesses as to how many solutions there are?

finding ALL
the solutions

One is usually interested in finding all the solutions of a given equation. To
discuss this collection of solutions precisely, the concept of set will first be
reviewed. This is the subject of the next section.
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ALGEBRA REVIEW
exponents, complex numbers, integers, rational & irrational numbers

strength of
operations

Recall from algebra that the expression −32 means (−1) · (32). That is, take 3,
square it, and then multiply by −1. This is a consequence of the mathematical
conventions regarding order of operations. Mathematicians have agreed that
when no order is specified (say with parentheses), then the strongest operations
will act first. This agreement is usually referred to as the order of operations.
But what is the ‘strength’ of the various operations?

addition and
subtraction have
equal ‘strength’

Start with addition. Since subtraction is a special kind of addition,

a− b := a+ (−b) ,

both addition and subtraction have equal strength. The symbol ‘:=’ just used
emphasizes that the equality is by definition.

multiplication is
a sort of
‘super-addition’

Multiplication is a sort of ‘super-addition’. For example, 3 · 4 = 4 + 4 + 4 =
3 + 3 + 3 + 3. Thus, multiplication is ‘stronger than’ addition. Since division is
a special kind of multiplication,

a

b
:= a · 1

b
,

both multiplication and division have equal strength.

exponentiation is
a sort of
‘super-multiplication’

Exponentiation is a sort of ‘super-multiplication’. For example, 23 = 2 · 2 · 2.
Thus, exponentiation is ‘stronger than’ multiplication.

A sentence that students sometimes use to help them remember the conventions
about order of operations is:

Please Excuse My Dear Aunt Sally.

‘P’ stands for Parentheses, ‘E’ for Exponents, ‘M’ and ‘D’ for Multiplications
and Divisions, ‘A’ and ‘S’ for Additions and Subtractions.

exponents are
short-sighted

With these conventions, the exponentiation must be done before the multiplica-
tion in the expression −32. One way to remember that −32 means (−1) · (32) is
that exponents are extremely short-sighted . When the exponent 2 ‘looks down’
in −32, all it ‘sees’ is a 3, so this is what gets squared. However, when the
exponent 2 ‘looks down’ in (−3)2, it sees a group, and in that group is a −3.
So this is what gets squared.

x0 = 1 for x 6= 0 By definition, x0 = 1 for all real numbers x except 0. The expression 00 is
undefined, just as division by zero is undefined. Thus,

• 50 = 1,

• π0 = 1, and

• (−
√

7)0 = 1.

♣ What is −70? (−7)0? x0? (Careful!)
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Why is 00

undefined?
Why is 00 undefined? Here’s one reason. Think of every real number as corre-
sponding to a drawer in a (very large) filing cabinet. Thus, 2, 5− 3, and 2π

π all
go into the same drawer. There’s also a drawer to accomodate things that are
‘not defined’, like 2

0 .

Mathematicians want the sentence

x3

x3
= x3−3 = x0

to always be true. That is, for any real number x, the names x3

x3 , x3−3, and x0

should all go into the same ‘drawer’. Since x3

x3 is not defined when x is zero, we

also want x0 to be undefined when x is zero.

The Freshman’s Dream The ‘Freshman’s Dream’ is that (a+ b)2 is equal to a2 + b2. Unfortunately, this
is but a dream. Take, for example, a = 1 and b = 1. Then (a+b)2 = (1+1)2 = 4
but a2 + b2 = 12 + 12 = 2. The correct expression is:

(a+ b)2 = (a+ b)(a+ b) = a2 + 2ab+ b2

the number
i :=
√
−1

If we are only allowed to use real numbers, the equation x2 = −1 has no solution.
(♣ Why not?) To accomodate situations such as this, the real numbers can be
‘extended’ to a larger number system, by defining one new number. This ‘new’
number is usually denoted by the letter i, and is defined by i :=

√
−1. That is,

i is a number which, when squared, equals −1.

By introducing this single new number i, and using the scheme illustrated below,
we are given access to a whole plane of numbers, called the complex numbers.
This plane is commonly referred to as the complex plane.

the complex numbers,
C

More precisely, the complex numbers, denoted by C, are numbers that can be
expressed in the form

a+ bi ,

where a and b are real numbers, and i :=
√
−1. Remember that the symbol

‘:=’ is used to emphasize that this is the definition of i.

The complex numbers include all the real numbers (just take b = 0), in addition
to many numbers that are not real.

Electrical engineers use the complex numbers in studying current flow, and by
so doing are able to eliminate a great deal of the drudgery involved in analyzing
sinusoidal circuits. However, electrical engineers have to give

√
−1 a different

name, because i is already used to denote current. So they define j :=
√
−1.
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integers The integers are the numbers:

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }

The dots ‘ . . . ’ indicate that the established pattern is to be repeated ad
infinitum. The symbols i, j, k, m and n are often used to denote integers.
For example, when a mathematician says For all n > 1, that mathematician is
allowing the possibility that n is 2 or 100 or 2017, but not 5.2.

rational numbers The rational numbers are those real numbers that can be expressed as a ratio
of integers, with non-zero denominator. The word ‘ratio’ imbedded in ‘rational’
should help you remember this definition. Thus, 2

3 is a rational number.

Is 5 rational? Certainly: it can be written as 5 = 5
1 = −10

−2 = . . . . Note that

the symbols 5, 5
1 and −10−2 all represent the unique real number 5, but the last

two are more convenient names to use when determining that 5 is a rational
number.

irrational numbers The irrational numbers are those real numbers that are not rational. Thus,
they cannot be expressed as a ratio of integers. The prefix ‘irr’ is commonly
used in English to negate: consider irregular , irreconcilable, irrelevant , and
irresponsible. You might recall from algebra that irrational numbers can alter-
nately be described as the real numbers having infinite, non-repeating decimal
expansions. So—we can’t write an irrational number as a ratio of integers, and
we can’t write it in decimal form. How should we discuss it? Answer: give it a
symbolic name (like π, or e, or

√
2)!

the irrational
number π

The most familiar irrational number is π. The most common approximations
to π are:

π ≈ 22

7
and π ≈ 3.14159

Precisely, π is the ratio of the circumference to diameter of any circle. Here’s
a great elementary school classroom exercise: have students bring in a circular
object. Give them each a piece of string and a ruler. Have them measure the
circumference of the circle and its diameter, then walk to the class computer
and compute:

circumference

diameter

Within measuring error, each student will get a number close to 3.1!

QUICK QUIZ

sample questions

1. According to normal conventions in mathematics, what are the variables in
the equation

Ax2 +Bxy + Cy2 = 0 ?

What are the constants?
2. Solve x2 = 3 taking the universal set to be R. Then, take the universal set

to be the integers.

3. What does is mean to ‘solve’ an equation? (Answer in English.) Give three
solutions of the equation x+ y = 4.

4. Classify each of the sentences

x2 ≥ 0 , x > 0

as (always) true, (always) false, or conditional.

5. List two of the three main uses for variables.
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KEYWORDS

for this section

Conditional sentences, equation, inequality, variable, universal set, constant,
complex numbers, integers, rational numbers, irrational numbers, solution of
an equation in 1, 2, and n variables, satisfying an equation, n-tuple, definition,
theorem.

You should know what letters are commonly used to denote variables and con-
stants. You should also know what letters are commonly used to denote integers.

END-OF-SECTION
EXERCISES

♣ Classify each entry in the list below as: an expression (EXP), or a sentence
(SEN).

♣ Classify the truth value of any entry that is a sentence: (always) TRUE (T),
(always) FALSE (F), or CONDITIONAL (C).

1. π 2. π > 3

3. π = 3.14 4. i2 + 1 = 0

5. π ≈ 3.14 6. A common rational approximation
to π is 22

7 .

7. π is expressable as a ratio of inte-
gers.

8. The number i satisfies y2 = −1.

9. The equation 3x2 + 2x−
√
x = 0

has three variables.
10. In the equation ax2 + bx+ c = 0,

the variables are a, b, c and x.

11. In this course, the universal set is
assumed to be the real numbers.

12. The 3-tuple (1, 2, 3) is identical to
the 3-tuple (2, 1, 3).

13. x0 − 1 14. (y − z)2 = y2 − z2

♣ Solve each equation, taking the universal set to be:

a) R
b) the rational numbers

c) the integers

15. x3 − 1 = 0 16. x2 = 7

17. (x− 1)(x+ π)(2x− 3) = 0 18. x(x2 − 4)(x2 − 2) = 0

19. The Fundamental Theorem of Algebra tells us that the equation x3 = 1
must have three solutions in C.

a) Plot the points 1, − 1
2 +

√
3
2 i, and − 1

2 −
√
3
2 i in the complex plane.

b) Show that all these complex numbers lies on the circle of radius 1,
centered at the origin. (Hint: use Pythagorean’s Theorem.)

c) Show that all these complex numbers satisfy the equation x3 = 1.

d) Solve x3 − 1 = 0 with universal set C.



1.3 Sets and Set Notation

Introduction In algebra, the word set appears when discussing the solution set of an equation.
There are many other places where sets are important. For example, sets will
be used to simplify our discussion of graphing equations and functions. The
focus of this section is sets, and the notation used in connection with sets.

DEFINITION

sets

well-defined

A set is a well-defined collection of objects. Well-defined means that, given any
object, either the object is in the set, or isn’t in the set.

EXAMPLE

a non-set

“The collection of some people” is not a set. It is not well-defined. To see
this, observe that we cannot definitively answer the question: Is ‘Carol’ in this
collection?

EXAMPLE

a set

“The collection of all irrational numbers with the digit 5 in the 10−2013 slot of
their decimal expansion” is a set. Call it S. Given any number, either it is in
S or it isn’t. For example, 3 isn’t in S, because 3 isn’t irrational. Is π in S ?
This author doesn’t know. But either it does have a digit 5 in the appropriate
slot, or it doesn’t. No other choices are possible.

Thus, to qualify as a set, one need only be certain that any object is either in
the collection, or not. It’s not necessary to know which of these two situations
occurs.

NOTATION

∈ , /∈
The sentence x ∈ S means x is an element of S. It can also be read as:

x is a member of S
x belongs to S
x is in S

The sentence x /∈ S means x is NOT an element of S.

♣ What is the ‘verb’ in the sentence x ∈ S?

NOTATION

set notation
roster ( list) method

The members of a set are often separated by commas, and enclosed in braces
{ }. That is, the elements are listed; this is called the roster or list method.

If the set contains many elements, then it is often convenient to use dots to
continue an established pattern. This is illustrated by the following examples:

EXAMPLE • The set {a, b, c} contains 3 elements, a, b, and c. Roster notation is partic-
ularly useful when a set contains a small finite number of elements.

• The set of counting numbers is {1, 2, 3, . . . }. The dots indicate that the
established pattern continues ad infinitum.

• The set {1, 2, 3, . . . , 100} enumerates the counting numbers between 1 and
100, inclusive.

• Let S = { 1, {1}, { 1, {1}} }. Here, S is a set containing (among other
things) sets. There are three elements in S: 1, {1}, and { 1, {1} }. Thus
it is correct to say: 1 ∈ S, {1} ∈ S, and { 1, {1} } ∈ S .

EXERCISE 1 ♣ Let S = {2, π, {2, π}, {2} }. How many elements does S have? What are
they?

22
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NOTATION

set-builder notation

Even more important for large (usually infinite) sets is the following set-builder
notation:

Let U denote a universal set. The notation

{x ∈ U | some property that x is to satisfy}

is extremely useful in many cases where roster notation fails. Here, the vertical
bar ‘ | ’ is read as such that or with the property that . The set includes all
elements from the universal set that satisfy the stated property.

If the universal set is understood, one can more simply write:

{x | some property that x is to satisfy}

EXAMPLE For example,
{x | x is a counting number and x ≥ 4}

is read as the set of all x such that x is a counting number and x is greater than
or equal to 4.

Another way to denote this set would be {4, 5, 6, . . . }. Yet another way would be
{y | y is an integer and y ≥ 4}. Thus, we see that a given set can be expressed
in different ways.

EXERCISE 2 ♣ 1. Describe the set {−3,−2,−1, 0, 1, 2, 3} in two different ways.

♣ 2. Describe the set {. . . ,−1, 0, 1, 2} in two different ways.

EXAMPLE The set {N | N is a name that begins with C} is read as the set of all N with
the property that N is a name that begins with C . Here, the universal set is
understood to be the set of all possible names. Thus, the name Carol is an
element of this set, but Karol is not. Observe that it would be extremely
difficult to describe this set without set-builder notation.

NOTATION

interval notation

( , ); endpoints
are not included

[ , ]; endpoints
are included

Interval notation is a particularly convenient way to denote intervals of real
numbers.

Recall that the symbol := means equals, by definition. Define

(a, b) := {x ∈ R | a < x < b}
[a, b) := {x ∈ R | a ≤ x < b}
(a, b] := {x ∈ R | a < x ≤ b}

(a,∞) := {x ∈ R | x > a}
(−∞, b] := {x ∈ R | x ≤ b}

Other combinations are possible. Compound inequalities like a < x < b are
investigated in the Algebra Review at the end of this section, and the mathe-
matical word ‘and’ is introduced.

Note how convenient set-builder notation is for these definitions. Observe that:
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• parentheses ( , ) are used when an endpoint is not to be included

• brackets [ , ] are used when an endpoint is to be included

• The symbol ∞ is always used with parentheses. This is because ∞ is not
a real number. It’s more of an idea: given any real number, another real
number can always be found that is greater.

EXERCISE 3 ♣ Use interval notation to describe the sets shown below. (A solid dot indi-
cates that an endpoint is included; a hollow dot indicates that an endpoint is
excluded.)

(a, b) has two
different meanings

The careful reader will observe that the notation (a, b) can be used to denote
an interval , or an ordered pair . Context will determine which interpretation is
correct.

NOTATION

empty set

∅

There is exactly one set containing no elements. It is called the empty set , and
is denoted by either { } or ∅.

Computer scientists use the symbol ∅ for the number zero, to distinguish it from
the capital letter ‘oh’. So if you are communicating with a computer scientist,
it is probably better to use { } to denote the empty set.

capital letters
are used to denote sets

Capital letters, like A, B, S and Γ, are commonly used to denote sets.

Now, we are ready to define the solution set of an equation.

DEFINITION

solution set
of an equation

solving an equation

The solution set of an equation is the set of all its solutions. To solve an
equation means to find its solution set (i.e., find all solutions.)

EXAMPLE

solution sets

the quadratic formula

• The solution set of x2 = 4 is {2,−2}.

• The solution set of ax2 + bx+ c = 0 for a 6= 0 is:{
−b+

√
b2 − 4ac

2a
,
−b−

√
b2 − 4ac

2a

}

You learned this when you studied the quadratic formula in algebra.

♣ What is (are) the variable(s) in the equation ax2 + bx+ c = 0? Judging
by the solution set given above, what is the universal set?

• The solution set of x− 1 = 0 is {1}.

• The solution set of x = 0 is {0}.
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EXERCISE 4 ♣ 1. Based on the definition of the solution set of an equation, write a precise
definition for the solution set of an inequality.

♣ 2. Solve the following simple inequalities in one variable. Where possible,
use interval notation for the solution sets.

a) x > 4

b) y2 ≥ 0

c) t2 < 0

d) |x| ≤ 1

♣ 3. How many solutions do inequalities usually have?

Now comes the $100 question: How do we go about finding the solution set of
a given equation (or inequality)? This is the topic of the next section.

the mathematical
word ‘and’

Be sure to read the algebra review that follows, since the precise meaning of
the mathematical word ‘and’ is introduced.

ALGEBRA REVIEW
compound inequalities, mathematical word ‘and’, integers, rational numbers

compound inequalities A sentence like a < x < b that uses more than one inequality symbol is called
a compound inequality .

The compound inequality a < x < b is really just a shorthand for two simple
inequalities, connected by the mathematical word ‘AND’:

a < x AND x < b

Thus, to truly understand compound inequalities, one must understand the
mathematical word ‘and’.

the mathematical
word ‘and’

Let P and Q denote mathematical sentences that are either true or false. For
example, P might be the true sentence ‘3 > 1’. Similarly, Q could be the false
sentence ‘5 < 5’. The mathematical word ‘AND’ gives a way to combine the
sentences P and Q into a ‘bigger’ mathematical sentence.

By definition, a mathematical sentence of the form

P AND Q

is true exactly when P is true and Q is true.

For example, the mathematical sentence ‘1 < 3 and 3 < 5’ is true, since both
1 < 3 and 3 < 5 are true.

However, the sentence ‘3 < 3 and 3 < 5’ is false, because 3 < 3 is false.
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truth table
for ‘P and Q’

There is a more precise way to discuss the mathematical sentence ‘P and Q’.
Note that the truth value (true or false) of this sentence depends on the truth
values of P and Q. P can be true or false. Q can be true or false. Together,
there are four possible combinations of truth values, which are summarized in
the truth table below.

This truth table shows that:

• When P is true and Q is true, the sentence ‘P and Q’ is true.

• When P is true and Q is false, the sentence ‘P and Q’ is false.

• When P is false and Q is true, the sentence ‘P and Q’ is false.

• When P is false and Q is false, the sentence ‘P and Q’ is false.

EXERCISE 5 Determine the truth value (T or F) of the following sentences:

♣ 1. π > 3 and |2| = 2

♣ 2. |3− π| > 0 and −32 = −9

♣ 3. 3 ≤ 3 and −2 < −4

♣ 4. 1 ∈ (1, 3) and 1 ∈ [1, 3)

♣ 5. 1 ∈ {x | x < 1} and 1 ∈ { {1} }
Determine the value(s) of x for which each of the following sentences is true;
false. Where possible, use interval notation to express your answer.

♣ 6. x > 0 and x > 2

♣ 7. x > 0 and x < 2

♣ 8. x > 0 and x < −2

return to
compound inequalities

With the precise meaning of ‘and’ now in hand, we can return to a study of
compound inequalities.

For what values of x will the mathematical sentence

a < x AND x < b

be true? Only for values of x for which both a < x (x > a) is true, and x < b
is true. That is, only for the values of x which are greater than a, and (at the
same time) less than b.

The sketches below illustrate this construction for the compound inequality
1 < x < 3.
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EXERCISE 6 ♣ 1. Make a similar sketch to explain the compound inequality:

2 ≤ x < 5

♣ 2. Discuss the meaning of the compound inequality 3 < x < 1. Are there
any choices for x that make this true? Does it make sense to write a < x < b
if a is greater than b?

EXERCISE 7

Z
integers

The symbol Z is frequently used to denote the set of integers, so we can write

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }

The German word for ‘numbers’ is ‘zahlen’, which could explain the choice of
the letter Z.

♣ What are the positive integers? negative? nonnegative? nonpositive? An-
swer using correct set notation. (Hint: The word nonnegative means not neg-
ative. Thus, using interval notation, the nonnegative real numbers are [0,∞).
Figure out what nonpositive means.)

EXERCISE 8

Q (for ‘Quotient’)
rational numbers

The symbol Q is frequently used to denote the set of rational numbers (since
they are Quotients of integers). By long division, an equivalent characterization
of Q is the set of all real numbers with finite or infinite repeating decimal
representations. For example, 1

7 = 0.142857 and 2
5 = 0.4.

♣ 1. Using long division, find the decimal representations of 1
6 , 2

7 and 1
25 .

A rational number is in reduced form if there are no factors common to both
numerator and denominator. For example, 6

8 is not in reduced form, since:

6

8
=

2 · 3
2 · 4

=
3

4

A rational number in reduced form can be expressed as a finite decimal only if
the denominator has no factors other than 2’s and 5’s. For example, 7

400 has a
finite expansion since:

7

400
=

7

2 · 2 · 2 · 2 · 5 · 5
=

7

2 · 2 · 2 · 2 · 5 · 5
· 5 · 5

5 · 5
=

175

104
= 0.0175

♣ 2. Why is it that fractions with only 2’s and 5’s downstairs can be written
as finite decimals? (Study the previous example.)

♣ 3. Decide (without using your calculator) if 3
120 has a finite decimal expan-

sion.

♣ 4. Decide if 41
333 has a finite decimal expansion.

♣ 5. Decide if 10
81 has a finite decimal expansion.

QUICK QUIZ

sample questions

1. T or F: the set { 1 , 2 , {3, 4} } has 4 members.

2. T or F: 1 ∈ (1, 3).

3. T or F: 3 ∈ {t ∈ R | 2 < t < 5}
4. T or F: 3 > 3 and 3 ≤ 3

5. T or F: 3
105 has a finite decimal expansion.
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KEYWORDS

for this section

Sets, well-defined, roster method, set-builder notation, interval notation, empty
set, solution set of an equation, solving an equation, quadratic formula, non-
negative, nonpositive, compound inequality, mathematical word ‘and’.

You should know the symbols ∈, /∈, { }, ∅, :=, Z, and Q. You should know
what types of letters are commonly used to denote sets.

END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a sentence (SEN).

♣ For any sentence, state whether it is TRUE (T), FALSE (F), or CONDI-
TIONAL (C).

1. {3} 2. {1, 2, 3}
3. 1 ∈ {1, 2, 3} 4. 0 ∈ [0, 12 )

5. 0 ∈ (0, 12 ) 6. 1
2 ∈ [0, 59 )

7. x ∈ S 8. 1 /∈ {1, 2, 3}
9. x ∈ {1, 2, 3} 10. 1 ∈ {t | t ≤ 1}
11. {x |x ≥ 1} 12. 1 ∈ { {1} , {1, {1}} }
13. {1} ∈ { {1} , {1, {1}} } 14. x > 1 and x < 1

15. y ≥ 1 and y ≤ 1 16. x ≤ 3 and x > 5

17. |x| ≥ 0 and x2 ≥ 0 18. |x| > 0 and x2 ≥ 0

19. The set { {1} , {1, {2}} } has two elements.

20. The set { {a} , {b, c} } has three elements.

21. The number 3
7 has a finite decimal expansion.

22. The number 7
35 has a finite decimal expansion.



1.4 Mathematical Equivalence

Introduction In this section, the idea of mathematical equivalence is introduced. Whereas
the ‘=’ sign gives us a way to compare mathematical expressions, the idea of
‘being equivalent’ gives us a way to compare mathematical sentences.

a motivating
example

For motivation, consider the two mathematical sentences: ‘2x − 3 = 0’ and
‘x = 3

2 ’. They certainly look different. But in one very important way, they are
the same: no matter what real number is chosen for the variable x, these two
sentences always have the same truth values.

For example, choose x to be 3
2 .

Substitution into ‘2x− 3 = 0’ yields the TRUE sentence ‘2( 3
2 )− 3 = 0’.

Substitution into ‘x = 3
2 ’ yields the TRUE sentence ‘ 32 = 3

2 ’.

Next, choose x to be, say, 5.

Substitution into ‘2x− 3 = 0’ yields the FALSE sentence ‘2(5)− 3 = 0’.

Substitution into ‘x = 3
2 ’ yields the FALSE sentence ‘5 = 3

2 ’.

No matter what real number is chosen for x, these two sentences will ALWAYS
have the same truth values. Indeed, ‘2x− 3 = 0’ is true when x is 3

2 , and false

otherwise. Also, ‘x = 3
2 ’ is true when x is 3

2 , and false otherwise.

sentences that
always have
the same truth values
can be used
interchangeably

When two mathematical sentences always have the same truth values, then they
can be used interchangeably, and a mathematician will use whichever sentence
is easiest for a given situation.

The mathematical verb that is used to compare sentences with the same truth
values is: ‘is equivalent to’. Thus, it is correct to say that ‘2x − 3 = 0 is
equivalent to x = 3

2 ’.

the ‘implied domain’
of a sentence

Sentences naturally have a largest set of ‘choices’ for which the sentence is
defined.

For example, the sentence ‘ 1x = 1’ is only defined for nonzero real numbers,
since division by zero is undefined.

The sentence ‘
√
x = 3’ is only defined for nonnegative real numbers.

The largest set of choices for which a sentence is defined will be referred to as the
‘implied domain’ of the sentence, or more simply, the ‘domain’ of the sentence.
(Something is ‘implied’ if it is not explicitly stated, but merely understood.)
Remember that, in this course, we are only ‘choosing from’ the real numbers.
This idea is explored further in the next example.

29
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EXAMPLE

finding
‘implied domains’
of sentences

Problem: Find the implied domain for each of the following sentences:

1. 1
x(y−1) = 2

2.
√
x > 0

3. 3
√
x = −2

4. ax + by + c = 0

Solution:

1. The expression ‘ 1
x(y−1) ’ is not defined if x is 0, or if y = 1. Thus, the implied

domain of the sentence is {(x, y) |x 6= 0 and y 6= 1}.
2. The expression ‘

√
x’ is only defined for nonnegative real numbers x. Thus,

the implied domain of the sentence is {x |x ≥ 0}.
3. The expression ‘ 3

√
x’ makes sense for all real numbers x. The implied domain

of the sentence is R.

4. In the sentence ‘ax + by + c = 0’, convention dictates that only the x and
y are variables; a, b and c are constants. This sentence is defined for all real
numbers x and y; thus, the implied domain is {(x, y) |x ∈ R and y ∈ R}.

EXERCISE 1

finding
implied
domains

Find the implied domain for each sentence. Write your answers using correct
set notation.

♣ 1. x
y = 1

♣ 2. ax + b = 0

♣ 3.
√
x2 − 4 = 0

♣ 4.
√
x3 = 2

♣ 5. 4
√
xy − x = y − 5. (Here, you may want to merely shade the allowable

choices for (x, y) in the xy-plane.)

DEFINITION

equivalent sentences

Two mathematical sentences (with the same domains) are equivalent if they
always have precisely the same truth values. That is, no matter what choice
of variable(s) is made from the domain, if one sentence is true, so is the other;
and if one sentence is false, so is the other.

EXAMPLE

equivalent
sentences

The sentences x+ 1 = 0 and x = −1 are equivalent. Each sentence has domain
R, because each is defined for all real numbers.

The sentence ‘x + 1 = 0’ is true exactly when x is −1, and false otherwise.

The sentence ‘x = −1’ is true exactly when x is −1, and false otherwise.

the symbol
‘⇐⇒ ’

The symbol ‘ ⇐⇒ ’ is used by mathematicians to say that two sentences are
equivalent. Thus, the sentence

x + 1 = 0 ⇐⇒ x = −1

(read as ‘x + 1 = 0’ is equivalent to ‘x = −1’) means that the two component
sentences being compared always have the same truth values.
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FF Experienced mathematicians realize that the sentence

x + 1 = 0 ⇐⇒ x = −1

is really an implicit generalization:

For all x, x + 1 = 0 ⇐⇒ x = −1 .

The quantifier ‘For all’ is addressed later on in the text.

The precise definition of the connective ‘ ⇐⇒ ’ is given by the following truth
table:

determining if
two sentences
are equivalent,
by comparing their
solution sets

Suppose that two sentences have the same domains. If these two sentences
have the same solution sets, then they must be TRUE at exactly the same
time. Therefore, they must also be FALSE at exactly the same time.

This observation allows us to determine if two sentences (with the same domain)
are equivalent by comparing their solution sets.

EXAMPLE

sentences that are
NOT equivalent

The equations x2 = 9 and x = 3 are not equivalent. (Remember that sentences
using the verb ‘=’ are called equations.) They both have domain R, since both
are defined for all real numbers. However, the first has solution set {3,−3},
whereas the second has solution set {3}.
That is, choose x to be −3. For this choice, the sentence ‘x2 = 9’ becomes
‘(−3)2 = 9’, which is TRUE; whereas the sentence ‘x = 3’ becomes ‘−3 = 3’,
which is FALSE. The sentences do NOT always have the same truth value.
They CANNOT be used interchangeably.

showing that
two sentences
are NOT equivalent

The previous example points out that to show that two sentences are NOT
equivalent, we need only exhibit ONE choice of variable(s) for which the sen-
tences have different truth values.

For example, the equations ‘x = 0’ and ‘x(x − 1) = 0’ are NOT equivalent.
Choosing x to be 1, the first sentence is false, but the second is true.

EXAMPLE
sentences with
different
domains

The sentences ‘ 1x = 1’ and ‘x = 1’ have different domains. The first is defined
only for nonzero real numbers; the second for all real numbers.

However, these sentences ARE very much alike: the first is undefined when x
is 0, true when x is 1, and false otherwise. The second is true when x is 1,
and false otherwise. As long as we restrict ourselves to choices for x for which
BOTH sentences make sense, then they do act exactly the same.

For now, however, we will only compare sentences that have the SAME domains.
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EXERCISE 2 Check that each sentence in a given pair has the same implied domain. Then,
decide if the sentences are equivalent, or not.

♣ 1. 2x− 4 = 0, 3x− 6 = 0

♣ 2. x2 − 16 = 0, x = 4

♣ 3. |x| = 3, x = 3

♣ 4. |x| = 3, ‘x = 3 and x = −3’ (Careful!)

♣ 5. x > 0, 2x > 0

♣ 6. x > 0, −x < 0

♣ 7. x2 ≥ 0, x ≥ 0

♣ 8. 1 < x ≤ 3, ‘x > 1 and x ≤ 3’

EXAMPLE

solving by inspection

The equations 2x + 3 = 0 and x = − 3
2 are equivalent; they have the same

domains, and the same solution sets. Note that the second equation is ‘simpler’
than the first, in the sense that it can be solved ‘by inspection’ . That is, looking
at the equation x = − 3

2 , it is immediate what makes it true: there is only one

real number that is equal to − 3
2 .

EXERCISE 3 Which of the following sentences (if any) would you say can be solved ‘by
inspection’?

♣ 1. 7x− 3 = 0

♣ 2. x2 ≥ 0

♣ 3. (x + 1)2 ≥ 0

♣ 4. x = −0.2

♣ 5. x < 0

♣ 6. x3 < 0

solving
an equation

The goal in solving an equation is to transform the original (harder) equation
into an equivalent one that can be solved easily. However, in this “transforming”
process, we must be sure that we do not change the solution set! Thus we are
interested in answering the question: What can be done to an equation that does
not alter its solution set? The next two theorems answer this question:

THEOREM
(Form A)

Let a, b and c be real numbers. Then:

a = b ⇐⇒ a + c = b + c

If c 6= 0, then:
a = b ⇐⇒ ac = bc

THEOREM
(Form B)

Adding the same number to both sides of an equation does not change its
solution set.

Subtracting the same number from both sides of an equation does not change
its solution set.

Multiplying both sides of an equation by any nonzero number does not change
its solution set.

Dividing both sides of an equation by any nonzero number does not change its
solution set.



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 33

interpreting
this theorem

Both of these theorems say exactly the same thing. Form A is the way a
mathematician would give the answer, and this is the form that would appear
in most textbooks.

Form B is the translation of Form A that an instructor makes so that the
students can understand it. Most beginning students have absolutely no idea
what Form A is saying, because they don’t understand the language in which
it is expressed.

Most students will have relatively few problems with Form B, because it tells
them what they can do. “You can add the same number to both sides of an
equation” gives the student something that they can do.

On the contrary, Form A is just a statement of fact. Most students don’t
recognize Form A as telling them what they can do. But it does. Facts can tell
you what to do, once you learn to make the correct translation.

good reference
material

Warren W. Esty of Montana State University has written a delightful text
entitled The Language of Mathematics, that directly addresses student
difficulties with the language of mathematics. It is highly recommended reading
for students of mathematics at all levels.

how to translate
Form A

So how is the student to translate Form A?

The first sentence says Let a, b and c be real numbers. This sentence tells
the reader that the universal set for the variables a, b and c is R: that is,
until otherwise notified, when the reader sees the symbols a, b and c, they are
assumed to represent real numbers.

CAUTION: Just because the symbol a is different from the symbol b does not
mean that our choice for a must be different than the choice for b! The variable
a can be any real number; the variable b can be any real number. If desired,
we can choose both to be, say, 2.

Next comes a statement that two sentences are equivalent: a = b is equivalent
to a + c = b + c. This says that, no matter what real numbers are represented
by a, b and c, the sentence a = b will have the same truth value as the sentence
a + c = b + c.

For example, suppose that we make the choices a = 3, b = 3 and c = 4.2. In
this case the sentence ‘a = b’ becomes ‘3 = 3’, which is true. The sentence
‘a + c = b + c’ becomes ‘3 + 4.2 = 3 + 4.2’, which is also true.

As a second example, suppose that a = 3, b = 2 and c = −1. Then the sentence
‘a = b’ becomes ‘3 = 2’, which is false. The sentence ‘a + c = b + c’ becomes
‘3 + (−1) = 2 + (−1)’, which is also false.

Now we can rephrase the sentence:

a = b ⇐⇒ a + c = b + c

(Note that this entire display is a mathematical sentence, which compares the
‘smaller’ mathematical sentences a = b and a + c = b + c, telling us that they
always have the same truth value, and hence can be used interchangeably.)

This FACT tells us that we never change the truth of an equation by adding
the same number to both sides. In other words, adding the same number to
both sides of an equation doesn’t change its solution set.
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subtraction is
a special kind
of addition

But what about subtraction? Does the sentence

a = b ⇐⇒ a + c = b + c

also tell us that we can subtract the same number from both sides of an equa-
tion? Of course! Subtraction is just a special kind of addition:

x− y := x + (−y)

To subtract a number means to add its opposite. That is, to subtract y means
to add −y. Notice that the left-hand side ‘x − y’ of the sentence illustrates a
pattern; the right-hand side ‘x + (−y)’ tells us what to do with this pattern.

By using the language of mathematics, we get two for the price of one: one
mathematical sentence has told us that both adding and subtracting the same
number to (from) both sides of an equation doesn’t change its solution set.

EXERCISE 4 ♣ 1. What is a theorem?

♣ 2. Discuss the meaning of this mathematical theorem:

For all real numbers x, y and z:

x = y ⇐⇒ x + z = y + z

If we choose x = 3, y = 4 and z = 5, what is this theorem telling us?

♣ 3. Does this ‘theorem’ make sense:

For all real numbers a, b and c:

x = y ⇐⇒ x + z = y + z

Why or why not?

Continuing our translation of Form A, we come to the sentence:

If c is not equal to zero, then:

a = b ⇐⇒ ac = bc

The first part of the sentence informs us that the universal set for c has changed:
now, whenever the reader sees the variable c, is it assumed to be a nonzero real
number. But as long as c is nonzero, the sentences ‘a = b’ and ‘ac = bc’ will
always have the same truth values. In particular, they’re both true at exactly
the same times. Thus, multiplying both sides of an equation by a nonzero
number won’t change its solution set.

EXAMPLE For example, take a = b = 7 and c = −2. Then the sentence ‘a = b’ becomes
‘7 = 7’, which is true. The sentence ‘ac = bc’ becomes ‘(7)(−2) = (7)(−2)’,
which is also true.

If we take a = 0, b = −7 and c = 3, then the sentence ‘a = b’ becomes ‘0 = −7’,
which is false. Also, ‘ac = bc’ becomes ‘(0)(3) = (−7)(3)’, which is also false.
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division is
a special kind
of multiplication

But what about division? Providing c 6= 0, does the sentence

a = b ⇐⇒ ac = bc

tell us that we can divide both sides of an equation by the same nonzero number?
Of course! Division is just a special type of multiplication: for y 6= 0,

x

y
:= x · 1

y

To divide by y means to multiply by the reciprocal of y. Again, we get two for
one.

EXERCISE 5 Consider this theorem:

For all real numbers a, b, and c :

a < b ⇐⇒ a + c < b + c

♣ 1. What is this theorem telling you that you can do? Answer in English.

♣ 2. What is the theorem telling you when a = 1, b = 2 and c = 3?

♣ 3. What is the theorem telling you when a = 2, b = 1 and c = 3?

♣ 4. How might an algebra instructor ‘translate’ this theorem for the stu-
dents?

EXERCISE 6 Consider this theorem:

For all real numbers a and b, and for c < 0 :

a < b ⇐⇒ ac > bc

♣ 1. What is this theorem telling you that you can do?

♣ 2. How might an algebra instructor ‘translate’ this theorem for the stu-
dents?

♣ 3. Write a theorem, the way a mathematician would, that tells you that
multiplying both sides of an inequality (using ‘<’) by a positive number
gives an equivalent inequality in the same direction.

EXAMPLE The next example is extremely important . It illustrates the basic procedure
used in solving a (simple) equation. It should seem trivial to you—but make
sure you understand why you’re doing what you’re doing.

Problem: Solve the equation −3x + 5 = 2.

Solution: Find an equivalent equation that can be solved by inspection. That
is, transform the original equation into an equivalent one of the form x =
some number .
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−3x + 5 = 2 Begin with the original equation.

(−3x + 5)− 5 = 2− 5 Isolate the x term by subtracting 5 from
both sides. By the theorem, this does not
change the solution set.

−3x

−3
=
−3

−3
Divide both sides by −3. By the theorem,
this does not change the solution set.

x = 1 The result is an equivalent equation that
can be solved by inspection.

Since the solution sets of x = 1 and
−3x + 5 = 2 are the same, the solution
set of −3x + 5 = 2 is {1}.

⇐⇒ is implicit In practice, the solution to this problem would be written down as follows,
merely as a list of equations:

−3x + 5 = 2

−3x = −3

x = 1

Each line is a complete mathematical sentence. However, the sentences aren’t
put together into a cohesive paragraph. The reader is left to guess what the
connection is between, say, −3x = −3 and x = 1 (they are equivalent).

NOTATION

⇐⇒ is explicit

A much better way to write down the solution is:

−3x + 5 = 2 ⇐⇒ −3x = −3 ⇐⇒ x = 1

or

−3x + 5 = 2 ⇐⇒ −3x = −3

⇐⇒ x = 1

Now, the relationship between the component sentences is clear: they are equiv-
alent. Since we know what makes x = 1 true, we also know what makes
−3x + 5 = 2 true. Here, the sentences have been combined into a cohesive
mathematical paragraph.

The latter form

−3x + 5 = 2 ⇐⇒ −3x = −3

⇐⇒ x = 1

is particularly nice, because the original equation −3x+5 = 2 stands out at the
top of the left-hand column, and the much simpler equivalent equation x = 1
stands out at the bottom of the right-hand column.

This form can be ‘annotated’ easily as follows:

−3x + 5 = 2 ⇐⇒ −3x = −3 (subtract 5)

⇐⇒ x = 1 (divide by −3) (*)

YOU WILL BE EXPECTED TO WRITE COMPLETE AND CORRECT
MATHEMATICAL PARAGRAPHS IN THIS COURSE.
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EXERCISE 7 ♣ Solve the equation 3x − 7 = 1. Be sure to write a complete mathematical
paragraph. Tell what you’re doing in each step of your solution. Use the
form illustrated in (*).

EXERCISE 8 ♣ Solve the inequality 3x− 7 < 1. Be sure to write a complete mathematical
paragraph. Tell what you’re doing in each step of your solution. Use the
form illustrated in (*).

INCORRECT notation It is incorrect and completely unacceptable to write:

−3x + 5 = 2 = −3x = −3

= x = −1

Taken literally, this says that 2 is equal to −3 which is equal to −1. Absurd.

Remember:

• The equals sign ‘=’ is used to compare expressions.

• The ‘is equivalent to’ sign ‘⇐⇒ ’ is used to compare sentences.

What goes wrong
if c is zero?

Note that multiplying by zero can change the truth value of a sentence. For
example, the equation 3 = 5 is false, but the equation 3 · 0 = 5 · 0 is true.
Therefore, multiplying both sides of an equation by zero does not necessarily
yield an equivalent equation, and therefore is not allowed.

EXAMPLE

adding a solution

For example, consider the equation x = 2. It has solution set {2}. Multiplying
both sides by x yields the new equation x2 = 2x, which has solution set {0, 2}.
Thus, the equations

x = 2 and x2 = 2x

are NOT equivalent, since they have different solution sets.

What happened? Well, as long as x is nonzero, multiplication by x is just
multiplication by a nonzero number, which doesn’t alter the solution set. But
when x is zero, multiplication by x took us from the false statement 0 = 2 to
the true statement 0 = 0.

Thus, multiplying by a variable expression may ADD a solution. Adding a solu-
tion isn’t really too serious, providing that you check your ‘potential’ solutions
into the original equation at the final step.

EXAMPLE

losing a solution

More serious is this next situation. Begin with x2 = 2x and divide both sides
by x, yielding the new equation x = 2. The equations are not equivalent and
a solution has been lost . If we separately investigate the situation when x is
zero, it will be discovered that 0 is also a solution of the original equation. If
we neglect to do this, the solution 0 is lost forever.

EXERCISE 9

contradiction

♣ Solve the equation 3(x + 2) = (3x + 1) + 4. Show that this equation is
equivalent to the equation 6 = 5, which is never true. This type of equation,
which is always false, is sometimes referred to as a contradiction.

EXERCISE 10

identity

♣ Solve the equation 2x− (7−x) = x+ 1− 2(4−x). Show that this equation
is equivalent to the equation 0 = 0, which is true for all values of x. This
type of equation is sometimes referred to as an identity .
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QUICK QUIZ

sample questions

1. T or F: the sentences ‘x = 2’ and ‘x2 = 4’ are equivalent. Justify your
answer.

2. Write a theorem, the way a mathematician would, that says that adding
the same number to both sides of an equation does not change its solution
set.

3. Write a theorem, the way a mathematician would, that says that adding
the same number to both sides of an inequality (using ‘>’) does not change
its solution set.

4. What is the ‘implied domain’ of the sentence ‘ 1
(x−3)y = 2’? Use correct set

notation for your answer.

5. Fill in the blank: the goal in solving an equation is to transform it into an
one that can be easily solved.

6. Fill in the blanks:

The ‘=’ sign is used to compare .

The ‘⇐⇒ ’ sign is used to compare .

KEYWORDS

for this section

Equivalent sentences, implied domain for a sentence, solving by inspection, gen-
eral approach for solving an equation, subtraction is a special kind of addition,
division is a special kind of multiplication, multiplying by a variable, dividing
by a variable, contradiction, identity.

You should be familiar with the notation ⇐⇒ and be able to use it correctly
when solving equations and inequalities.

END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a sentence (SEN).

♣ For any sentence, state whether it is TRUE (T), FALSE (F), or CONDI-
TIONAL (C). The first one is done for you.

1. x = 3 ⇐⇒ 2x − 6 = 0; SEN, T. Both sentences have the same implied
domain, and the same solution sets.

2. x = 4

3. x = 4 ⇐⇒ 4− x = 0

4. 1
x = 3 ⇐⇒ 1

3x = 1

5. |y| = 0 ⇐⇒ y = 0

6. |y| = 1 ⇐⇒ y = 1

7. y3

8. y3 = 8 ⇐⇒ y = 2

9. y3 + 8 = 0 ⇐⇒ y + 2 = 0

10. x(x− 1) = 0 ⇐⇒ x− 1 = 0

♣ Using the theorems in this section, solve the following equations/inequalities.
BE SURE TO WRITE COMPLETE AND CORRECT MATHEMATICAL
SENTENCES.

11. 5x− 7 = 3

12. 5− 3y = 9

13. 3x < x− 11

14. 3t + 7 ≥ −2



1.5 Graphs

graphs The word ‘graph’ always refers to some pictorial representation of information.
Graphs are particularly helpful when there is a large amount of information
(often infinite) to be understood.

In this section, we study graphs. The section is rather long, but most of the
material should be review.

the graph
of a sentence

The graph of a sentence (equation/inequality) is just a picture of its solution
set. More correctly, the phrase usually refers to a partial picture of the solution
set. The tool used to show this ‘picture’ depends on the nature of the solution
set; whether it is a collection of numbers, or pairs of numbers, or, say, triples of
numbers.

graphing sentences
in one variable;
use the
real number line

Suppose you are asked to graph the equation in one variable, x = 2. For any
such equation in one variable, the solution set is a collection of numbers, and
the real number line can be used to display these numbers. Here, the solution
set is {2}, since 2 is the only real number that is equal to 2. The graph is very
uninteresting: one dot (at 2) on the real number line.

The graph of x = 2, viewed as an equation in one variable

You’ll rarely be asked to graph simple equations in one variable like this: these
types of equations usually have a small finite number of solutions, and a picture
is not needed to understand this information.

EXERCISE 1

graphing
sentences in
one variable

Graph the following sentences in one variable:

♣ 1. 3x = x+ x+ x

♣ 2. x2 < 0

♣ 3. x2 ≤ 0

♣ 4. (x− 3)(x+ 1) = 0 (see Algebra Review—zero factor law)

♣ 5. 2x− 1 = 7

♣ 6. x2 − 4x = 5 (see Algebra Review—zero factor law)

♣ 7. |x| = 2

♣ 8. |t| < 2 and t ≥ 1

graphing sentences
in two variables;
use the
rectangular
coordinate system

The graphs of sentences in two variables are usually much more interesting,
because such sentences usually have an infinite number of members in their
solution set.

For example, consider the two-variable equation y = x. Remember that a
solution of this equation consists of a pair of numbers—a choice for x and a
choice for y—that makes the equation true. Once a choice is made for x, the
choice for y is uniquely determined, since y must equal x.

39
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Here are some of the ordered pairs in the solution set of this equation: (0, 0),
(π, π), (− 2

3 ,−
2
3 ), and (−2017.1,−2017.1). It is of course impossible to list

everything in the solution set, but the solution set can be described compactly
using set-builder notation. The solution set of the equation y = x is:

{(x, y) | y = x} = {(x, x) | x ∈ R}

The graph of this equation is then a (partial) ‘picture’ of all these ordered pairs.
But how can we ‘picture’ an ordered pair? Answer: by using the rectangular
coordinate system, discussed next.

DEFINITION

the rectangular
coordinate system

origin

x-axis

y-axis

The device used for graphically representing ordered pairs is called the rect-
angular coordinate system, also commonly referred to as the Cartesian plane
(named after the French mathematician René Descartes, 1596–1650). It is the
plane formed by two intersecting perpendicular lines. Their point of intersec-
tion is called the origin. By convention, the horizontal line is called the x-axis
and the vertical line the y-axis, with positive directions to the right and up,
respectively. (Thus, yet another name commonly used for the Cartesian plane
is the xy-plane.)

quadrant I
quadrant II
quadrant III
quadrant IV

The xy-plane is naturally divided into four quadrants, which are numbered as
follows:

• quadrant I = {(x, y) | x > 0 and y > 0}
• quadrant II = {(x, y) | x < 0 and y > 0}
• quadrant III = {(x, y) | x < 0 and y < 0}
• quadrant IV = {(x, y) | x > 0 and y < 0}
Observe that the axes are not part of any quadrant.

every ordered pair
corresponds to a
unique point
in the xy-plane

Every ordered pair (a, b) corresponds to a unique point in the xy-plane in the
following way:

• go to ‘a’ on the x-axis; draw a vertical line through this point;

• go to ‘b’ on the y-axis; draw a horizontal line through this point;

• the unique point where these two lines intersect is the point associated with
the ordered pair (a, b).

Here’s a slightly less precise, but perhaps easier way to find the point (a, b):
start at the origin, move ‘a’ units in the x-direction, then ‘b’ units in the y-
direction. (If a is positive, move to the right; if a is negative, move to the left.
If b is positive, move up; if b is negative, move down.)

♣ Could we say this instead? Start at the origin, move ‘b’ units in the y-
direction, then ‘a’ units in the x direction.
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we will
freely interchange
the words ‘point’
and ‘ordered pair’

Observe that every ordered pair corresponds to precisely one point in the plane;
and every point in the plane corresponds to precisely one ordered pair. Thus, we
can freely interchange the words ‘ordered pair’ and ‘point’ without confusion.

Why the name
‘ordered pair’?

NOTE: If x 6= y, then (x, y) is a different point than (y, x). Hence the name
‘ordered pair’ !

EXERCISE 2 ♣ 1. Plot the points (1, 3), (−1,−5), (0,−π), (−
√

2, 0) on a rectangular
coordinate system. What quadrant (if any) is each point in?

♣ 2. Plot several points in the solution set of the equation y = x. See a
pattern forming?

DEFINITION

graph of a
sentence in 2 variables

The graph of a sentence in 2 variables is a (partial) picture of its solution set;
that is, it is the set of all ordered pairs (x, y) that satisfy the sentence, displayed
on a rectangular coordinate system.

A graph portrays an infinite number of solution points in an organized, easy-
to-analyze fashion. In many cases, one of the variables is allowed to range over
an infinite interval of real numbers, so that it is impossible to show the entire
graph. In such instances, one usually shows a representative part of the graph,
or enough of the graph to capture everything of interest. This is illustrated in
the next examples.

EXAMPLE

graph of x = 2,
viewed as an
equation in
two variables, x+ 0y = 2

Suppose you are asked to graph the equation x = 2. Out of context, you should
rightfully be confused: are you to treat this as an equation in one variable (x),
or two variables (x and y, say x + 0y = 2)? The answer is important. As was
seen earlier, if x = 2 is treated as an equation in one variable, the graph is
boring—a single point at 2 on the real number line. However, treated as an
equation in two variables, its graph is:

{(x, y) | x = 2, y ∈ R} = {(2, y) | y ∈ R}

Thus, the graph is the vertical line shown below.

Note: A comma is sometimes used in mathematics to mean the mathematical
word ‘AND’. Thus:

{(x, y) | x = 2, y ∈ R} = {(x, y) | x = 2 AND y ∈ R}

The graph of x = 2, viewed as an equation in two variables.
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EXAMPLE

graphing a simple
equation in
2 variables

Problem: Graph the equation y − 1 =
√
x.

Solution: Observe that here, y can easily be solved for x by adding 1 to both
sides and obtaining the equivalent equation y =

√
x + 1. Thus, it is easy to

choose (allowable) values for x, and compute the corresponding value of y:

x y = 1 +
√
x

0 1
4 3
9 4
16 5
25 6

Note that x was chosen so that the corresponding y values were easy to compute.
Plotting these points appears to illustrate a pattern; the graph is completed by
drawing a smooth curve through the sample points. (Does this last step make
you a bit uneasy? More on this in a moment.) Observe that the resulting graph
is only a partial picture of all the ordered pairs that make the equation true.

EXERCISE 3 ♣ Graph the equation x − 1 =
√
y. Compare your graph with the one in the

previous example.
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EXAMPLE

graphing an
inequality in
2 variables

Problem: Graph the compound inequality 1 < x ≤ 3, viewed as an inequality
in 2 variables (say, 1 < x+ 0y ≤ 3).

Solution: The solution set is:

{(x, y) | 1 < x ≤ 3, y ∈ R}

Thus, we seek all points with x values between 1 and 3 (not including 1, in-
cluding 3). The points can have any y-values.

The graph is shown below. Note that a solid line means that points are to be
included; a dashed line means that points are not to be included.

EXAMPLE

graphing an
inequality in
2 variables

Problem: Graph the inequality y > x.

Solution: The solution set is:

{(x, y) |x ∈ R, y > x}

Thus, we seek all points (x, y) with the property that their y-value is greater
than their x-value. For example, the point (1, 1.1) satisfies this property, but
the point (−3,−3.1) does not.

The easiest way to obtain this graph is to first graph the boundary, y = x. We
don’t want these points, whose y-values equal their x-values, so the line y = x
is dashed.

Now, choose any value of x. Corresponding to this x-value, we want all points
with y-values greater than x. Thus, we want the points that lie above the line.
Letting x vary over all real numbers, the desired graph consists of all the points
above the line y = x.
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general scheme for
graphing an equation
in 2 variables

Given an equation in 2 variables, our basic goal is to gain a good understanding
of what the solution pairs look like. If we are able to solve the equation for one
of the variables, say y, in terms of the remaining variable—that is, get it in the
form

y = < stuff involving x >

then solution points are easily generated: merely choose allowable values for x,
and calculate the corresponding values of y.

conjecture If these points are plotted, a pattern may be displayed, leading to a conjecture
(educated guess) about the form of the graph. However, plotting points is
extremely inefficient and not foolproof, and should only be used in connection
with other methods. Plotting several points, however, is always a good way to
begin: it can help to confirm one’s belief about the nature of a graph, or catch
mistakes.

classifying an equation One common approach to graphing an equation is to classify the equation as
being of a certain type. Then, use information about this known type to graph
the equation. The approach is illustrated in the next example.

EXAMPLE

lines;

ax+ by = c

In algebra, you learned that every equation of the form ax+by = c, when a and
b are not both zero, graphs as a line in the xy-plane. This class of equations
(one for every allowable choice of a, b and c) is known as the linear equations
in x and y. Once an equation has been identified as linear, only two points
need to be plotted to obtain the graph. Or, one can rewrite the equation in an
equivalent form that is easier to work with.

For example, consider the equation y+2x = 1. This is equivalent to y = −2x+1,
which is now in slope-intercept form, y = mx+ b (see Algebra Review—lines).
Thus, one can ‘read off’ that the line crosses the y-axis at 1, and has a slope of
−2 = −2

1 = rise
run . Using this information, the line is easily graphed.

EXERCISE 4 ♣ 1. Graph the equation in two variables, x− 3y + 5 = 0.

♣ 2. Graph y = 3, viewed as an equation in two variables.

♣ 3. Graph |y| > 2, viewed as an equation in two variables.

♣ 4. Graph y < −x .

♣ 5. Think about what would be a reasonable way to ‘picture’ ordered triples
(x, y, z) of real numbers. Then, what would the graph of x = 2 look like,
viewed as an equation in three variables, x+ 0y + 0z = 2?

using calculus
to graph

The techniques of calculus give us extremely powerful tools for graphing many
equations in 2 variables. These techniques will be discussed later on in this
text.
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common graphs
that you should know

You should be familiar with all the following common graphs:

common variations
on these graphs

Once the shapes of these basic graphs are known, it is easy to obtain some slight
modifications. For example, consider the graph of y = x2 − 50. One must form
a picture of its solution set:

{(x, y) | y = x2 − 50} = {(x, x2 − 50) | x ∈ R}

How does this relate to the graph of y = x2, whose solution set is

{(x, x2) | x ∈ R} ?

Each y-value has been reduced by 50; hence the graph of y = x2 must be shifted
down 50 units to obtain the graph of y = x2 − 50.
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EXAMPLE

‘building up’
a graph from
simpler pieces

The sequence of graphs below illustrates how one can easily obtain the graph
of y = −x3 + 400.

EXERCISE 5 Graph the following equations, by building them up from simpler pieces.

♣ 1. y = −x2 + 1

♣ 2. |x|+ y = 3

♣ 3.
√
x− 4 + y = 0

ALGEBRA REVIEW
zero factor law, mathematical word ‘or’, lines

THEOREM

the zero factor law

THEOREM (The Zero Factor Law). For all real numbers a and b :

ab = 0 ⇐⇒ a = 0 or b = 0

translation of
the ‘zero factor law’

Here is how an algebra instructor might translate this theorem for students:
Whenever a product of real numbers equals zero, at least one of the factors
must be zero.

F The theorem actually says more than this, but the instructor is paraphrasing
the most useful part of the result.

One goal of this course is that you become able to do the ‘translating’ yourself.
To this end, you must first understand the meaning of the mathematical word
‘or’.
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the mathematical
word ‘or’

By definition, a mathematical sentence of the form

A or B

is true when A is true, or B is true, or BOTH A and B are true.

This information is summarized in the truth table below:

EXAMPLE

truth of
‘or’ sentences

For example, the mathematical sentence

2 = 1 or 3 = 2 + 1

is true because ‘3 = 2 + 1’ is true. The mathematical sentence√
9 = 3 or −32 = 9

is true because ‘
√

9 = 3’ is true (even though ‘−32 = 9’ is false). The mathe-
matical sentence

(−3)2 = −9 or
√

(−4)2 = −4

is false because both component sentences are false.

The sentence ‘x = 3 or x = 5’ is conditional. Its solution set is {3, 5}. For all
other choices of x, it is false.

CAUTION:
the English word ‘or’
versus the
mathematical word ‘or’

CAUTION: there’s a slight difference in the English and mathematical uses of
the word ‘or’.

If you say to a friend, “I’m going to study math or English tonight,” you
probably mean that you’ll study math, or English, but NOT BOTH.

However, when a mathematician makes a true statement ‘A or B’, this means
that A is true, or B is true, or BOTH A and B are true.

EXERCISE 6

the mathematical
word ‘or’

Classify each sentence as (always) TRUE, (always) FALSE, or CONDITIONAL:

♣ 1. 1 < 1 or 1 > 1

♣ 2. 1 ≤ 1 or 1 > 1

♣ 3. |x| > 0 or |x| = 0

♣ 4. x = 3 or x = −3

♣ 5.
√
t2 = t or

√
t2 = −t

return to
the ‘zero factor law’

Now, return to the zero factor law. What is it telling us? The theorem compares
two mathematical sentences: the sentence ‘ab = 0’ and the sentence ‘a = 0 or
b = 0’. Since these two sentences are equivalent, they always have the same
truth values. Therefore, the two sentences can be used interchangeably.

For example, choosing a = 3 and b = 0, the equation ‘ab = 0’ becomes ‘3·0 = 0’,
which is true; and the sentence ‘a = 0 or b = 0’ becomes ‘3 = 0 or 0 = 0’, which
is also true.

♣ What is the theorem telling us if a = 1 and b = 2?
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typical use of
the zero factor law

Here’s how the zero factor law is typically used. Suppose you are asked to solve
the equation x2 − x− 6 = 0. This equation cannot be solved by inspection. So
it is transformed into an equivalent equation that can be solved by inspection,
as follows. First, factor the left-hand side, and then use the zero factor law:

x2 − x− 6 = 0 ⇐⇒ (x− 3)(x+ 2) = 0

⇐⇒ x− 3 = 0 or x+ 2 = 0

⇐⇒ x = 3 or x = −2

Here, the zero factor law was applied with ‘a’ equal to ‘x− 3’ and ‘b’ equal to
‘x + 2’. The last equation can be solved by inspection, and has solution set
{3,−2}. Therefore, the equation x2 − x − 6 = 0 also has solution set {3,−2}
(check this).

EXERCISE 7

using the
zero factor law

Solve the following sentences. Use the zero factor law. Be sure to write complete
mathematical sentences.

♣ 1. x(5x− 3) = 0

♣ 2. x2 − x = 12

♣ 3. (3x− 2)2 − 16 = 0

lines Every line in the plane is uniquely determined by two distinct (different) points
on the line. And every two distinct points uniquely determine a line. The
information on lines included here should be a review; it is merely included for
your convenience.

horizontal and
vertical lines

The points on a horizontal line all have the same y-values; hence horizontal
lines are all of the form y = k, for a real number k.

The points on a vertical line all have the same x-values; hence vertical lines are
all of the form x = k, for a real number k.

EXERCISE 8 Graph each sentence. Interpret each as a sentence in two variables, x and y.

♣ 1. 3x = 4

♣ 2. 5 = 4− y
♣ 3. x = 4 or y = −1

♣ 4. x = 4 and y = −1
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non-vertical,
non-horizontal lines

Non-vertical, non-horizontal lines have a beautiful property: no matter what
two points are chosen on the line, the right triangles formed using the line as the
hypotenuse all have the same angles (see the sketch below). Such triangles are
called similar triangles. By appropriately ‘magnifying’ a triangle (that is, by
multiplying each side by the same number), a triangle can be made to coincide
with any similar triangle. This is illustrated in the sketch below.

slope of a line An important consequence of this fact is that the ratio of ‘rise’ (vertical travel)
over ‘run’ (horizontal travel) in traveling from one point to another on the line,
does NOT depend on which two points are used! This ratio is called the SLOPE
OF THE LINE.

a convenient
formula for
the slope

Letting (x1, y1) and (x2, y2) be any two distinct points on a non-vertical line,
the slope m of the line is found by:

m :=
y2 − y1
x2 − x1

Note that the slope of a horizontal line is zero; the slope of a vertical line is
undefined. ♣ WHY?
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EXAMPLE

finding the slopes
of lines

Problem: Find the slope of the line through the points (−1, 3) and (2,−5).

Solution #1. Letting (x1, y1) = (−1, 3) and (x2, y2) = (2,−5), we get:

m =
−5− 3

2− (−1)
=
−8

3
= −8

3

Solution #2. Letting (x1, y1) = (2,−5) and (x2, y2) = (−1, 3), we get:

m =
3− (−5)

−1− 2
=

8

−3
= −8

3

Solution #3. Traveling from the point (−1, 3) to the point (2,−5) via the rules
‘rise first, then run’, we obtain:

m =
‘down 8’

‘right 3’
=
−8

3
= −8

3

Solution #4. Traveling from the point (2,−5) to the point (−1, 3) via the rules
‘rise first, then run’, we obtain:

m =
‘up 8’

‘left 3’
=

8

−3
= −8

3

EXERCISE 9

finding slopes
of lines

Find the slope of the line through each pair of points. If the slope is undefined,
so state. Use several different approaches.

♣ 1. (3,−2), (−1, 5)

♣ 2. (a, 3), (a,−1) (Here, a is any real number.)

♣ 3. (−2, b), (3, b) (Here, b is any real number.)
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equations of
lines;

y = mx+ b;

slope-intercept form

Every non-vertical line must cross the y-axis at exactly one point; call this point
(0, b). Let m denote the slope of the line. Then, if (x, y) is ANY other point
on the line, then x 6= 0 (♣ Why?), so:

m =
y − b
x− 0

⇐⇒ y − b = mx

⇐⇒ y = mx+ b

That is, the solution set of the equation y = mx + b is precisely the points on
the line with slope m, that crosses the y-axis at b. The equation y = mx+ b is
thus appropriately called the slope-y-intercept form of a line.

standard form of
a line;

ax+ by = c

If you stop and think a moment, you’ll see that every equation of the form
ax+ by = c (when a and b are not both zero), graphs as a line in the plane.

The set of all equations that can be written in the form ax + by = c, where a
and b are not both zero, are called the linear equations in 2 variables. This is
certainly a reasonable name, due to the previous observation!



52 copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org

EXAMPLE

graphing a line

Problem: Graph 3x− y = 5.

Solution #1: Recognize that the equation is linear in x and y; thus it graphs as
a line. Plot ANY two points to graph the line! (So, choose two EASY points!)

When x = 0, we have 3(0) − y = 5 ⇐⇒ y = −5. Thus, the point (0,−5) is
on the graph.

When y = 0, we have 3x − 0 = 5 ⇐⇒ x = 5
3 . Thus, the point ( 5

3 , 0) is on
the graph.

Plot these two points, and sketch the line through them.

Solution #2: Put the equation in y = mx+ b form, and read off b and m :

3x− y = 5 ⇐⇒ −y = 5− 3x

⇐⇒ y = 3x− 5

The line crosses the y-axis at −5, and has a slope of 3 :

m = 3 =
3

1
=

rise

run

Sketch the line.

EXERCISE 10

graphing

Graph the following sentences. Take two different approaches in each case.

♣ 1. −5x = y + 4

♣ 2. x+ y = 1 or x = 1 or y = 1

QUICK QUIZ

sample questions

1. Graph the equation x = 3, viewed as an equation in 1 variable; viewed as
an equation in 2 variables.

2. Graph the inequality x < 3, viewed as an inequality in 1 variable; viewed
as an inequality in 2 variables.

3. Graph the equation y − x2 + 1 = 0.

4. Graph the inequality y ≤ 2x.

5. TRUE or FALSE: ‘3 < 3 or 3 ≥ 3’.

6. Find the value(s) of x for which the following sentence is TRUE; show them
on a number line: ‘x ≥ 3 or x < −1’.
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KEYWORDS

for this section

Graphs, graph of a sentence, graphing sentences in one variable, graphing sen-
tences in two variables, rectangular coordinate system (origin, x-axis, y-axis,
quadrants I, II, III, IV), the zero factor law, the mathematical word ‘or’, con-
jecture, linear equations in 2 variables, graphing lines.

END-OF-SECTION
EXERCISES

Graph each of the following sentences in one variable. (Show the solution sets
on a number line.)

1. x = π 2. x− 3 = 0

3. |x| = 2 4. |x| ≥ 2

5. 3x < −2 6. 2x− 5 > 3

7. x = 0 or |x| = 1 8. x = 1 and |x| = 1

9. x = 1 or |x| = 1 10. 2x = 1 and 2x 6= 1

11. |3x+ 1| = 7 12. |3x+ 1| < 7

Graph each of the following sentences in two variables (x and y). (Show the
solution sets in the xy-plane.)

13. x+ y = 2 14. y − 4x = −3

15. x = 1 or y = −2 16. x = 1 and y = −2

17. |y| = 1 18. |x| = 2

19. |x+ y| = 1 (Hint: For a ≥ 0, |z| = a ⇐⇒ z = a or z = −a.)

20. |x+ y| < 1 (Hint: For a > 0, |z| < a ⇐⇒ −a < z < a.)
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CHAPTER 2

FUNCTIONS

Without functions, modern mathematics would not
exist. Since functions and function notation are so
deeply imbedded in the mathematical language,
students must understand functions in order to
understand mathematics. Functions are the sub-
ject of this chapter.
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2.1 Functions and Function Notation

Introduction

inputs and outputs

In many common relationships between variables, there are natural input/output
roles assumed by the variables.

For example, in the formula V = 4
3πr

3 for the volume of a sphere, one naturally
thinks of ‘inputting’ a radius r into the formula, and ‘outputting’ the volume
of the sphere with that radius.

Although the radius is ‘naturally’ viewed as the input when the formula is
written in the form V = 4

3πr
3, this need not always be the case. Suppose, for

example, that spherical containers are being designed to hold various amounts
of liquid. Given a desired volume, it is necessary to determine the radius of the
sphere that will yield that volume. In this case, one can solve for r, yielding the

equivalent equation r = 3

√
3V
4π . In this formulation of the equation, the volume

V is now viewed as the input, and the radius r as the output.

As a second example, in the formula A = 1
2bh for the area of a triangle, one

naturally thinks of ‘inputting’ both the base b and height h of the triangle, and
‘outputting’ the area of a triangle with that base and height. However, the
equivalent equation h = 2A

b views the area and base as inputs, and the height
as an output.

EXERCISE 1 ♣ 1. Consider the formula A = πr2 for the area of a circle. What is naturally
viewed as the input? Output? Rewrite the equation so that the radius is
the ‘natural’ output.

♣ 2. Come up with a common relationship between variables (different from
the example above) that has two inputs.

♣ 3. Come up with a common relationship between variables that has three
inputs.

functions The language of mathematics provides a very precise tool for discussing this
kind of input-output relationship between variables: functions. Functions, and
the notation used in connection with functions, is the topic of this section.

function,
informal definition

A function is a special relationship between variables, where to each choice of
input there corresponds a unique output. In this case, we say that ‘the output
is a function of the input’.

The most important word in this informal definition of function is the word
‘unique’. The examples in this section should clarify the importance of the
uniqueness of the output.

For example, in the formula V = 4
3πr

3, to each value of input r there corre-
sponds a unique volume V . We say that V is a function of r.

In the formula A = 1
2bh, to each choice of base b and height h there corresponds

a unique area A. We say that A is a function of b and h. (Here, we can view
the input as an ordered pair of numbers, (b, h).)

54
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functions as
‘black boxes’

It is often helpful to think of a function in terms of a ‘black box’. The input
goes in the top of the box. The box itself is the ‘rule’ that does something to
the input. The output drops out the bottom of the box.

EXERCISE 2 ♣ 1. In the first box pictured above, what will the output be if the input is
5? −5? x? x2? x+ h?

♣ 2. In the second box pictured above, what will the output be if the inputs
are 3 and 4? What if the inputs are x2 and y2? What if the inputs are t
and t?

What should you
think when you
hear the phrase:
‘y is a function of x’?

When you hear the phrase y is a function of x, you can roughly think: y depends
on x. More precisely, think: y is an output that is uniquely determined by the
input x.

functions often arise
naturally from
equations

In the previous chapter, we studied equations. Many (but not all) equations
describe a function relationship between their variables. The form in which
the equation is written often leads to a choice of input/output roles for the
variables.

obtaining a function
by solving for y
in terms of x

For example, suppose that an equation in the variables x and y is such that we
are able to solve the equation for y in terms of x, thus obtaining an (equivalent)
equation:

y =< some formula involving x >

In this form, y is naturally viewed as an output that depends on the input x.
That is, once a value is chosen for x, we can plug it into the formula, and obtain
the unique corresponding value of y. So, y is a function of x.

For example, consider the equation y−x2 = 1. This is equivalent to y = x2 +1;
once an input x is chosen, the unique output y is found by squaring x, then
adding 1. So, y is a function of x. The graph of y = x2 + 1 is shown below.
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vertical line test;

y is a function of x

There is a nice graphical way to see that every input x corresponds to a unique
output y. Imagine a vertical line sweeping through all the x-values. No matter
what x-value we ‘stop’ this vertical line at, it hits exactly one point on the
graph—the unique y-value associated with that x-value.

horizontal line test;

x is a function of y

Now reverse the roles of x and y in the previous example. That is, consider
the equation x− y2 = 1, which is equivalent to x = y2 + 1, and has the graph
shown below. Associated to each ‘input’ y there is a unique ‘output’ x, so in
this case, x is a function of y.

How can we graphically check that x is a function of y? We must check that
each allowable y-value is associated with a unique x-value. To do this, imagine
a horizontal line sweeping through the graph, checking each y-value. If this
horizontal line never hits the graph at more than one point, then x is a function
of y.

EXAMPLE

y is a function of x
but
x is not a function of y

Once more consider the equation y − x2 = 1. Suppose it is desired to view x
as the ‘output’; in this case, we are motivated to solve for x (see the Algebra
Review, this section) giving:

y − x2 = 1 ⇐⇒ x2 = y − 1 (add x2, subtract 1, rearrange)

⇐⇒ x = ±
√
y − 1 (take square roots, correctly!)

Now, corresponding to an allowable ‘input’ y, we obtain two ‘outputs’: x =
+
√
y − 1 and x = −

√
y − 1. In particular, we do not obtain a unique output

value. Thus, although y is a function of x in this equation; x is not a function
of y. Note that the graph of y − x2 = 1 does not pass a horizontal line test.



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 57

‘black box’
interpretation of
the previous example

It may be helpful to interpret this example in terms of a ‘black box’. Since y is
a function of x, we can drop any input into the ‘square, then add 1’ box, and
a unique output will drop out the bottom. However, since x is not a function
of y, we can not necessarily reverse this process. That is, suppose we pick up
the number 5 from the output pile. Can we put it in the box (backwards) to
determine where it came from? The answer is no: both 2 and −2 gave rise to
the output 5.

EXERCISE 3 ♣ Consider the graphs shown below. Which ones describe y as a function of
x? Which ones describe x as a function of y?



58 copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org

EXAMPLE

an equation in x and y
with no function
relationships
between the variables

Consider the equation x2 + y2 = 9. Solving for y yields:

x2 + y2 = 9 ⇐⇒ y2 = 9− x2 (subtract x2)

⇐⇒ y = ±
√

9− x2 (take square roots, correctly!)

What are the allowable values to choose for x? The expression under the square
root must be nonnegative:

9− x2 ≥ 0 ⇐⇒ 9 ≥ x2 (add x2 to both sides)

⇐⇒ x2 ≤ 9 (rearrange)

⇐⇒ |x| ≤ 3 (take square roots—correctly!)

⇐⇒ −3 ≤ x ≤ 3 (solve the abs. value inequality)

Given an appropriate value of x (x ∈ [−3, 3]), we get two associated values of y:

+
√

9− x2 and −
√

9− x2. So in this case, y is not a function of x. The graph
of x2 + y2 = 9 is shown below. Observe that it fails the vertical line test.

The exercise below completes this example.

EXERCISE 4 ♣ 1. Solve the equation x2 + y2 = 9 for x. Be sure to write a complete
mathematical paragraph.

♣ 2. What are the allowable values for y? Be sure to write a complete math-
ematical paragraph when finding them.

♣ 3. Is x a function of y?

F
global vs. local

F At most points on the graph of x2 + y2 = 9, y is locally a function of x, in
the following sense. Let (a, b) be a point on the graph with a 6= 3 and a 6= −3.
Then, there exists an interval I containing a such when the graph is restricted
to x-values in this interval, y is a function of x. This observation becomes
important in the section on implicit differentiation.
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EXAMPLE

y is a function of x
and
x is a function of y

Consider the equation y = x3. Given an input x, there is a unique corresponding
output y, obtained by cubing x. So, y is a function of x.

If we choose to view y as the input, we can rewrite the equation in the equivalent
form x = 3

√
y. Now, given an ‘input’ y, there is a unique corresponding ‘output’

x, obtained by taking the cube root of y. So, x is also a function of y.

The graph of y = x3 ⇐⇒ x = 3
√
y is shown below. Observe that it passes both

a vertical line test and a horizontal line test.

Here’s the ‘black box’ interpretation of this example. When an input is dropped
in the top of the ‘cube’ box, a unique output drops out the bottom. If we pick
up a number from the output pile, we can use the box ‘backwards’ to obtain
the unique input from which it came. That is, associated to every input is a
unique output; and associated to every output is a unique input. This type of
relationship between x and y is particularly nice.

EXERCISE 5 Consider the equation x = |y|.
♣ 1. Graph this equation.

♣ 2. Is y a function of x? Why or why not?

♣ 3. Is x a function of y? Why or why not?

EXERCISE 6 Consider the equation y = 3, viewed as an equation in two variables, x and y.

♣ 1. Graph this equation.

♣ 2. Is y a function of x? Why or why not?

♣ 3. Is x a function of y? Why or why not?

♣ 4. What ‘black box’ would you associate with the equation y = 3? In
particular, what is the ‘rule’ that the black box performs in this case?
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mapping diagrams It is sometimes helpful to view functions/non-functions in terms of mapping
diagrams, as illustrated below.

notation
for functions

Next, we introduce an extremely important notation used in connection with
functions.

FUNCTION
NOTATION

x, the input
f , the rule
f(x), the output
corresponding to
the input x

In a function relationship between variables, once an input is chosen, there is
a unique corresponding output. It is convenient to give a name to the output
that illustrates its relationship to the input.

Here’s how it’s done: if the input is x, the output is called f(x) (read as ‘f of
x’). Letters other than f are possible. The letter f is merely common because
it is the first letter in the word ‘function’.

The sketch below illustrates the relationship between the function f , the input
x, and the output f(x).

Until you become an expert on functions, it is important that you distinguish
between the function f (the ‘rule’), and the output f(x) that comes from the
input x. Unfortunately, f and f(x) are often used synonymously, leading to
confusion.

Correct: The function f is the squaring function.
Incorrect: The function f(x) is the squaring function.
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naming functions The function that takes an input and squares it can be described in function
notation in any of the following ways:

f(x) = x2 or g(x) = x2 or h(x) = x2 or S(x) = x2

It is often good to choose a letter name for the function that helps to describe
the function; in this sense, perhaps ‘S(x) = x2’ is good, because ‘S’ is the first
letter in the word ‘square’.

If S(x) = x2, then what is S(3)? Answer: S(3) = 32 = 9. ‘S(3)’ is the name
given to the unique output when 3 is the input.

What is S(x + y)? Answer: S(x + y) = (x + y)2. Be sure to write a complete
sentence for the answer: don’t just say ‘(x+ y)2’.

What is S(x2)? Answer: S(x2) = (x2)2 = x4.

What is S(�)? Answer: S(�) = (�)2. (Fill in the box with any input you
want!)

dummy variables Here are some more ways that the squaring function can be described:

S(y) = y2 or S(t) = t2 or S(α) = α2 or S(ω) = ω2

The variable in parentheses after the function name represents a typical input;
you may give any name you want to this input. Then, the formula on the
right-hand side tells you what the function (the ‘rule’) does to this input. Since
lots of different names can be used to express the same information, this input
variable is called a dummy variable. Try to choose an appropriate name for the
dummy variable. One common name is ‘x’. However, if the inputs represent
time values, ‘t’ is probably more appropriate.

EXAMPLE The ‘black boxes’ below illustrate the use of function notation.

EXERCISE 7 ♣ 1. Describe, in function notation, the rule: ‘take a number, double it, then
add 3.’ Express this same rule in three different ways. What is the output
if x+ y is the input?

♣ 2. Describe, in function notation, the rule: ‘take 2 numbers and average
them’. Do this in three different ways. What is the output if x and 5x are
the inputs?
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EXERCISE 8 ♣ Write function notation that corresponds to the ‘black boxes’ shown below.

function of 1 variable
function of 2 variables

A function like f(x) = x2 − 1 that takes one input is called a function of one
variable.

A function like f(x, y) = 2x − 3y that takes two inputs is called a function of
two variables.

♣ What do you suspect a function like f(x, y, z) = x+ y + z, that takes three
inputs, is called?

practice with
function notation

Here’s some practice with function notation:

Consider the function g given by g(x) = x2 + 3. Then:

g(0) = 02 + 3 = 3

g(3) = 32 + 3 = 12

g(−3) = (−3)2 + 3 = 12

g(x+ h) = (x+ h)2 + 3 = x2 + 2xh+ h2 + 3

g(x2) = (x2)2 + 3 = x4 + 3

g(g(t)) = g(t2 + 3) = (t2 + 3)2 + 3 (inside out)

g(g(t)) = (g(t))2 + 3 = (t2 + 3)2 + 3 (outside in)

The last two lines illustrate two different correct paths leading to the same
result.

Now consider the function g given by g(x, y) = x3 + y. Then:

g(0, 0) = 03 + 0 = 0

g(−1, 2) = (−1)3 + 2 = 1

g(2,−1) = 23 + (−1) = 7

g(a, b) = a3 + b

g(y, x) = y3 + x

g(f(x), x) = (f(x))3 + x

g
(
g(a, b), g(c, d)

)
= (g(a, b))3 + g(c, d) = (a3 + b)3 + (c3 + d)
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EXERCISE 9 Consider the function d given by d(x) = f(x+h)−f(x)
h . Here, f is a function of

one variable, and h is a constant.

Find the following. Write complete mathematical sentences.

♣ 1. d(0)

♣ 2. d(y)

♣ 3. d(x+ h)

♣ 4. d(x2)

Now, define D by D(x, h) = f(x+h)−f(x)
h . Find the following:

♣ 5. D(0, 1)

♣ 6. D(y, k)

♣ 7. D(x+ ε, k)

♣ 8. D(x+ h, 2h)

ALGEBRA REVIEW

absolute value, geometric definition, set union ∪

absolute value Let x denote any real number. The absolute value of x, denoted |x|, is its
distance from 0 on the number line.

EXAMPLE

solving a simple
absolute value
equation

Problem: Solve the absolute value equation |x| = 3.

Solution: Think of this as follows: We seek all numbers x whose distance from
0 on the number line is equal to 3. There are two such numbers, 3 and −3.
Thus, the solution set of the equation |x| = 3 is {3,−3}. One commonly writes:

|x| = 3 ⇐⇒ x = ±3

where ‘x = ±3’ is read as ‘x equals plus or minus 3’, and means ‘x = 3 or
x = −3’.

EXERCISE 10 Consider the sentence:
x = 3 or x = −3 (*)

♣ 1. Let x be 3. For this choice of x, is (*) true or false? (If necessary, review
the mathematical meaning of the word ‘or’.)

♣ 2. What is the solution set of (*)?

♣ 3. Let x be 4. For this choice of x, is (*) true or false?
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EXAMPLE

solving a simple
absolute value
inequality

Solve the absolute value inequality |y| > 2. Here, we seek all real numbers y
whose distance from 0 is greater than 2. Since we can walk both to the right
and to the left on the number line, the solution set has two pieces, and can be
expressed in several different ways:

solution set of |y| > 2 =

= (2,∞) ∪ (−∞,−2) (the symbol ‘∪’ is discussed below)

= {y | y > 2 or y < −2}
= {y | y > 2} ∪ {y | y < −2}

∪, set union Here, the symbol ∪ has been used to denote the operation of set union. For
sets A and B, a new set A ∪ B (read as ‘A union B’) is formed by ‘throwing
together’ all the elements of both sets. Precisely:

A ∪B = {x | x ∈ A or x ∈ B}

For example, if A = {1, 2, 3} and B = {3, 4, 5} then A ∪B = {1, 2, 3, 4, 5}.

EXERCISE 11 Write the following sets in as simple a way as possible:

♣ 1. (−1, 0) ∪ [0, 2)

♣ 2. {x | x is rational} ∪ {x | x is irrational}
♣ 3. {−1, 2, 100} ∪ Z
♣ 4. {t | t ≥ 0} ∪ {x | x < 0}
Write the following sets, using correct set notation and the ∪ symbol (if appro-
priate).

♣ 5.

♣ 6.

♣ 7.
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EXERCISE 12 Solve the following absolute value equations/inequalities. Be sure to write com-
plete and correct mathematical sentences. Show the solution sets on a number
line.

♣ 1. |x| < 2 (Hint: What numbers have a distance from 0 that is less than
2?)

♣ 2. |t| ≥ 3

♣ 3. 5− |x| = 1

♣ 4. 2− |t| < −3

Write an absolute value equation or inequality whose solution set is the set of
numbers shown:

♣ 5.

♣ 6.

♣ 7.

|x| =
√
x2 Here is a characterization of the absolute value that is particularly useful in

many situations:

For all real numbers x, |x| =
√
x2.

For example,
√

(−5)2 = | − 5| = 5, not −5! (Remember what
√
x2 represents;

the nonnegative number which, when squared, yields x2.)

taking the square root
of both sides
of an equation

We have learned that adding the same number to both sides of an equation
does not change its solution set; and multiplying both sides by any nonzero
number doesn’t change its solution set. How about taking the square root of
both sides? Answer: Providing you take the square root correctly, you WILL
get an equivalent equation.

take the square root
incorrectly;
lose a solution

Unfortunately, many students don’t take the square root correctly, and write
down things like this:

x2 = 9√
x2 =

√
9

x = 3

This student has lost a solution. The only time that
√
x2 equals x, is if x

happens to be nonnegative. The original equation x2 = 9 has solution set
{3,−3}; the final equation x = 3 only has solution 3.

taking the
square root
correctly

If the student had instead used the fact that is correct for all real numbers,√
x2 = |x|, the solution would not be lost. Writing a complete mathematical

sentence this time, we get:

x2 = 9 ⇐⇒
√
x2 =

√
9

⇐⇒ |x| = 3

⇐⇒ x = ±3

It is conventional to leave out the step ‘
√
x2 =

√
9’, and go directly to ‘|x| = 3’.
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The next theorem makes this idea precise. As you read it, be thinking: what
do these facts tell me that I can DO?

THEOREM

taking square roots
of equations
and inequalities

For all real numbers z, and for a ≥ 0 :

z2 = a ⇐⇒ |z| =
√
a ⇐⇒ z = ±

√
a

z2 > a ⇐⇒ |z| >
√
a ⇐⇒ z >

√
a or z < −

√
a

z2 < a ⇐⇒ |z| <
√
a ⇐⇒ −

√
a < z <

√
a

here’s how
an instructor might
translate
this theorem

This is the way an instructor might ‘translate’ (part of) this theorem for stu-
dents: ‘You can take the square root of both sides of an equation z2 = a
providing that you use the correct formula for

√
z2; that is,

√
z2 = |z|.’

Here’s a typical use of this theorem, where ‘z’ is ‘x− 1’:

Problem: Solve (x− 1)2 = 5.

Solution:

(x− 1)2 = 5 ⇐⇒ |x− 1| =
√

5

⇐⇒ x− 1 = ±
√

5

⇐⇒ x = 1±
√

5

The solutions of ‘(x− 1)2 = 5’ are 1±
√

5. ♣ Check!

EXERCISE 13 Use the previous theorem to solve the following equations/inequalities. Be sure
to write down complete mathematical sentences.

♣ 1. t2 = 7

♣ 2. (2t− 5)2 = 3

♣ 3. x2 < 4

♣ 4. x2 + 6x+ 9 > 4 (Hint: Factor the left-hand side.)

♣ 5. (|t| − 2)2 < 1

EXERCISE 14 ♣ 1. Write a theorem, the way a mathematician would, that says how to go
about solving an inequality of the form z2 ≥ a (for a ≥ 0). Then, use your
theorem to solve (2x− 1)2 ≥ 3. Show your solution set on a number line.

♣ 2. Write a theorem, the way a mathematician would, that says how to
go about solving an inequality of the form z2 ≤ a (for a ≥ 0). Then, use
your theorem to solve (2x − 1)2 ≤ 3. Show the solution set on a number
line. Compare your answer with the previous problem—do you believe your
result?
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F An astute student may have noticed that the previous theorem does not apply
to a sentence like y2 = 9 − x2, since the right-hand side is not nonegative for
all values of x. Indeed, the sentences ‘y2 = 9 − x2’ and ‘y = ±

√
9− x2’ have

different implied domains.

However, if x and y are any real numbers that make y2 = 9− x2 TRUE, then
9− x2 must be nonnegative (since it equals y2, which is nonnegative). Then, it

must also be true that y = ±
√

9− x2.

And, if x and y are any real numbers that make y = ±
√

9− x2 TRUE, then,
the sentence y2 = 9− x2 must also be true.

Thus, the sentences y2 = 9 − x2 and y = ±
√

9− x2 do indeed have identical
graphs.

EXERCISE 15 ♣ 1. Solve the equation y2 − x2 = 1 for y in terms of x. Be sure to write a
complete and correct mathematical sentence.

♣ 2. Solve the equation y2 − x2 = 1 for x in terms of y. Be sure to write a
complete and correct mathematical sentence.

♣ 3. If (x, y) is a pair of real numbers that makes the sentence ‘y2 − x2 = 1’
true, what (if anything) can be said about y? (Hint: Look at your solution
to (2).)

QUICK QUIZ

sample questions

1. In the graph shown, is y a function of x? Is x a function of y? Justify your
answers.

2. Solve the equation x2 − y + 1 = 0 for y. Be sure to write a complete
mathematical sentence. Is y a function of x?

3. Solve the equation x2 − y + 1 = 0 for x. Be sure to write a complete
mathematical sentence. Is x a function of y?

4. Describe, in function notation, the rule: ‘take a number, halve it, subtract
3, then square the result’.

5. Let g(x) = 2x2 − 1. Find g(−1); find g(x2).
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KEYWORDS

for this section

Inputs, outputs, function, ‘black box’ view of functions, vertical line test, hor-
izontal line test, absolute value of x, solving absolute value equations, solving
absolute value inequalities, solving equations of the form z2 = a, solving inequal-
ities of the form z2 < a, z2 > a, z2 ≤ a, z2 ≥ a, set union (A∪B), |x| =

√
x2,

mapping diagrams, function notation, f versus f(x), dummy variable, function
of n variables.

END-OF-SECTION
EXERCISES

more practice
with function notation

Find the indicated function values.

1. f(x) = x3 − 1 : f(0), f(1), f(−1), f(t), f(f(2))

2. g(x) = −x4 + x : g(x+ h), g(−x), g(−1)

3. f(x) = |x| : f(−2), f(t), f(−t), f(x2)

4. g(x) = |x− 2| : g(−x), g(|t|), g(
√

2), g(x+ 2)

5. h(x) = 1
x : h(−x), h(h(x)), h( 1

x ), h(x+ ∆x), h(|x|)

6. h(x) =
√
x2 − 1 : h(t), h(x+ ∆x), h(−x), h(1)

7. h(x, y) = x2 + y2 − 1 : h(1, 1), h(x, x), h(y, x), h(x+ ∆x, y + ∆y)

8. h(x, y) = 1
x(y−1) : h(0, 0), h(y, x), h(x2, y), h(x, y2)



2.2 Graphs of Functions

Introduction Associated with every function is a set called the domain of the function. This
set influences what the graph of the function looks like.

DEFINITION

domain of f ,
D(f)

The set of inputs to a function f is called the domain of f , and denoted by
D(f).

the domain convention The domain convention says the following: if the domain of a function is not
explicitly specified, then it is assumed to be all inputs for which the function
makes sense. Things to watch for:

• division by zero is not allowed

• numbers under even roots (
√

, 4
√

, 6
√

, etc.) must be nonnegative

• 00 is not defined

There is a very convenient notation for functions, to be discussed later on in
this section, that explicitly shows the domain. This is useful when we want to
take the domain to be different than the set dictated by the domain convention.

EXAMPLE

using the
domain convention,
function of
one variable

Consider the function given by f(x) =
√
x+1
x+2 . No domain is specified for the

function, so the domain convention is used to determine the domain. The
expression under the radical must be nonnegative, and x+ 2 cannot equal zero.
Thus:

D(f) = {x | x + 1 ≥ 0 and x + 2 6= 0}
= {x | x ≥ −1 and x 6= −2}
= {x | x ≥ −1} (*)

Note that if x ≥ −1 is true, then automatically x 6= −2 is true. So in this case:

(x ≥ −1 and x 6= −2 ) ⇐⇒ x ≥ −1

By the domain convention, the domain of f(x) =
√
x+1
x+2 is (using interval nota-

tion) [−1,∞).

another use of
the ‘=’ sign;
equality of sets

In the example above, the answer was written down using a complete mathe-
matical sentence. The ‘=’ signs used in (*) are for equality of sets: two sets
are equal when they have the same members. For example, A = {1, 2, 3} and
B = {2, 3, 1} are equal sets. The order in which the elements are listed is
unimportant.

So far, you have seen the equal sign (‘=’) used in two different contexts: equality
of numbers (or, expressions representing numbers), and equality of sets. You
must be able to recognize, from context, the proper interpretation of an ‘=’
sign.

69
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EXAMPLE

using the
domain convention,
function of
two variables

Consider the function given by g(x, y) = 1
x2−9 + 1

xy . If no domain is specified,

we need only exclude inputs (x, y) for which the function does not make sense.
The function is not defined if x2 − 9 = 0; also, it is not defined if xy = 0. So
the following points must be excluded:

{(x, y) | x2 − 9 = 0} = {(x, y) | x2 = 9}
= {(x, y) | x = 3 or x = −3}
= {(3, y) | y ∈ R} ∪ {(−3, y) | y ∈ R}

and

{(x, y) | xy = 0} = {(x, y) | x = 0 or y = 0}
= {(0, y) | y ∈ R} ∪ {(x, 0) | x ∈ R}

The domain of the function g is the portion of the xy-plane that remains after
the necessary points are excluded. This domain is shaded below.

EXERCISE 1

interpreting a
mathematical sentence

Analyze the mathematical sentence that appears in the example above:

{(x, y) | x2 − 9 = 0} = {(x, y) | x2 = 9} (line 1)

= {(x, y) | x = 3 or x = −3} (line 2)

= {(3, y) | y ∈ R} ∪ {(−3, y) | y ∈ R} (line 3)

The lines have been numbered for easy reference.

♣ 1. Seven equals signs appear in this mathematical sentence. Which are
being used for equality of numbers? Which are being used for equality of
sets?

♣ 2. What allows the replacement of x2 = 9 by (x = 3 or x = −3) in going
from line 1 to line 2?

♣ 3. What does the symbol ∪ mean in line 3?

♣ 4. Why is line 2 equal to line 3?
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EXERCISE 2

finding domains

Use the domain convention to find the domains of the following functions. Be
sure to write complete mathematical sentences. Show the domains on a number
line, or in the xy plane, whichever is appropriate.

♣ 1. f(x) =
√
x−1
x+2

♣ 2. g(x) =
3
√
x−1

x2−4

♣ 3. h(x, y) =
√
x

x+y

Now, we are in a position to define the graph of a function. First, the graph of
a function of one variable:

DEFINITION

the graph of a
function of
one variable

Let f be a function of one variable. Then:

the graph of f = {(x, f(x)) | x ∈ D(f)}

That is, the graph of f consists of points of the form (input, output), where x
is the input, and f(x) is the corresponding output.

In other words, the graph of f is the same as the graph of the equation y = f(x).
Merely plot the function values f(x) as the y-values, and proceed as earlier.

slight abuse
of notation

Actually, most people think of the graph of f as a (partial) picture of the set
{(x, f(x) | x ∈ D(f)}. Since there is such a close association between the set of
points, and the picture of the set of points, this should cause no confusion.

EXAMPLE

graphing a function
of one variable

Problem: Graph the function defined by f(x) = 1
x−1 .

Solution: By the domain convention:

D(f) = {x | x− 1 6= 0} = {x | x 6= 1}

Then:

the graph of f = {(x, f(x)) | x ∈ D(f)}

= {
(
x,

1

x− 1

)
| x 6= 1}
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The graph is shown below. It is of course impossible to show all points of
the form (x, f(x)), since x is allowed to take on values in (−∞, 1) ∪ (1,∞). It
is customary to show the interesting part(s) of the graph. A mathematician
looking at this graph would assume that the pattern displayed near the graph
boundaries would continue ad infinitum.

EXAMPLE

a ‘punctured’ graph

Problem: Graph g(t) = t2−1
t+1 .

Solution: Note that t cannot equal −1, for this would produce division by
zero. But in the same breath you must notice that the numerator is also zero
when t = −1. Since −1 is a zero of t2 − 1, this means that (t − (−1)) is a
factor of t2 − 1 (see the Algebra Review, this section). Indeed, factoring yields
t2 − 1 = (t + 1)(t − 1). For values of t different from −1, the function has a
simpler expression:

t2 − 1

t + 1
=

(t + 1)(t− 1)

t + 1

t6=−1
= t− 1

Note that the expressions t2−1
t+1 and t− 1 are NOT exactly the same! They are

the same a great deal of the time; whenever t is not −1. But when t is −1,

they act differently: t2−1
t+1 is not defined, but t− 1 is perfectly well defined, and

equals (−1)− 1 = −2.

The graph of g is shown below.

EXAMPLE

more on ‘puncturing’
a graph

Problem: Write a formula for a function whose graph is the same as the graph
of f(x) = x2 + 2, but is ‘punctured’ where x = 3.

Solution: P (x) = (x2 + 2) · x−3x−3 = x3−3x2+2x−6
x−3
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EXERCISE 3

graphing
functions of
one variable

Graph the following functions:

♣ 1. f(x) =
√
x− 2

♣ 2. g(t) = 2|t| − 1

♣ 3. h(ω) = ω2+ω−6
ω+3

DEFINITION

the graph of a
function of
two variables

Let f be a function of two variables. Then:

the graph of f = {(x, y, f(x, y)) | (x, y) ∈ D(f)}

Since the graph of a function of two variables is a set of points in space, it is
more difficult to draw. We will restrict ourselves to graphing only functions of
one variable.

EXERCISE 4 ♣ What do you suppose is the definition of the graph of a function of three
variables?

reading information
off a graph

Often, you will be given the graph of a function and asked to read information
off the graph.

For example, consider the graph of a function g, shown below.
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questions about
the graph

Notice first that the graph is labeled y = g(x). This tells you that the y values
on the graph are the function values from a function g.

You could be asked the following questions:

1) How can you confirm that this is indeed the graph of a function?

2) What is g(−10)?

3) What is g(−9.2)?

4) What is g(−3)?

5) What is g(0)?

6) Find: {x | g(x) = 10}
7) Find: {x | g(x) = 3}
8) Find: {x | g(x) ≥ 0}
9) Based on this graph, what would you suspect that g(−11) is?

10) Based on this graph, what would you suspect that g(20) is?

the answers When answering these questions, be sure to write complete mathematical sen-
tences.

1) The graph passes the vertical line test. Every input has associated to it
a unique output.

2) g(−10) = 3. Don’t just give the answer as: 3! When reading
information off a graph, it may be necessary to use your judgment and
estimate. Perhaps it would be better to say g(−10) ≈ 3; here, the
symbol ‘≈’ means ‘is approximately equal to’. Most people just use the
‘=’ sign, with the understanding that there may be some error involved
in reading off the graph.

3) g(−9.2) = 3

4) g(−3) = 20. Note that the dot is filled in at the y value of 20.

5) g(0) = 0

6) There is only one x value where the corresponding y value is 10; it looks
like this occurs when x ≈ −3.5. Thus, {x | g(x) = 10} = {−3.5}.
Observe that the number −3.5 must go in a set, because the ‘=’ sign is
being used for equality of sets.

7) There are lots of x-values with corresponding y-values equal to 3 :

{x | g(x) = 3} = [−10,−8] ∪ {−1.7, 1.7, 6.5, 8.5}

Again, it is necessary to approximate. Recall that [−10,−8] is a set.
The union symbol ∪ is used to ‘join together’ the two sets.

8) {x | g(x) ≥ 0} = [−10, 3] ∪ [5.5, 9.5]

9) Assuming that the ‘interesting’ part of the graph is shown, and that the
patterns indicated on the boundaries of the graph would continue, one
would estimate that g(−11) = 3.

10) This author would estimate that g(20) is a large negative number.
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EXERCISE 5 Answer the following questions about the graph of the function g shown below.
It may be necessary to estimate.

♣ 1. How can you confirm that this is indeed the graph of a function?

♣ 2. What is g(−10)?

♣ 3. What is g(−6.4)?

♣ 4. What is g(−4)?

♣ 5. What is g(1)?

♣ 6. Find: {x | g(x) = 8}
♣ 7. Find: {x | g(x) = −4}
♣ 8. Find: {x | g(x) ≤ 0}
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shifting graphs
left and right

Consider the function f given by f(x) = x2. We can define a new function g
that uses the function f , by g(x) := f(x− 3) = (x− 3)2. The graphs of f and
g are shown below. Remember that the symbol ‘:=’ is used when it is desired
to emphasize that something is being defined.

Note that the graph of g is the same as the graph of f , except shifted three
units to the right. This is often confusing to students: they feel that since we
evaluated f at x minus 3, the graph ought to shift to the left. Let’s investigate
what’s really happening here.

FACT:

shifting a
function
to the right

FACT: Let f be a function, and let c > 0. Define a new function g by:

g(x) := f(x− c)

Then, the graph of g is the same as the graph of f , except shifted c units to
the right.

REASONING: REASONING: The first question that needs to be answered is: “What is the
domain of g?” For g(x) to make sense, f must know how to act on x− c. Thus,
D(g) = {x | x− c ∈ D(f)}. Then:

the graph of g = {(x, g(x)) | x ∈ D(g)} (defn. of the graph of g)

= {(x, f(x− c)) | x− c ∈ D(f)} (defn. of g(x))

= {(z + c, f(z)) | z ∈ D(f)} (define z = x− c, so x = z + c)

= {(x + c, f(x)) | x ∈ D(f)} (change dummy variable)

you must understand
every line of
this sentence

It is important that you understand every line of this mathematical sentence.

In particular, what happened in going from line 2 to line 3? It was desired to
have a single variable as the input to f , instead of x−c. This was accomplished
by defining z to be x− c. (Instead of the name ‘z’, we could have used ω, or t,
or s, or . . . .) Then, everything was rewritten in terms of z.

What happened in going from line 3 to line 4? Not really anything! Students
are often more comfortable working with the variable x than the variable z;
this alone was the motivation for changing the name of the dummy variable.

Be sure to understand that the x in line 1 has nothing to do with the x in, say,
line 4. In line 1, x represents a typical element of the domain of g. In line 4, x
represents a typical element of the domain of f .

It is important that you understand every line of this mathematical sentence.
The next two exercises check your understanding.
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EXERCISE 6 ♣ Let f be a function, and let c > 0. Define a new function g by g(x) := f(x+c).
Prove that the graph of g is the same as the graph of f , except shifted c units
to the left. Be sure to write complete mathematical sentence(s).

EXERCISE 7 The graph of a function f is shown below.

♣ 1. What is the domain of f?

♣ 2. Define a new function h by h(x) := f(x− 2). What is the domain of h?
Graph h.

♣ 3. Define a new function g by g(x) := f(x + 3). What is the domain of g?
Graph g.

more on
building graphs
from simpler pieces

The following sketches illustrate how graphs can often be ‘built up’ from simpler
pieces. This technique was investigated in an earlier section; some slightly more
complicated examples appear here.
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convenient function
notation that
explicitly shows
the domain

f : A→ B

Occasionally, one wants a function to have a domain that is different from its
‘natural domain’, that is, the domain dictated by the domain convention. In
particular, if you are using a computer to graph a function, you must often
restrict yourself to a set much smaller than the natural domain.

The function notation
f : A→ B

is particularly convenient in such cases. Read f : A → B as ‘f , from A to B’.
Here is the meaning of each part of this symbol.
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explaining
the notation
f : A→ B

• The first letter that appears (here, f) is the name of the function.

• The colon ‘ : ’ separates the function name from the rest of the symbol.

• The first letter after the colon (here, A) is the domain of the function.
Thus, A is a set that contains the inputs to f .

• The arrow ‘→’ suggests that the inputs from A are being ‘sent to’ outputs
in B.

• The last letter (here, B) can be thought of as the output set. It is used to
answer the question: “What sort of outputs do we get when f acts on the
elements from A?” In this course, the outputs of our functions will always
be real numbers, so we can always let B be the real numbers, R.

• Note that the notation f : A → B, by itself, does not tell the rule that f
uses to go from the inputs in A to the outputs in B. Thus, this notation
must be accompanied by a rule, as illustrated in the examples below.

EXAMPLE Graph: f : [1, 4]→ R, f(x) = x2

The ‘natural domain’ of the function f given by the rule f(x) = x2 would be all
real numbers, since all real numbers can be squared. Here, we want to instead
take the domain to be [1, 4]. Thus, the graph is:

EXAMPLE Graph the function g defined by:

g : Z→ R, g(x) = x2

The (partial) graph of g is shown below.
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EXERCISE 8 Graph the following functions:

♣ 1. f : [−2, 1]→ R, f(x) = x3

♣ 2. g : [−2,−1] ∪ [1, 2]→ R, g(x) = x2

♣ 3. h : {−3,−2,−1, 0, 1, 2, 3} → R, h(x) = x + 1

ALGEBRA REVIEW

factoring To factor an expression means to take a sum (things added) and write it as a
product (things multiplied).

For example, x2 + 2x− 3 = (x− 1)(x+ 3). These two expressions are equal for
all real numbers x. The expression (x− 1)(x+ 3) is said to be in factored form.
The process of going from the sum x2 + 2x− 3 to the product (x− 1)(x+ 3) is
the process of factoring. You studied lots of techniques for factoring in algebra.

polynomial Recall that a polynomial (in one variable x) is a sum of terms, where each term
is of the form axn. Here, a is any real number, and n ∈ {0, 1, 2, 3, . . . }. For
example, 2x3−x2−2x+1 is a polynomial (note that 1 can be written as 1 ·x0).

zero (root)
of a polynomial

A zero (or root) of a polynomial is a number that makes the polynomial equal
to zero. For example, 1 is a zero of P (x) := 2x3 − x2 − 2x + 1, because:

P (1) = 2(1)3 − (1)2 − 2(1) + 1 = 2− 1− 2 + 1 = 0

Also, 1/2 is a root because P (1/2) = 0. (♣ Check this.)

relationship between
the zeros and factors
of a polynomial

There is a fundamental relationship between the zeros of a polyno-
mial, and the factors of the polynomial. Let P (x) denote any polynomial
in x.

• If r is a zero of P (so that P (r) = 0), then x− r is a factor of P .

• And, if x− r is a factor of P , then r is a zero of P .

We can sometimes use this fact, together with long division, to help us factor
polynomials.

EXAMPLE For example, we saw that 1 is a root of 2x3 − x2 − 2x + 1. Thus, x − 1 is a
factor. That is, x−1 must ‘go into’ 2x3−x2−2x+1 evenly. Do a long division:

Now we know that 2x3−x2−2x+1 = (x−1)(2x2 +x−1). (♣ Finish factoring
this polynomial.)
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EXERCISE 9

using a zero
to factor a
polynomial

Check that the given number is a zero of the polynomial. Then, use this zero to
get a factor. Do a long division to get another factor. Factor each polynomial
as completely as possible.

♣ 1. P (x) = x3 + x2 − 9x− 9; −1

♣ 2. P (x) = 2x3 − 3x2 − 11x + 6; 3

QUICK QUIZ

sample questions

1. Use the domain convention to find the domain of f(x) =
√
2x−1
x2−9 . Be sure

to write a complete mathematical sentence.

2. True or False: {1, 2, 3} = {3, 2, 1} . In this sentence, the ‘=’ sign is being
used for equality of .

3. What is the graph of a function f of one variable? Be sure to answer in a
complete mathematical sentence.

4. Graph f(t) = 2
√
t− 3 by building it up from ‘simpler pieces’. What is

D(f)?

5. Verify that −1 is a root of P (x) = x4− 2x2 + 1. From this information, get
a factor of P . Then, use long division to get a second factor.

KEYWORDS

for this section

Domain of a function f , domain convention, two uses for the ‘=’ sign, the graph
of a function of one variable, the graph of a function of two variables, zero (root)
of a polynomial, factoring polynomials, shifting graphs left and right, building
graphs of functions up from simpler pieces, the f : A→ B function notation.

END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a sentence (SEN).

♣ For any sentence, state whether it is TRUE (T), FALSE (F), or CONDI-
TIONAL (C).

1. {x | x + 1 ≥ 0}
2. D(f) = {x | x + 1 ≥ 0}
3. (x ≥ 2 and x 6= 1) ⇐⇒ x ≥ 2

4. (x ≥ 2 and x 6= 3) ⇐⇒ x ≥ 2

5. If P is a polynomial in x, and P (−3) = 0, then x + 3 is a factor of P .

6. {x | x = 3} = {y | y = 3}
7. {x | x = 3} = {y | y − 3 = 0}
8. Define f by f(x) =

√
x−1
x+2 .

9. The graph of g is {(t, g(t)) | t ∈ D(g)}.
10. f : [−3, 1]→ R

Graph the following functions.

11. f : [−1, 1]→ R, f(x) = (x + 1)3

12. g : (−∞, 4]→ R, g(t) = 3|t− 2| − 1

13. h : {1, 4, 9, 16, 25} → R, h(t) =
√
t

14. f : { 12 ,
1
3 ,

1
4} → R, f(x) = 1

x



2.3 Composite Functions

using ‘old’ functions
to define ‘new’ functions

There are many ways that functions can be ‘combined’ to form new functions.
For example, the sketch below illustrates how functions f and g can be combined
to form a ‘sum’ function.

After a review of some set operations, several very simple combinations of func-
tions are discussed. Then, a very important type of combination—composition
of functions—is investigated. A good understanding of function composition is
necessary to understand the Chain Rule in Chapter 4.

Why are
set operations
being reviewed?

Every time that functions are combined to get new functions, one must de-
termine how the domain of the new function is obtained from the domains of
the old functions. Since the domain of a function is a set, finding this ‘new’
domain involves combining sets in various ways. The examples in this section
will be greatly simplified if we first review some operations that have to do with
combining sets.

set operation;

A ∪B,
A union B

We have seen that the union of sets A and B is defined by:

A ∪B := {x |x ∈ A or x ∈ B}

This sentence is read as, the set ‘A union B’ is defined as the set of all x with
the property that x is in A, or x is in B. The word ‘or’ is being used in a
mathematical sense. This definition tells how an element gets in the ‘new’ set
A ∪B; it must be an element for which the mathematical sentence

x ∈ A or x ∈ B

is true. When is this sentence true? By definition of the mathematical word
‘or’, it is true if x ∈ A is true, or if x ∈ B is true, or if both x ∈ A and x ∈ B
are true.

So, this FACT is telling us that to form A ∪ B from sets A and B, we merely
put in everything from A (the things that make x ∈ A true) and everything
from B (the things that make x ∈ B true). Note that FACTS CAN TELL
YOU WHAT TO DO.

82



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 83

set operation;

A ∩B,
A intersect B

There is another useful set operation called set intersection, defined as follows:
Let A and B be sets. Define a new set A ∩B (read as ‘A intersect B’) by:

A ∩B := {x |x ∈ A and x ∈ B}

This definition says that for an element x to be in the set A ∩B, x must make
the sentence

x ∈ A and x ∈ B

true. The word ‘and’ is being used in the mathematical sense. When is this
sentence true? By definition of the mathematical word ‘and’, it is true only
when both x ∈ A and x ∈ B are true. So, the only elements that get into A∩B
are those that are in both of the sets A and B.

For example, if A = {1, 2, 3, 4} and B = {3, 4, 5, 6}, then A ∩B = {3, 4}.
As a second example, if A = [1, 3) and B = (2, 3] then A ∩ B = (2, 3). You
should be able to tell, from context, that the parentheses and brackets denote
interval notation here.

comparing sets;

A ⊂ B,
A is a subset of B
or
A is contained in B

Sometimes it is useful to know that one set is contained in another set. The
subset symbol ‘⊂’ is used in this situation. For sets A and B, the sentence
A ⊂ B means that everything in A is also in B. The sentence A ⊂ B is read as
‘A is a subset of B’ or ‘A is contained in B’.

EXAMPLES

using subset notation
correctly

For example, if A = {1, 2, 3} and B = {1, 2, 3, 4} then the sentence A ⊂ B is
true. The sentence can also be written as {1, 2, 3} ⊂ {1, 2, 3, 4}.
If A is any set, then the sentence A ⊂ A is true. This is because any element of
A (the set to the left of the ⊂ symbol) is an element of A (the set to the right
of the ⊂ symbol).

The sentence {0, 1} ⊂ [0, 1] is true; this is because 0 ∈ [0, 1] and 1 ∈ [0, 1]. Note
that the ⊂ symbol is used to compare sets, so the symbols to the left and right
of ⊂ must be sets. However, the ∈ symbol must have an element on the left
and a set on the right.

If A = {0, 1, 2} and B = {1, 2}, then the sentence A ⊂ B is NOT true. This is
because 0 is an element of A, but 0 is not an element of B.

The sentence {0, 1} ⊂ (0, 1] is NOT true. This is because 0 /∈ (0, 1].

Suppose that A is a set with element a, and B is a set with element b. Then all
the following sentences are true, and illustrate the correct use of the symbols ⊂
and ∈:

• a ∈ A

• {a} ⊂ A

• a ∈ A ∪B

• {a, b} ⊂ A ∪B
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EXERCISE 1

practice with
set operations

♣ 1. True or False:

a) If A and B are sets, then A ∪B is a set.

b) If C and D are sets, then C ∩D is a set.

c) If A and B are sets, then A ⊂ B is a set.

d) {0, 2, 4} ⊂ Z
e) Q ⊂ Z
f) Z ⊂ Q
g) {0} ∈ {0, 1, 2} (Be careful!)

♣ 2. Let A = {0, 1, 2, 3, 4, 5} and B = {x ∈ Z |x ≥ 3}. Find the following
sets:

a) A ∪B

b) A ∩B

c) R ∩A

d) Z ∩B

e) Q ∩ (A ∪B)

f) (0, 6] ∩A

♣ 3. For the sets A and B defined above, are the following sentences true or
false?

a) A ⊂ B; Why or why not?

b) B ⊂ A; Why or why not?

♣ 4. True or False: For all sets C and D, the mathematical sentence

C ⊂ D or D ⊂ C

is true.
♣ 5. True or False: For all sets C and D, the mathematical sentence

C ⊂ C ∪D

is true.

functions can take
all kinds of inputs
and give
all kinds of outputs

In general, functions can take all kinds of inputs, and give all kinds of outputs.
For example, one could define a function f that takes a NAME as an input,
and gives the first letter of the name as the output. For this function, then,
f(Carol) = C and f(Robert) = R.

In more advanced mathematics courses, many important functions take other
functions as inputs, and give functions as outputs!

ASSUMPTION
IN THIS TEXT

all functions are
assumed to be
of this type:
f : D(f)→ R,
with D(f) ⊂ R

In this course, the functions that we deal with primarily are those that take a
single input (a real number), and give a single output (a real number). For ease
of notation, then, henceforward in this text, unless otherwise stated, functions
are ASSUMED to be functions of one variable, where both the input and output
are real numbers. That is, all functions are assumed to be of the form

f : D(f)→ R ,

where D(f) ⊂ R.
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Now we are in a position to begin talking precisely about combining functions
to get new functions.

the sum function
(f + g)(x) := f(x) + g(x)

Consider functions f and g. Define a new function, with name f + g, by the
following rule:

(f + g)(x) := f(x) + g(x)

What does this function f + g DO? Answer:
• it takes an input x
• it lets f act on x to get f(x)
• it lets g act on x to get g(x)
• it gives, as its output, the sum f(x) + g(x)

What is the domain of this new function f + g? In order for f to know how to
act on x, we must have x ∈ D(f). In order for g to know how to act on x, we
must also have x ∈ D(g). Any two real numbers f(x) and g(x) can be added.
Thus:

D(f + g) = {x |x ∈ D(f) and x ∈ D(g)}
= D(f) ∩ D(g)

EXERCISE 2 ♣ 1. Let f(x) = x2 and g(x) =
√
x. Find the new function f + g. What is

the domain of f + g? Be sure to write complete mathematical sentences.

♣ 2. Given arbitrary functions f and g, define a new function f − g in the
natural way. What is the domain of f − g? Be sure to write complete
mathematical sentences.

♣ 3. Given arbitrary functions f and g, what should a function with the
name fg do? Write down a precise definition. What is the domain of fg?
Be sure to write complete mathematical sentences.

EXERCISE 3 Let f be any function, and let k ∈ R. Define a new function kf by the rule:

(kf)(x) := k · f(x)

♣ 1. What does the dot ‘·’ mean in the definition above? You should be able
to figure this out from context.

♣ 2. In words, what does the function kf do?

♣ 3. What is the domain of the function kf? Write a complete mathematical
sentence.

♣ 4. If f(x) = x3 and k = 4, what is kf?

quotient function

( f
g )(x) := f(x)

g(x)

As a second example, consider functions f and g. Define a new function, with
name f

g , by the rule:

(
f

g
)(x) :=

f(x)

g(x)

What is the domain of this new function f
g ? There are three things to worry

about. Firstly, f must know how to act on x in order to get f(x), so we must
have x ∈ D(f). Similarly, we must have x ∈ D(g). But there is an additional
requirement; since division by zero is not allowed, we must also have g(x) 6= 0.
Thus:

D(
f

g
) = {x |x ∈ D(f) and x ∈ D(g) and g(x) 6= 0}
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FF

associativity of
the logical ‘and’

An important point is being glossed over here. The logical ‘and’ is associative;
that is,

(A ∧B) ∧ C ⇐⇒ A ∧ (B ∧ C) ,

as the truth table below illustrates. This allows us to say, without ambiguity,
‘A and B and C’ (without parentheses). Since intuition leads to this result
anyway, students should believe the preceding argument without any digression.

A B C A ∧B (A ∧B) ∧ C B ∧ C A ∧ (B ∧ C)

T T T T T T T
T T F T F F F
T F T F F F F
T F F F F F F
F T T F F T F
F T F F F F F
F F T F F F F
F F F F F F F

↑ ↑
Same! Same!

EXERCISE 4 ♣ 1. Define a function named
√
f by the rule:

(
√

f)(x) :=
√
f(x)

What is the domain of
√
f? Be sure to write a complete mathematical

sentence.
♣ 2. If f(x) = x3, what is D(

√
f)?

♣ 3. If g(x) = −x2, what is D(
√
g)?

composite functions We next talk about a very important way of ‘combining’ functions: function
composition.

Consider the ‘combination’ of functions illustrated in the diagram at left. Here,
an input x is dropped into the f box, giving the output f(x). Then, this
output f(x) is dropped into the g box, giving the output g

(
f(x)

)
. This type

of combination of functions—characterized by one box acting in series with
another box—is called function composition.

More precisely, consider functions f and g. A new function, named g ◦ f (read
as ‘g circle f ’ or ‘g composed with f ’) is defined by the rule:

(g ◦ f)(x) := g
(
f(x)

)
This notation can be a little tricky: although the ‘g’ appears first in the name
g ◦ f , it doesn’t ACT first! In the function g ◦ f , the right-most function f acts
first (it is ‘closest’ to x), then g acts. Analyze the definition again:

(g ◦ f)(x) :=

g acts last︷ ︸︸ ︷
g
(

f(x)︸︷︷︸
f acts on x first

)
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EXERCISE 5

practice with
composition

♣ 1. Write down a precise definition of the function f ◦ g. Draw a series of
boxes that describes this function. Which function acts first?

♣ 2. More than two functions can be composed. For example, one can define
a new function f ◦ g ◦ h by the rule:

(f ◦ g ◦ h)(x) := f(g(h(x)))

What function acts first? Second? Third? Draw a series of boxes that
describes f ◦ g ◦ h.

EXAMPLE

viewing a function
as a composition

Consider the function f defined by the rule f(x) = x2 + 1. This function takes
an input, squares it, and then adds 1. Thus, it can be viewed as a composition:

Define functions S (for ‘square’) and A (for ‘add’) by S(x) = x2 and A(x) =
x + 1. Then:

(A ◦ S)(x) = A(S(x)) = A(x2) = x2 + 1

Thus, the function f has been viewed as a composition A ◦ S.

EXERCISE 6 Consider the function f defined by the rule f(x) = (x + 1)2.

♣ 1. Describe, in words, what f does to a typical input x.

♣ 2. Draw a series of ‘boxes’ that describe what f does.

♣ 3. As in the previous example, view f as a composition of functions.

domain of
the function
g ◦ f

Now, return to the function g ◦ f defined by the rule:

(g ◦ f)(x) := g
(
f(x)

)
What is the domain of this new function g ◦ f? There are two things to worry
about. Firstly, f must know how to act on x, so we must have x ∈ D(f).
Secondly, g must know how to act on f(x). That is, outputs from f are only
acceptable IF they happen to be in the domain of g. To say this precisely:

D(g ◦ f) = {x |x ∈ D(f) and f(x) ∈ D(g)}
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EXAMPLE

finding D(g ◦ f)

Let f and g be defined by f(x) = −x3 and g(x) =
√
x. What is D(g ◦ f)?

First,
(g ◦ f)(x) := g

(
f(x)

)
= g(−x3)

=
√
−x3

By the domain convention, then:

D(g ◦ f) = {x | − x3 ≥ 0} = (−∞, 0]

Although D(f) = R, not all these inputs are allowed for the new function g ◦ f .
It is also required that f(x) (the input to g) be nonnegative; and this happens
only when x ≤ 0.

A slightly different technique is illustrated to find the domain of the ‘reverse’
composite, D(f ◦ g):

D(f ◦ g) = {x |x ∈ D(g) and g(x) ∈ D(f)}
= {x |x ≥ 0 and

√
x ∈ R}

= {x |x ≥ 0}
= [0,∞)

Be sure that you understand every step in this mathematical sentence!

EXERCISE 7 ♣ In the example above, the domain of g◦f was found to be (−∞, 0]. Find this
result a different way, by completing the following mathematical sentence:

D(g ◦ f) = {x |x ∈ D(f) and f(x) ∈ D(g)}
= {x |x ∈ ??? and ?????????}
= ?????

EXERCISE 8 Define functions f and g by f(x) = |x| and g(x) = 1
x .

♣ 1. Write a formula for f ◦ g, and find its domain.

♣ 2. Write a formula for g ◦ f , and find its domain.

♣ 3. Are f ◦ g and g ◦ f the same functions in this case? (That is, do they
have the same domains, and use the same rule to obtain their outputs?)

♣ 4. Is it always true that f ◦ g = g ◦ f? If not, give an example where
f ◦ g 6= g ◦ f .

When forming the composition g ◦f from functions f and g, the nicest possible
situation is when g knows how to act on ALL the outputs f(x). We need a
name for this set of outputs from f , and this is the next topic of discussion.

DEFINITION

the range of
a function f ,
R(f)

Let f be a function with domain D(f). Then, the range of f , denoted by R(f),
is the set of all outputs obtained from f as x takes on all possible input values.
Precisely:

R(f) := {f(x) |x ∈ D(f)}
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black box
interpretation
of the range

Here’s the ‘black box’ interpretation of the range: drop all possible inputs into
the top of the box. Gather together all the outputs that come out of the box.
This set forms the range.

finding the range
from a graph

If the graph of a function is available, then it is easy to determine the range:
just imagine ‘collapsing’ the graph into the y-axis. The set of all y-values that
are taken on forms the range of the function.

EXAMPLE

finding R(f)

Let f be the function defined by the rule f(x) = x2. By the domain convention,
D(f) = R. What is the range?

R(f) := {f(x) |x ∈ D(f)}
= {x2 |x ∈ R}
= [0,∞)

The question is also easily answered by studying the graph of f . If the graph
is ‘collapsed’ into the y-axis, one obtains the interval [0,∞).
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EXAMPLE

finding R(f)

Now consider f : [−1, 4)→ R, f(x) = x2. The graph of f is shown below:

As f runs through all the elements in its domain, the only outputs obtained
are those in the set [0, 16). Thus:

R(f) = [0, 16)

EXAMPLE

finding the range
of a constant function

Consider the constant function given by the rule g(x) = 16. By the domain
convention, D(g) = R. But as g acts on all possible inputs, the only output
obtained is 16. Thus, R(g) = {16}. (♣ Why is it INCORRECT to say
R(g) = 16 ?)

EXERCISE 9

finding the range

Find the domains and ranges of the following functions. Be sure to write com-
plete mathematical sentences.

♣ 1. f1(x) =
√
x + 1

♣ 2. f2(x) =
√
x + 1

♣ 3. g : [0, 4]→ R given by g(x) =
√
x

♣ 4. h : {0} ∪ (1, 3]→ R given by h(x) =
√
x

QUICK QUIZ

sample questions

1. Let A and B be sets. Write a precise definition of A ∩B. If A = [1, 3) and
B = {1, 2, 3}, what is A ∩B?

2. TRUE or FALSE:
• [1, 3] ⊂ {1, 3}
• {1, 3} ⊂ [1, 3]

• For all sets A and B, A ∩B ⊂ A.

3. Let f and g be functions. Give a precise definition of the new function f+g.
What is the domain of f + g? Be sure to write a complete mathematical
sentence.

4. Define functions a and b so that the function f(x) = 2x− 1 can be written
as a composition, f = a ◦ b.

5. What is the range of the function f : Z→ R, defined by

f(x) =

{
1 for n > 1

−1 for n ≤ 1 ?
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KEYWORDS

for this section

Set union (A∪B), set intersection (A∩B), subset notation (A ⊂ B), assump-
tion about functions in this text, combining functions to form new functions,
determining the domain of the ‘new’ function, composite functions (f ◦ g), do-
main of f ◦ g, range of a function f , notation R(f) .

END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a sentence (SEN). The
context will determine if a variable is a number, a function, or a set.

♣ For any sentence, state whether it is TRUE (T), FALSE (F), or CONDI-
TIONAL (C).

1. A ∪B

2. A ⊂ A ∪B

3. A ⊂ B

4. R(f)

5. R(f) = R
6. {x | x ∈ D(f) and f(x) ∈ D(g)}
7. x ∈ D(f) and f(x) ∈ D(g)

8. (f + g)(x) := f(x) + g(x)

9. {a} ∈ {a, b}
10. {a} ⊂ {a, b}

Find the range of each of the following functions. (You graphed these functions
in §2.2, End-Of-Section Exercises, 11–14.)

11. f : [−1, 1]→ R, f(x) = (x + 1)3

12. g : (−∞, 4]→ R, g(t) = 3|t− 2| − 1

13. h : {1, 4, 9, 16, 25} → R, h(t) =
√
t

14. f : { 1
2 ,

1
3 ,

1
4} → R, f(x) = 1

x



2.4 One-to-One Functions and Inverse Functions

Introduction Recall that a function satisfies the property that for every input there exists a
unique output. Thus, the graph of a function must pass a vertical line test.

Note what this definition does not say: it does not say that every output must
be associated with a unique input. To illustrate this idea, consider the function
f given by the rule f(x) = x2:

When 5 is the input, f(5) = 25 is the output; and when −5 is the input,
f(-5) = 25 is again the output. In terms of a ‘black box’, if we were to try
to use the box ‘backwards’ and put the output 25 in the bottom, to see what
input led to that output, the box would object: it doesn’t know which input to
choose. From a graphical point of view, functions need not pass a horizontal
line test.

one-to-one functions;
informal discussion

If the graph of a given function does indeed pass a horizontal line test, then
this function has the additional property that for every output, there is a unique
input. In this case, the function is given a special adjective: it is called a one-
to-one function (abbreviated as ‘1-1’). The name is completely appropriate, for
in this case there is a one-to-one correspondence between the outputs and the
inputs: for every input, there exists a unique output (the ‘function’ condition),
AND for every output, there exists a unique input (the ‘1-1’ condition).

Observe that every 1-1 function is firstly a function; we do not talk about the
1-1 property for non-functions.

In terms of a ‘black box’, the 1-1 property can be described as follows: we can
stick an output in the bottom, and say, without ambiguity, what input must
have been put in to produce this output. This is an extremely nice relationship
between inputs and outputs: the inputs uniquely identify the outputs, and the
outputs uniquely identify the inputs.

some symbols:
∀ , ‘for all’
∃ , ‘there exists’
! , ‘a unique’

The following phrases occur so frequently in mathematics that there are special
symbols for them:

The symbol ‘ ∀ ’ is read as ‘for all’ or ‘for every’.

The symbol ‘ ∃ ’ is read as ‘there exists’.

The symbol ‘ ! ’ is read as ‘a unique’.

These symbols will be used freely throughout the text.

92
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EXAMPLE

a 1-1 function

The function f given by f(x) =
√
x is a one-to-one function. It is a function

because for every x ∈ D(f), there exists a unique y ∈ R(f). Thus the graph
of f passes the vertical line test. It is one-to-one because for every y ∈ R(f),
there exists a unique x ∈ D(f). Thus, the graph of f passes the horizontal line
test.

using the
symbols ∀, ∃, !

The properties discussed in the previous paragraph can be stated concisely using
the special symbols provided by the language of mathematics. For example, the
‘function’ condition

∀ x ∈ D(f), ∃ ! y ∈ R(f)

is read as: for all x in the domain of f , there exists a unique y in the range
of f . If this sentence were to appear in text, instead of being displayed (that
is, set off and centered), then it would begin with the words ‘For all’ instead of
the symbol ∀. It is not good style for a text sentence to begin with a symbol.
However, in display mode, it is acceptable to begin a sentence with a symbol.

EXERCISE 1 ♣ Write the following sentence using appropriate symbols: For every y in the
range of a function f , there exists a unique x in the domain of f . What
condition is being described here?

EXERCISE 2 ♣ 1. Draw a graph of a non-function.

♣ 2. Draw a graph of a function that is not 1-1.

♣ 3. Draw a graph of a function that is 1-1.

♣ 4. Draw the graph of a relation between x and y such that y is a function
of x and x is a function of y. Can you use a previous example?

♣ 5. Draw the graph of a relation between x and y such that y is a function
of x but x is not a function of y. Can you use a previous example?

♣ 6. Is it possible to be a one-to-one function without being a function? Why
or why not?
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FF

precise definition of
a 1-1 function

Here’s the precise definition of a 1-1 function:

Let f be a function. Then:

f is 1-1 ⇐⇒ ∀ x, y ∈ D(f), f(x) = f(y) =⇒ x = y

This definition says: Whenever two outputs are the same, then the correspond-
ing inputs must be the same. This is the form most often used if one is asked
to prove that a function is 1-1.

However, this definition requires an understanding of the mathematical sentence
called an implication; that is, a sentence of the form A ⇒ B. Implications are
discussed in a future section.

inverse function
f−1

Whenever a function f is 1-1, then another function, called f−1 (read as ‘f in-
verse’ ) can be defined that ‘undoes’ what f does! The picture below illustrates
this fact:

Given an input x, the function f sends it to the (unique) output f(x).

Given this output f(x), the function f−1 sends it back to the (unique) input x.

Note: if f is NOT 1-1, then we can’t do this, as illustrated below.
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relationship between
a function f and
its inverse f−1

For a 1-1 function f , the relationship between f and its inverse f−1 can be
summarized via the sketches below. Look at the graph on the left. Begin with
an x in the domain of f . The function f sends this input to f(x). Then, the
function f−1 takes f(x) as its input, and sends us to the output f−1(f(x)).
But this output is just where we started: f−1(f(x)) = x !

∀ x ∈ D(f), f−1(f(x)) = x ∀ y ∈ R(f), f(f−1(y)) = y

EXERCISE 3 ♣ Look at the right-most preceding graph, labeled ∀ y ∈ R(f), f
(
f−1(y)

)
= y.

Explain, in words, what is happening here. Why do you suppose the dummy
variable ‘y’ was used to represent a typical element of the range of f?

EXAMPLE

finding f−1

Problem: Consider the function f given by the rule f(x) = 2x + 5. Show that
f is 1-1. Then, find f−1.

Solution: A quick graph of f shows that it passes both vertical and horizontal
line tests, and hence is 1-1.

Now, let’s find its inverse, in two different ways.

Method I (mapping approach): What does f DO? Well, it takes an input,
multiplies it by 2, then adds 5. How could we UNDO this process? Just work
backwards, ‘reversing’ the operations: first, subtract 5; then, divide by 2. Thus,
f−1(x) = x−5

2 .
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Method II (algebraic approach): To find f−1, use the fact that f and f−1

must satisfy the relationship f(f−1(x)) = x. Treat the output f−1(x) as the
‘unknown’, and solve for it!

f(f−1(x)) = x (f and f−1 must satisfy this)

2
(
f−1(x)

)
+ 5 = x (definition of f)

f−1(x) =
x− 5

2
(solve for f−1(x))

EXAMPLE

finding f−1

Problem: Find the inverse function for f(x) = 2x−3
5 by thinking about undoing

what f does. Then check your answer by verifying that both f−1(f(x)) = x
and f(f−1(x)) = x (for appropriate x).

Solution: Observe that f takes an input, multiplies it by 2, subtracts 3, then
divides by 5. To undo this, f−1 must take its input, multiply by 5, add 3, and
divide by 2, so that f−1(x) = 5x+3

2 .

To check, observe that:

f−1(f(x)) = f−1
(2x− 3

5

)
=

5( 2x−3
5 ) + 3

2
=

2x− 3 + 3

2
= x

and

f(f−1(x)) = f

(
5x + 3

2

)
=

2
(
5x+3

2

)
− 3

5

=
5x + 3− 3

5
= x

EXERCISE 4 The following functions are 1 − 1. (Why?) Find the inverse functions in two
different ways: using a ‘mapping approach’, and an ‘algebraic approach’. Verify
the two conditions: f−1(f(x)) = x and f(f−1(x)) = x.

♣ 1. f(x) = 4x + 1

♣ 2. g(x) = 3−5x
7
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relationship between
the graphs of f and f−1

The points on the graph of f are of the form:

{(x, f(x)) | x ∈ D(f)}

The points on the graph of f−1 are of the form:

{(f(x), x) | x ∈ D(f)}

That is, whenever a point (a, b) is on the graph of f , there is a point (b, a) on
the graph of f−1. This situation leads to a nice relationship between the graphs
of f and f−1, which is called symmetry about the line y = x, and is discussed
next.

symmetry about
the line y = x

Graph the line y = x, and then plot a point (a, b) not on this line. Let’s use
the line y = x to ‘find’ the point (b, a), as described below.

Refer to the left-most sketch below. First, go vertically from the point (a, b) to
the line y = x, arriving at the point labeled P1. The x-coordinate of P1 is the
same as that of (a, b) (why?), so P1 must have coordinates (a, ???). But, P1 lies
on the line y = x, so its x and y coordinates are the same. Thus, P1 must be
the point (a, a). Label the y-coordinate of P1.

Now refer to the middle sketch below. Go horizontally from the point (a, b) to
the line y = x, arriving at the point labeled P2. This point P2 has the same
y-coordinate as (a, b) (why?), and hence P2 is of the form (???, b). But P2 lies
on the line y = x, so its x and y coordinates are the same. Thus, P2 must be
the point (b, b). Label the x-coordinate of P2.

Look at the right-most sketch below. We used (a, b) and the line y = x to find
(b, a). A square is formed (with side of length a − b). The line y = x forms
a diagonal of this square. Thus, if we were to ‘fold’ the graph along the line
y = x, the points would land on top of each other.

In other words, if you have a point (a, b) and WANT the point (b, a), just ‘fold’
along the line y = x! Curves that have the property that they lie atop each
other, when folded along the line y = x, are said to be symmetric about the line
y = x.
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Now, given the graph of f , it is easy to find the graph of f−1. Just ‘fold’ along
the line y = x (mentally), and sketch in the resulting curve, as illustrated below.

EXERCISE 5 ♣ 1. On the graph below, sketch in a curve that is symmetric to the one
drawn, about the line y = x.

♣ 2. Convince yourself that f(x) = x3 is 1 − 1. Then, find f−1. Finally,
graph both f and f−1 on the same graph.

a calculator exercise Pull out your hand-held calculator. Find keys that are labeled ‘ex’ and ‘ln’.
(Ask you instructor for help, if necessary. Occasionally they are labeled slightly
differently.) Now, try the following exercise:

Input the number 2.
Press the ex key. (Something like 7.39 will be displayed.)

Press the ‘ln’ key. (2 is displayed again.)

Repeat this exercise, starting with 4.2 instead of 2.
Then repeat again, starting with −7.02.
What’s happening here?
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the exponential function;

ex
The key labeled ex gives you access to the exponential function. The ‘e’ that
appears here is the irrational number, e ≈ 2.72. Thus, the exponential function
takes an input x, and gives the output ex. That is, it raises the number e to
the input power. The graph of the exponential function is shown below.

Here are some important properties of the exponential function:

• The domain is R.

• The range is (0,∞). In particular, ex is never equal to zero.

• As x approaches infinity, so does ex. (Which gets bigger faster, x or ex?)

• As x approaches negative infinity, ex approaches zero.

FF In order to discuss the exponential function precisely, one must make sense of
things like eπ; what is meant by e to an irrational power? There are a variety
of approaches to resolving problems such as this. One approach is to show that
the power series

1 + x +
x2

2!
+

x3

3!
+ · · ·

converges for all x, and then use this series to define ex. Since multiplication
and addition is defined for all real numbers, things like eπ then make sense.

Why the name
‘exponential function’?

The exponential function is named as such, because it satisfies the familiar laws
of exponents. For all real numbers x and y :

e0 = 1

exey = ex+y (same base, multiplied, add the exponents)

ex

ey
= ex−y (same base, divided, subtract the exponents)

(ex)y = exy (power to a power, multiply the exponents)

e−x =
1

ex
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the natural logarithm
function;

lnx

Give the exponential function the name f ; that is, define f(x) := ex. Observe
that f is 1-1. Therefore, it has an inverse f−1. The name given to this inverse is
the natural logarithm function, with output denoted by lnx. That is, f−1(x) =
lnx.

The name of the natural logarithm function is ‘ln’; when the input is x, the
output is often denoted by ‘lnx’ instead of ‘ln(x)’. That is, the parentheses
that are usually used in function notation are suppressed. However, in cases
that might be ambiguous, parentheses are used: for example, ‘ln 2x + 5’ is
ambiguous; does the author want ‘(ln 2x) + 5’, or ‘ln(2x + 5)’ ? In cases like
this, parentheses are used to avoid confusion.

The key on your calculator labeled ‘ln’ (or, on some calculators, ‘log’) gives you
access to the natural logarithm function. (Check that you’ve got the right key
by finding ln 2.72. You should get a number very close to 1, NOT close to 0.4!)
The graph can be formed by reflecting the graph of f(x) = ex about the line
y = x; this graph is shown below.

EXERCISE 6 Use your knowledge that the natural logarithm function is the inverse of the
exponential function to answer the following questions:

♣ 1. What is the domain of the natural logarithm function?

♣ 2. What is the range of the natural logarithm function?

♣ 3. As x approaches infinity, what happens to lnx?

♣ 4. As x gets closer and closer to zero (from the right), what happens to
lnx?



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 101

the classic
‘inverse pair’

Since f(x) = ex and f−1(x) = lnx are inverse functions, they ‘undo’ each other.
That is:

f−1(f(x)) = x ∀ x ∈ D(f)

Rewriting in terms of ex and lnx, we have:

ln(ex) = x ∀ x ∈ R

Also:
f(f−1(x)) = x ∀ x ∈ R(f)

That is:
eln x = x ∀ x ∈ (0,∞)

EXERCISE 7 Let f(x) = ex, so that f−1(x) = lnx.

♣ 1. Check that the correct translation of

f−1(f(x)) = x ∀ x ∈ D(f)

is:
ln(ex) = x ∀ x ∈ R

♣ 2. Check that the correct translation of

f(f−1(x)) = x ∀ x ∈ R(f)

is:
eln x = x ∀ x ∈ (0,∞)

uses for the
exponential and
logarithmic functions

The exponential and natural logarithm functions arise in many practical ap-
plications in business and the life sciences. An application of the exponential
function is addressed in the next example.

simple interest Suppose that $2,000 is put in a bank offering an annual interest rate of 10%.
After one year, interest of (0.10)($2000) = $200 is earned, so the total amount
in the bank is:

$2000 + $200 = $2200

Remember that simple interest is computed using the formula:

INTEREST = (PRINCIPAL)(RATE)(TIME)

The units must agree; if the principal is in dollars, and the rate is annual (say,
10%
year ), then time must have units of years. In this case, the time units will

cancel, leaving units of:

($)(
1

year
)(year) = $

Simple annual interest is not very desirable: who wants to wait an entire year
before having any interest added in?
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compounding Most banks offer ‘compounding’; that is, they add in the accumulated interest
at regular intervals.

For example, suppose a bank offers 10% annual interest, compounded semi-
annually. Then, after 6 months (0.5 years), the accumulated interest of

(principal)(rate)(time) = (2000)(.10)(.5) = 100

will be added in, yielding a total of:

2000 + (2000)(.10)(.5) = 2100

It is conventional to suppress all units for intermediate calculations.

After six more months, interest of (2100)(.10)(.5) = 105 will be added in, yield-
ing a total of:

2100 + 105 = 2205

This is $5 more than the amount obtained with simple annual interest.

EXERCISE 8 ♣ Figure out how much will be in the bank after one year, if compounded
quarterly (every 3 months).

continuous
compounding

The best situation that can occur is if, at each instant, the accumulated interest
is added in. This is called continuous compounding. It can be shown that the
exponential function describes this situation! That is, P dollars, compounded
continuously at an annual interest rate r, for t years, will grow to Pert dollars.
For example, $2000 at 10% annual interest rate, compounded continuously, will
grow to 2000e(.10)(1) = $2, 210.34 after one year!

EXERCISE 9 Suppose $5,000 is put in a bank. How much will there be after 2 years, assuming:

♣ 1. 8% simple annual interest?

♣ 2. 8% annual interest, compounded semi-annually?

♣ 3. 8% annual interest, compounded continuously?

♣ 4. How much money is gained by having continuous compounding, as
opposed to simple annual interest?

we will see
the exponential
and natural logarithm
functions again

There are further properties of the exponential and natural logarithm functions
that make them useful tools in calculus. Thus, we will see these functions again
as we proceed throughout this text.

On to calculus! These first two chapters, now drawing to a close, have been preparatory chap-
ters. Some basic algebra skills were reviewed. Elements of the language of
mathematics that will be needed throughout the course were developed. Fi-
nally, we are ready to begin the study of calculus.

The central idea in calculus is that of a limit. Without this concept, it would be
impossible to speak precisely about continuity, differentiation, or integration.
Thus, the next chapter begins with the study of limits.
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QUICK QUIZ

sample questions

1. Is f(x) = x2 a one-to-one function? Why or why not?

2. Translate this mathematical sentence:

∀ y ∈ R(f), ∃ ! x ∈ D(f)

What condition is being described here?

3. Sketch the graph of a function f satisfying the following properties: f is
one-to-one, D(f) = [0,∞), R(f) = (−∞, 0] .

4. Write down the two equations that describe the relationship between a 1-1
function f and its inverse f−1.

5. Show that f(x) = 1
3x − 1 is 1-1 (say, by graphing). Then, find f−1, using

any appropriate method.

KEYWORDS

for this section

One-to-one function and defining condition, the symbols ∀, ∃, !, inverse function
f−1, precise conditions describing the relationship between a function and its
inverse, finding a formula for f−1 (in two ways), symmetry about the line
y = x, graphing f−1, the exponential function and its graph, the exponent laws,
the natural logarithm function and its graph, conditions relating ex and lnx.

END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a sentence (SEN). The
context will determine the appropriate variable type (number, set, function).

♣ For any sentence, state whether it is TRUE (T), FALSE (F), or CONDI-
TIONAL (C).

1. f−1(x)

2. ∀ y ∈ R(f), ∃ ! x ∈ D(f)

3. If f and f−1 are inverse functions, then f(f−1(x)) = x ∀ x ∈ R(f).

4. If f and f−1 are inverse functions, then f(f−1(y)) = y ∀ y ∈ R(f).

5. f(f−1(x))

6. f is 1-1

7. For all real numbers x, ln(ex) = x .

8. For all real numbers x, eln x = x .

9. lnx

10. ex = 3

Sketch the graphs of the following functions, by ‘building them up’ from simpler
pieces. Find the domain and range of each function.

11. f(x) = 3x2 − 2

12. g(x) = ln(x + 2)

13. h(x) = ex+3 + 5

14. f(x) = − ln(x− 4)



NAME
SAMPLE TEST, worth 100 points, Chapters 1 and 2
Show all work that leads to your answers. Good luck!

1.
(8 pts)

The following symbols are used for important sets of numbers. State the NAME of each
set, and GIVE A PRECISE DESCRIPTION of the numbers in each set. The first one
is done for you, as a sample.

(0 pt) Q is the set of rational numbers.
These are numbers that can be written in the form p

q , where p and q are

integers, and q 6= 0.

(2 pts) R
(2 pts) Z
(2 pts) C
(1 pt) Give an example of an irrational real number.

(1 pt) Give an example of a positive real number that is not an integer.

2.
(12 pts)

Identify the following equations as TRUE, FALSE, or CONDITIONAL:

(1 pt)
√

(−3)2 = −3

(1 pt) −42 = −16

(1 pt) x3 = x · x · x
(1 pt) x = 3

(2 pts) What does it mean to solve an equation in 1 variable? (Answer in English.)

(2 pts) How many variables are there in this equation? 3x + x2 − 2 =
√
x

(2 pts) Solve the equation x2 = 3, taking the universal set to be the real numbers.

(1 pt) Solve the equation x2 = 3, taking the universal set to be Q.

(1 pt) What is the universal set assumed to be in this course, unless otherwise spec-
ified?

3.
(14 pts)
(2 pts each)

TRUE or FALSE. (Circle the correct response.)

T F For all real numbers a and b, (a + b)2 = a2 + b2.

T F The number 3
3·257·5402 has a finite decimal expansion.

T F {x | a < x < b} = {x | a < x and x < b}
T F 0 ∈ (0, 1]

T F {0} ⊂ [0, 1]

T F x = 3 ⇐⇒ x2 = 9

T F The symbol ⇐⇒ is used to compare numbers.

104
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4.
(9 pts)

Consider the graph shown.

(3 pts) Is y a function of x? Why or why not?

(3 pts) Is x a function of y? Why or why not?

(3 pts) Sketch the graph of a function f satisfying the following properties: f is one-
to-one, D(f) = [−1, 2), and R(f) = [0, 6].

5.
(12 pts)

In this question, you are asked to sketch several graphs. Put your graphs in the space
provided below.

(3 pts) (a) Graph the equation x = 5, viewed as an equation in 1 variable.

(4 pts) (b) Graph the equation x = 5, viewed as an equation in 2 variables (x and y).

(5 pts) (c) Graph the equation y − 3 = |x− 2|.

6.
(15 pts)

The ‘black box’ shown corresponds to a function. Please answer the following questions:

(2 pt) What is the NAME of this function?

(2 pt) What is the output of this function, when the input is y?

(3 pts) Graph this function in the space provided below.

(2 pt) Is this a 1− 1 function? (YES or NO)

(1 pt) What is f(−2)? (Write a complete sentence: f(−2) = ???)

(1 pt) What is f(x + h)?

(2 pt) What is D(f)?

(2 pts) What is R(f)?
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7.
(6 pts)

(1 pt) There are two equations that describe the relationship between a 1-1 function
f and its inverse f−1. One of these looks something like this: f

(
f−1(x)

)
=

x ∀ x ∈ ????. What must ???? be to get a true statement?

(2 pts) What is the second equation that describes the relationship between f and
f−1?

(3 pts) The function g given by g(x) = 7x− 2 is 1− 1. Find the inverse function g−1.

8.
(7 pts)

The following questions all refer to the function f whose graph is shown below.

Find the following, if they exist. Be sure to write complete mathematical sentences.

(2 pts) f(1) f(3.1)

(1 pts) D(f)

(1 pts) R(f)

(2 pts) {x | f(x) = 0}
(1 pts) {x | f(x) = 4}

9.
(3 pts)

Let f and g be functions.

(2 pts) Define, in the obvious way, a new function named f + g. Express the formula
using the dummy variable t.

(1 pt) What is the domain of this new function f + g? Answer using a complete
mathematical sentence.

10.
(4 pts)

Solve the equation x3 − 3x + 2 = 0. Be sure to write complete mathematical sentences.
(HINT: Note that the number 1 is a root of x3 − 3x + 2.)
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11.
(3 pts)

(3 pts) Graph the function f : (0, 1) ∪ (2, 3)→ R, f(x) =
√
x.

12.
(7 pts)

(3 pts) Let f and g be functions. What is the domain of the composite function f ◦g?
(Write a complete mathematical sentence.)

(4 pts) Consider the function g defined by the rule g(x) = (3x−1)2. This function can
naturally be viewed as a composition of three functions. Tell me what each
box below does.
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CHAPTER 3

LIMITS AND CONTINUITY

In this chapter, the study of calculus begins. The
idea of a limit—getting arbitrarily close to some-
thing (without necessarily getting there!)—is fun-
damental to calculus. Without it, it would be im-
possible to speak precisely of continuity, differen-
tiation, and integration.

This chapter, therefore, begins by studying limits.
The definition of limit is then used to make precise
the idea of a continuous function.
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3.1 Limits—The Idea

continuity;

when inputs are ‘close’,
corresponding outputs
are ‘close’

Certain functions have the property that when their inputs are close, so are
their outputs. The mathematical idea that addresses this issue is continuity.
Intuitively, a function is continuous if its graph can be traced without picking
up your pencil; it can’t have any ‘breaks’. In other words, for a continuous
function, when inputs are ‘close together’ the corresponding outputs should be
‘close together’. This certainly doesn’t happen in the second and third sketches
below: in both cases, x1 is ‘close to’ x2, but f(x1) is not ‘close to’ f(x2).

What is meant
by numbers being ‘close’?

The idea of ‘closeness’ is not precise, at least in the English sense. Are the
numbers 2 and 3 ‘close’? How about 2 and 2.01? How about 2 and 2.00001?

Just how ‘close’ can two different numbers be? The answer is really quite simple:
as close as you want. The real numbers have a beautiful property: given any
two real numbers a and b, if they’re not equal, then there’s another real number
between them.

the mathematical tool
that addresses
the idea of
‘numbers being close’
is the limit

In order to discuss continuity, it is first necessary to have a mathematical tool
that addresses, precisely, the notion of ‘numbers being close’. The tool that
accomplishes this is the mathematical limit. In our first—informal—discussion
of limits, the word ‘close’ will be used in an intuitive sense. However, in the
next section, you will see how this notion of ‘closeness’ is addressed precisely.
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some initial
assumptions
about the functions
we’re working with

Suppose, for now, that any function f we’re working with has the following
property: it is defined near a number c, but not necessarily at c. We want
to guarantee that there are inputs arbitrarily close to c (on both sides) that f
knows how to act on. This requirement can be phrased more precisely—there
must be numbers a and b such that:

(a, c) ∪ (c, b) ⊂ D(f)

This requirement will be weakened when things are made precise in the next
section.

the mathematical
sentence,
lim
x→c

f(x) = l

The mathematical sentence
lim
x→c

f(x) = l (*)

is read as:

The limit of f(x), as x approaches c, is equal to l.

This sentence involves a function f , a constant c, and a constant l. The ‘x’
that appears twice (once in ‘x → c’, and once in ‘f(x)’) is a dummy variable;
it could equally well be called ‘t’ or ‘y’ or ‘ω’. As you’ll see momentarily, x
represents a number that is getting closer and closer to c.

The sentence can be true or false. We will be primarily interested in cases when
it is true.

When is the sentence
lim
x→c

f(x) = l

true?

In order for the mathematical sentence (*) to be true, the following two condi-
tions must be satisfied:

• as x gets close to the number c coming in from the right-hand side, the
corresponding function values f(x) must get close to l; and

• as x gets close to c from the left-hand side, the corresponding function
values f(x) must also get close to l.

Thus, in order for the sentence limx→c f(x) = l to be true, the following condi-
tion must be satisfied: when x is close to c, f(x) must be close to l.

limx→c f(x) = l,
text style

If the sentence lim
x→c

f(x) = l is typed in text (instead of displayed), it requires

extra space between the lines, to make room for the ‘x → c’. Lots of people
think that this extra space doesn’t look very good. Therefore, the sentence is
usually typeset differently in text, like this: limx→c f(x) = l. The phrase x→ c
is moved over, merely to prevent the excess space between lines.
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Evaluate the limit
lim
x→c

f(x)
You will frequently be asked to:

Evaluate the limit lim
x→c

f(x).

This means:

Find a number l so that the sentence lim
x→c

f(x) = l is TRUE.

(It will be shown that if there is such a number l, then it is unique.) If no such
number l exists, then we say that:

The limit lim
x→c

f(x) does not exist.

EXAMPLE

finding the limit
of a function

Let f(x) = 2x. Then:
lim
x→2

f(x) = 4

We could have instead said:

The mathematical sentence lim
x→2

f(x) = 4 is true.

However, mathematicians usually have no need to say things that are false
(except, perhaps, in a book on logic). Therefore, when a mathematical sentence
is stated, it is assumed to be true. That is, when a mathematician states:

lim
x→2

f(x) = 4

this means that the sentence is true.

Now, why is it that this sentence is true? It is because as x approaches 2 from
either side, the function values are getting close to 4.

For example, look at the table below. When x is 1.99, f(x) is 3.98. That is,
f(1.99) = 3.98. Also, when x is 2.001, f(x) is 4.002. That is, f(2.001) = 4.002.
These are examples of the fact that when x is close to 2, f(x) is close to 4.

Now look at the graph of f , also given below. This graph clearly shows that
when the inputs are close to 2, the corresponding function values are close to
4.

Note in this case that f is defined at 2, and f(2) = 2 · 2 = 4. As x approaches
2, the corresponding function values f(x) get close to f(2). That is:

lim
x→2

f(x) = f(2)
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EXERCISE 1 ♣ 1. Let f(x) = 2x. Evaluate each of the following limits. Be sure to
write complete mathematical sentences. (That is, if asked to evaluate
limx→2 f(x), don’t just say 4. Instead, write the complete sentence:
limx→2 f(x) = 4.)

lim
x→3

f(x) lim
x→0

f(x) lim
x→π

f(x) lim
x→2/3

f(x) lim
x→−10.1

f(x)

♣ 2. Let c denote a particular real number, and let f(x) = 2x. What is

lim
x→c

f(x) ?

EXAMPLE

finding a limit,
f is not defined at c

Now, let f(x) = 2x (x−2)
(x−2) . In this case, f is not defined at x = 2; the graph in

the previous example has been punctured.

Again:
lim
x→2

f(x) = 4

This is because the two required conditions are satisfied: as x approaches 2
from the right AND the left, the corresponding function values are getting
close to the number 4. That is, when x is close to 2 (but not equal to 2), the
corresponding function values are close to 4.

In order to talk about the limit of a function f as x approaches c, the function
f need NOT be defined at c. It need only be defined near c.

Here are some additional true limit statements about this function:

lim
x→3

f(x) = 2(3) = 6 lim
x→π

f(x) = 2π lim
x→0

f(x) = 2(0) = 0

EXERCISE 2 ♣ Evaluate the following limits. In each case, a quick sketch of the function
may be helpful. Be sure to write complete mathematical sentences.

1. lim
x→3

2x
(x− 3)

(x− 3)
2. lim

x→2
2x

(x− 3)

(x− 3)
3. lim

x→1
x2

(x− 1)

(x− 1)

4. lim
x→0

x2
(x− 1)

(x− 1)
5. lim

x→3/2

√
x

(2x− 3)

(2x− 3)
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EXAMPLE

finding a limit,
f is defined at c,
but in a strange way

Now let:

f(x) =

{
2x for x 6= 2

5 for x = 2

The graph of f is shown below. Again:

lim
x→2

f(x) = 4

This is because when x is close to 2 (but not equal to 2), the corresponding
function values are close to 4.

When evaluating a limit as x approaches c, x is not allowed to equal c; the x
values merely get arbitrarily close to c.

EXERCISE 3 ♣ 1. Sketch the graph of a function that satisfies the following conditions:

• lim
x→3

f(x) = 4

• f(3) = 2

♣ 2. Sketch the graph of a function that satisfies the following conditions:

• lim
x→0

f(x) = 1

• 0 /∈ D(f)
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EXAMPLE

a limit that
does not exist

Let:

f(x) =

{
2 x ≤ 1

−1 x > 1

In this case, limx→1 f(x) does not exist. The two required conditions cannot
possibly be met for any real number l. As x gets close to 1 from the left-hand
side, the function values are all equal to 2. As x gets close to 1 from the right-
hand side, the function values are all −1. Thus, we are not getting close to the
same number from both sides.

EXAMPLE Let’s work with the same function as in the previous example, but now consider
some values of c different from 1.

What is limx→2 f(x)? As x approaches 2 from the right and left sides, f(x) is
−1. Thus, limx→2 f(x) = −1.

Similarly, limx→0 f(x) = 2.

What about limx→1.001 f(x)? When x is (sufficiently) close to 1.001, what (if
anything) are the corresponding outputs close to? To answer this question, we
need only ‘magnify’ what’s happening for values of x near 1.001, as in the graph
below. Now, it’s clear that limx→1.001 f(x) = −1.
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EXERCISE 4 Consider the function g given by:

g(x) =

{ −3 for x < 2

5 for x ≥ 2

♣ 1. Sketch the graph of g.

♣ 2. Find the following numbers, if they exist. Be sure to write complete
mathematical sentences.

a) g(2)

b) g(1.9782)

c) g(π)

d) lim
x→2

g(x)

e) lim
x→3

g(x)

f) lim
x→1.99999

g(x)

g) lim
z→0

g(z) (Hint: z is a dummy variable.)

h) lim
y→π

g(y)

♣ 3. Let c be any number greater than 2. What is limx→c g(x)?

EXAMPLE

a limit that
does not exist

The limit

lim
x→−1

1

x+ 1

does not exist. As x approaches −1 from the left-hand side, 1
x+1 approaches

negative infinity. As x approaches −1 from the right-hand side, 1
x+1 approaches

positive infinity. The function values are not approaching any fixed real number.

The following sentences are all true:

lim
x→0

1

x+ 1
= 1 lim

x→2

1

x+ 1
=

1

3
lim
x→−2

1

x+ 1
=

1

−2 + 1
= −1

lim
y→π

1

y + 1
=

1

π + 1

Also, for c 6= −1:

lim
x→c

1

x+ 1
=

1

c+ 1



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 115

EXAMPLE Let h be defined by:

h(x) =

{ 1
x for x > 0

x+ 1 for x ≤ 0

The graph of h is shown below.

As x approaches 0 from the left-hand side, h(x) approaches 1. However, as
x approaches 0 from the right-hand side, f(x) does not approach 1. Thus,
limx→0 h(x) does not exist.

The following sentences are all true:

lim
x→2

h(x) = 1/2 lim
t→−1

h(t) = 0 lim
x→10−5

h(x) = 105

lim
x→−10−5

h(x) = 1− 0.00001 = 0.99999

EXERCISE 5 Let f be defined by:

f(x) =

{ 1
x−2 for x > 2

1− x2 for x ≤ 2

♣ 1. Sketch the graph of f .

♣ 2. What is the domain of f?

♣ 3. Find the following numbers, if they exist. Be sure to write complete
mathematical sentences.

a) f(2)

b) lim
x→2

f(x)

c) f(c), for c > 100

d) f(t), for negative t

e) lim
t→π+1

f(t)

f) lim
ω→0

f(ω)
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Be sure you understand the difference between the expression

lim
x→c

f(x) (†)

and the sentence:
lim
x→c

f(x) = l (‡)

When (†) is defined, it is a NUMBER. What number? The number that f(x)
gets close to, as x gets close to c.

However, (‡) is a SENTENCE. Sentences have verbs; the verb in (‡) is the equals
sign. This sentence (when it’s true) is telling us that the number limx→c f(x)
is equal to l.

distance between
real numbers

The use of the absolute value as a tool for measuring the distance between
numbers is discussed next. This will help in understanding the precise definition
of limit, which is the topic of the next section.

Let x and y be any two real numbers. Then:

the distance from x to y = |x− y|

Let’s think about why this is true. If x = y, then the distance between them is
0, and the formula works.

If x 6= y, then one of the numbers lies further to the right on the number line.
If x lies further to the right, the distance between the numbers is x − y. If y
lies further to the right, the distance between the numbers is y − x. But in
both cases, |x − y| (which is equal to |y − x|) gives the distance between the
two numbers.

analyze the sentence
|x− 3| < 2

Think about the sentence |x − 3| < 2. This sentence is an inequality; the verb
is ‘<’. When is this sentence true? Using the interpretation of |x − 3| as the
distance between x and 3, the answer is easy: it is true for all numbers x whose
distance from 3 is less than 2. Thus, it is true for x ∈ (1, 5).

analyze the sentence
|x− c| < 2

Now consider the sentence |x − c| < 2. By mathematical conventions, x is
the variable, and c is a constant. When is this sentence true? Whenever x is a
number whose distance from c is less than 2. Thus, the solution set of |x−c| < 2
is (c− 2, c+ 2).
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analyze the sentence
0 < |x− c|

For what values of x is 0 < |x − c| true? Reading from right to left, we must
have the distance from x to c greater than 0. This happens as long as x is not
equal to c; so the solution set of 0 < |x− c| is (−∞, c) ∪ (c,∞).

analyze the sentence
0 < |x− c| < δ

Now consider the sentence 0 < |x− c| < δ. By mathematical conventions, x is
the variable, c and δ are constants. Usually, δ is thought of as a small positive
number.

When is the sentence 0 < |x− c| < δ true? Remember that this is short for two
sentences, connected by the mathematical word ‘and’. That is:

0 < |x− c| < δ ⇐⇒ 0 < |x− c| and |x− c| < δ

Thus, in order for the sentence to be true, we must have the distance from x to c
less than δ, AND, x is not allowed to equal c. The solution set of 0 < |x−c| < δ
is shown below.

EXERCISE 6 ♣ 1. Write a mathematical sentence that is TRUE for all numbers whose
distance from 4 is less than 2. What is the variable in your sentence?

♣ 2. Write a mathematical sentence that is TRUE for all numbers whose
distance from −1 is greater than 5. What is the variable in your sentence?

♣ 3. Write a mathematical sentence that is TRUE for all numbers whose
distance from π is greater than or equal to δ. (Here, δ is a constant.) What
is the variable in your sentence?

EXERCISE 7 ♣ 1. Write a mathematical sentence whose solution set is the set shown below.

♣ 2. Write a mathematical sentence whose solution set is the set shown below.

♣ 3. On a number line, show the solution set of 0 < |x− 3| < 5.

♣ 4. On a number line, show the solution set of 0 < |x + 1| ≤ 2. It may be
helpful to rewrite x+ 1 as x− (−1).
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EXERCISE 8 ♣ The graph of a function f is shown below. A specific number l is labeled
on the y-axis.

On the x-axis, clearly show {x : |f(x)− l| < 2}. Here, the colon ‘:’ is used
instead of the vertical bar, ‘|’, so there is less confusion with the adjacent
absolute value symbol. The colon ‘:’ is still read as ‘such that’ or ‘with the
property that’.

alternate notation
for limits

Suppose that the sentence
lim
x→c

f(x) = l

is true. Then, as x approaches c, the numbers f(x) must approach l. One often
writes this as:

As x→ c, f(x)→ l .

This is read as: As x approaches c, f(x) approaches l. Thus, the arrow ‘→’ is
read as ‘approaches’.

QUICK QUIZ

sample questions

1 Evaluate the limit limx→−2 x
3, if it exists.

2 Sketch the graph of f(x) = x2 x+1
x+1 . Then, evaluate the limit limx→−1 f(x),

if it exists.
3 Sketch the graph of:

f(x) =

{
3x for x 6= 1

5 for x = 1

Then, evaluate the limit limx→1 f(x), if it exists.

4 Sketch the graph of a function that satisfies the following conditions:
limx→2 f(x) = 5, f(2) = 1.

5 Write a mathematical sentence that is TRUE for all numbers whose distance
from −1 is less than or equal to 4. Use the variable t in your sentence.

KEYWORDS

for this section

Be familiar with the mathematical sentence:

lim
x→c

f(x) = l

Roughly, when is this sentence true? Know that c and l are constants, and x
is a dummy variable. Be able to evaluate simple limit statements. Know the
difference between the expression limx→c f(x) and the sentence limx→c f(x) = l.
Know that the distance between real numbers x and y is given by |x− y|.
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END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a sentence (SEN).

♣ For any sentence, state whether it is TRUE, FALSE, or CONDITIONAL.

1. limx→1 3x

2. limx→1 3x = 3

3. limt→0 t
2 = 0

4. limt→0 t
2

5. limx→c f(x) = l

6. As x→ 1, 2x→ 2.

7. As t→ 0, 2t+ 1→ 1.

8. limx→2 f(x) = f(2)

9. limx→1 g(x) = g(1)

10. limx→0
x2+x
x = 1

11. |x− y|
12. |x− 1| ≤ 2

13. |x− y| = |y − x|
14. | − 2x− 2y| = 2|x+ y|
15. |ab| = |a| · |b|
16. |a+ b| = |a|+ |b|
17. |a− b| = |a| − |b|
18. |x| > 0 ⇐⇒ x ∈ (−∞, 0) ∪ (0,∞)

19. For ε > 0, 0 < |x| < ε ⇐⇒ x ∈ (−ε, 0) ∪ (0, ε)

20. For 0 < a < b, a < |x| < b ⇐⇒ x ∈ (−b,−a) or x ∈ (a, b)



3.2 Limits—Making It Precise

a more precise way
to view the sentence
lim
x→c

f(x) = l

In the previous section, we said that when the sentence limx→c f(x) = l is true,
this means, roughly, that when x is close to c, then f(x) is close to l.

Here’s a more precise way to view this limit:

When the sentence limx→c f(x) = l is true, then we can get the function values
f(x) as close to l as desired, merely by requiring that x be sufficiently close to
c.

This idea is explored further in the next ‘challenge’.

a friendly challenge Suppose you are having a ‘friendly’ argument with a classmate. You have
stated:

lim
x→2

3x = 6

Your friend says: Prove it to me! Here’s the resulting conversation:

You: Okay, I will. I claim that I can get 3x as close to 6 as you want,
just by requiring that x be close enough to 2. How close would
you like to get 3x to 6?

Friend: Within 0.5.

You: No problem. (Thinking out loud. . . ) For the function f(x) = 3x,
when x is the input, 3x is the output. So, to go from input to
output, we multiply by 3. To go from output to input, divide by
3.

Now, you want me to get the output 3x within 0.5 of 6. That is,
you want 3x to be in the interval (6−0.5, 6+0.5) = (5.5, 6.5). The
output 5.5 corresponds to the input 5.5

3 = 1.83; the output 6.5

corresponds to the input 6.5
3 = 2.16. As long as I keep x within

the interval (1.83, 2.16), then 3x will be within the requested in-
terval. We don’t even need to ‘cut things so close’. As long as x
is within, say, 0.1 of 2, then 3x will be well within 0.5 of 6.

(Look at the sketch below.)
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Friend: Well, now I want 3x no further than 0.1 from 6.

You: So, you want 3x to be in the interval (5.9, 6.1). Well, 5.9
3 ≈ 1.97,

and 6.1
3 ≈ 2.03. To be safe, let’s just keep x within the interval

(1.98, 2.02). That is, as long as x is within 0.02 of 2, then 3x will
be well within 0.1 of 6.

Friend: Well—now I want 3x within 0.0001 of 6!

You: (Calculates.) Just keep x within, say, 0.00003 of 2.

Friend: I’m thinking of a really small number; call it ε. I want f(x) within
ε of l.

You: (Draws the sketch below for Friend.) Just keep x within ε
3 of 2.

Keep this ‘challenge’ in mind as you study the precise definition of the limit
statement.

DEFINITION

the limit of a function

lim
x→c

f(x) = l

The sentence ‘ lim
x→c

f(x) = l’ is defined by:

lim
x→c

f(x) = l ⇐⇒ For every ε > 0, there exists δ > 0, such that if
0 < |x− c| < δ and x ∈ D(f), then |f(x)− l| < ε.
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In this definition, two sentences are being compared with the ‘is equivalent to’
symbol, ⇐⇒ . The sentence on the left is being given meaning by the sentence
on the right. These two sentences always have precisely the same truth values,
and hence can be used interchangeably. More precisely, the sentence

lim
x→c

f(x) = l (*)

on the left is being defined by the sentence

For every ε > 0, there exists δ > 0, such that if
0 < |x− c| < δ and x ∈ D(f), then |f(x)− l| < ε.

(**)

on the right. This is how we determine the truth value of the sentence (*). If
(**) is true, then so is (*). If (**) is false, then so is (*).

Next, we must carefully investigate (**), to see when it is true.

How close do you want
f(x) to be to l?

(within ε)

The sentence (**) begins with:

For every ε > 0 · · ·
Think of ε as being a small positive number, that says how close you want the
function values f(x) to be to l. In order for the sentence (**) to be true, the
remainder of this sentence is going to have to be true for every positive number
ε. In particular, it’s going to have to be true when ε is arbitrarily close to zero;
like ε = 10−2000.

The remainder of the sentence (**) addresses the question: How close do we
need to get x to c in order to get f(x) within ε of l?

How close must
x be to c to
accomplish this?

(within δ)

The sentence continues:

· · · there exists δ > 0 · · ·
Think of δ as a small positive number that says how close we must get the x
values to c, to ensure that the corresponding outputs fall within ε of l. For most
functions, the smaller ε is, the smaller δ is going to have to be.

check that
δ really works

The sentence continues:

· · · such that if 0 < |x− c| < δ and x ∈ D(f) · · ·
Up to this point, we have a ‘challenge’; we want to get the function values
within ε of l. We also have a ‘proposed solution’; just keep the x values within
δ of c. Now, we’re going to show that this δ really works.

So we’re saying: suppose x is a number that makes ‘0 < |x−c| < δ and x ∈ D(f)’
true. What x will make both of these sentences true? Well, 0 < |x− c| < δ says
that x must lie within δ of c, but not equal c. Remember that we don’t ever let
x equal c when evaluating a limit—x just gets arbitrarily close to c. Also, in
order to talk about f(x), we must certainly have x in the domain of f . Hence
the sentence x ∈ D(f).

The sentence finishes:

· · · then |f(x)− l| < ε.

As long as x is in the domain of f , and sufficiently close to c (but not equal to
c), then the sentence |f(x) − l| < ε will be true. When is |f(x) − l| < ε true?
Exactly when the distance between f(x) and l is less than ε.
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Rephrasing,
in English

The mathematical sentence

For every ε > 0, there exists δ > 0, such that if
0 < |x− c| < δ and x ∈ D(f), then |f(x)− l| < ε.

(**)

can be stated in English, as follows:

For every number epsilon greater than zero, there exists a number delta greater
than zero, with the property that if x is within delta of c, but not equal to c,
and if x is in the domain of f , then the distance between f(x) and l is less than
epsilon.

You must know the precise definition of the sentence:

lim
x→c

f(x) = l

Also, you must be able to explain, in English, what this sentence
means.

F

f must be
defined on some
interval near c

To avoid complications, we will only consider limits limx→c f(x) in situations
where f is defined on some interval near c; this interval may or may not include
c.

More precisely, f must be defined at least on an interval of the form:

(a, c) ∪ (c, b) or (a, c) or (c, b)

where a < c and c < b.

The numbers a and b may, however, be arbitrarily close to c.

limits are
fundamental
to calculus

The concept of the limit of a function is fundamental to calculus. You will
see limits again when we talk about continuous functions; when we talk about
differentiating; when we talk about integrating. To truly understand calculus,
you must understand limits.

The following examples and exercises should help in the learning process.

EXAMPLE

using the
precise definition
of the
limit of a function

Problem: Use the precise definition of the limit of a function, to argue that:

lim
x→3

2x = 6

Step 1;
state what you
need to show,
and sketch the
function near c

Solution:

Step 1. (State what you need to show, and sketch the function near c.) It must
be shown that we can get 2x as close to 6 as desired (within ε), by requiring
that x be sufficiently close to 3 (within δ).
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Step 2;
set up an ε-interval
about l

Step 2. (Set up an ε-interval about l.) Let ε > 0. We want to get 2x within ε
of 6; that is, within the interval (6− ε, 6+ ε). Show this interval on your sketch.

Step 3;
‘pull back’ to an
appropriate interval
about c

Step 3: (‘Pull back’ to an appropriate interval about c.) With the function
f(x) = 2x, to go from an input x to an output 2x, we multiply by 2; and to go
from an output 2x to an input x, we divide by 2.

So, when the output is 6 + ε, the corresponding input is 6+ε
2 = 3 + ε

2 . And,

when the output is 6− ε, the input is 6−ε
2 = 3− ε

2 .

Alternately, solving the equation y = 2x for x yields x = y/2. When y = 6 + ε,
we have x = 6+ε

2 = 3 + ε
2 ; and when y = 6− ε, we have x = 6−ε

2 = 3− ε
2 .

Step 4;
summarize results, by
stating the ‘δ that works’

Step 4. (Summarize your results, by stating the ‘δ that works’.) Thus, if we
take δ to be ε/2, then whenever x is within δ of 3, we will have 2x within ε of
6.

the 4-step process
for investigating limits

You must be able to investigate limits in the manner discussed in the previous
example. Always follow the basic 4-step process that leads to a ‘δ that works’,
and always make a sketch that summarizes what you are doing.

EXERCISE 1

elaborating on
the previous example

♣ 1. In the preceding example, could δ have been taken to be a positive
number less than ε

2? Why or why not?

♣ 2. Is ε
2 − .01 necessarily a positive number less than ε

2? Why or why not?

♣ 3. Is ε
3 necessarily a positive number less than ε

2? Why or why not?

♣ 4. Write down two positive numbers that are (always) less than ε
2 .
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EXERCISE 2

using the
4-step process
to investigate a limit

♣ 1. Use the 4-step process to show that the following limit statement is true:

lim
x→2

4x = 8

DO NOT just ‘copy’ the preceding example. Close your book, and try
to write down the argument yourself. If you get stuck, then re-read the
previous example, and see where you went wrong. But then close your
book again.

♣ 2. Use the 4-step process to show that the following limit statement is true:

lim
x→1

2x+ 3 = 5

EXERCISE 3

the limit
of a constant function

Let f be the constant function defined by f(x) = 5.

♣ 1. Describe, in words, what the function f does.

♣ 2. Draw a ‘black box’ that describes f .

♣ 3. Does limx→2 f(x) exist? Why or why not?

♣ 4. Use the 4-step process to show that the following limit statement is true:

lim
x→2

f(x) = 5

♣ 5. What did you choose for δ? Are there other ‘natural’ choices for δ?

EXAMPLE

evaluating a
more general limit

Problem: Use the 4-step process to show that the following limit statement is
true:

lim
x→2

x3 = 8

Step 1 Step 1. It must be shown that we can get x3 as close to 8 as desired (within
ε), by requiring that x be sufficiently close to 2 (within δ).

Step 2 Step 2. Let ε > 0. We want to get x3 within ε of 8; that is, in the interval
(8− ε, 8 + ε).

Step 3 Step 3. Refer to the ‘mapping diagram’ below. When the output is 8 + ε, the
corresponding input is 3

√
8 + ε; when the output is 8− ε, the input is 3

√
8− ε.
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Step 4 Step 4. Now, which is the shorter distance: from 2 to 3
√

8 + ε or from 2 to
3
√

8− ε? Since the curve y = x3 rises more steeply as x gets larger, the shorter
distance is from 2 to 3

√
8 + ε. (This fact will be proven later on in the course.)

Thus, take the shorter distance ( 3
√

8 + ε− 2) to be δ.

Then, as long as x is within δ of 2, we will have x3 within ε of 8.

EXERCISE 4 ♣ 1. Use the 4-step process to show that the following limit statement is true:

lim
x→3

x3 = 27

♣ 2. Use the 4-step process to show that the following limit statement is true:

lim
x→c

x3 = c3

where c is any positive real number.

EXERCISE 5 ♣ 1. Let c < 0. Use the 4-step process to show that the following limit
statement is true:

lim
x→c

x3 = c3

♣ 2. Use the 4-step process to show that the following limit statement is true:

lim
x→2

x2 = 4

One of the beautiful things about the precise definition, is that now we don’t
have to worry about whether or not the function is defined on ‘both sides’ of
c; the definition takes care of this for us, by requiring that x must be in the
domain of the function! This is illustrated in the next example.

EXAMPLE

investigating
a limit,
when f is only defined
on one side of c

Problem: Use the 4-step process to show that the following limit statement is
true:

lim
x→0

√
x+ 3 = 3

Step 1 Step 1. Define f(x) :=
√
x + 3. It must be shown that we can get

√
x + 3 as

close to 3 as desired (within ε), merely by requiring that x be in the domain of
f , and sufficiently close to 0 (within δ).

Step 2 Step 2. Let ε > 0. We must get
√
x+3 within ε of 3; that is, within the interval

(3− ε, 3 + ε).
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Step 3 Step 3. Refer to the ‘mapping diagram’ below:

When the output is 3 + ε, the corresponding input is ((3 + ε)− 3)2 = ε2. There
is no input corresponding to the output 3− ε.

Step 4 Step 4. Referring to the sketch, we see that whenever x is within ε2 of 0, and
is within the domain of f , then f(x) will be within ε of 3.

So, take δ = ε2.

EXERCISE 6 ♣ 1. Use the 4-step process to show that the following limit statement is true:

lim
x→0

√
x+ 2 = 2

♣ 2. Use the 4-step process to show that the following limit statement is true:

lim
x→2

f(x) = 4

where f : [2,∞)→ R is defined by f(x) = x2.
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EXAMPLE

investigating
a limit,
when f is defined
‘in a strange way’
at c

The precise definition also ‘covers’ the situation when the function is defined in
a ‘strange way’ at c. For example, consider the function f given by:

f(x) =

{ √
x+ 3 x > 0

2 x = 0

Again, limx→0 f(x) = 3. We already found the ‘δ that works’ in the previous
example. Then, as long as:

• x is within δ of 0

• x is in the domain of f

• x is not equal to 0

then f(x) will be within ε of 3.

In mathematical language: if 0 < |x| < δ and x ∈ D(f), then |f(x)− 3| < ε.

EXERCISE 7 ♣ 1. Which part of the sentence

0 < |x| < δ

says that x must be within δ of 0?

♣ 2. Which part of the sentence says that x must not equal 0?
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EXERCISE 8 Let f : [1,∞)→ R be defined by the rule:

f(x) =

{
3x− 5 for x > 1

1 for x = 1

♣ 1. Graph f .

♣ 2. What is the domain of f? In particular, is f defined at x = 1?

♣ 3. Use the 4-step process to show that the following limit statement is true:

lim
x→1

f(x) = −2

♣ 4. Discuss the phrase

0 < |x− c| < δ and x ∈ D(f)

relative to this example. What is c? What is δ? For what values of x is
this phrase true, for the function f being considered here?

one-sided limits Sometimes one is only interested in investigating the function values f(x) as x
approaches c from only one side (right or left), even though f may be defined
on both sides of c. In other words, one can ask the question: as x approaches c
from one side (right or left), do the corresponding function values f(x) approach
any particular real number? This leads to the notion of one-sided limits. Here’s
the precise definition of the right-hand limit:

DEFINITION

right-hand limit

Let f be a function that is defined at least on an interval of the form (c, b),
where b > c. Then:

lim
x→c+

f(x) = l ⇐⇒ For every ε > 0, there exists δ > 0, such that if
x ∈ (c, c+ δ), then |f(x)− l| < ε.

The phrase ‘x→ c+’ is read as ‘x approaches c from the right-hand side’ or ‘x
approaches c from the positive side’.

investigating this
definition

Let’s investigate this definition. Here are the ways that it differs from the earlier
(two-sided) limit:

• Since it is desired to let x approach c from the right-side, we require that
f be defined at least on some small interval to the right of c.

• For the limit to exist (and equal l), we must be able to get f(x) as close
to l as desired (within ε), by requiring that x be close enough to c (within
δ), on the right-hand side. Note that whenever x ∈ (c, c + δ), then x lies
to the right of c. Also, note that x is not allowed to equal c, since c is not
included in the interval (c, c+ δ).

• The phrase ‘x ∈ D(f)’ was needed in the definition of the two-sided limit to
‘cover the cases’ when f was not defined on both sides of c. Now, however,
we are assuming that f is defined to the right of c, so the phrase is not
necessary. Delta (δ) can always be chosen small enough so that x will lie
in the domain of f .
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EXAMPLE

investigating a right-
hand limit

Consider the function f given by:

f(x) =


2 x < 1

3 x > 1

4 x = 1

The graph of f is shown. In this case, the (two-sided) limit limx→c f(x) does
not exist. (Why?) However:

lim
x→1+

f(x) = 3

EXERCISE 9

left-hand limit

♣ 1. After studying the definition of right-hand limit, write down a precise
definition of a left-hand limit. Denote the left-hand limit by

lim
x→c−

f(x)

and read the phrase ‘x→ c−’ as x approaches c from the left-hand side or
x approaches c from the negative side. Be sure to write complete mathe-
matical sentences.

Now, consider the function f given by:

f(x) =


x2 x < 3

5 x > 3

7 x = 3

♣ 2. Graph this function f .

♣ 3. Evaluate the limits:

lim
x→3+

f(x) and lim
x→3−

f(x)

♣ 4. Why doesn’t the (two-sided) limit limx→3 f(x) exist?

♣ 5. Redefine the function for x > 3 so that the two-sided limit does exist
for the redefined function.

In the next section, some tools will be developed to help us work with limit
statements. Then, we will be in a position to discuss continuity precisely.
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QUICK QUIZ

sample questions

1. Give a precise definition of the limit statement limx→c f(x) = l.

2. Use the 4-step process to show that the following limit statement is true:

lim
x→−1

3x = −3

3. Let f be defined by:

f(x) =


x2 for x > 2

6 for x = 2

x for x < 2

Sketch the graph of f , and evaluate the following limits, if they exist:

lim
x→2

f(x) , lim
x→2+

f(x) , lim
x→2−

f(x)

KEYWORDS

for this section

The precise definition of:
lim
x→c

f(x) = l

You must be able to explain this definition in words, and with appropriate
sketches. You must be able to use the 4-step process to show that certain limit
statements are true. Also, you must understand one-sided limits.
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END-OF-SECTION
EXERCISES

Use the 4-step process to show that the following limit statements are true:

1. lim
x→−2

(−x2) = −4

2. lim
x→2

(2− x3) = −6

3. lim
t→16

4
√
t = 2

4. lim
t→0
|t| = 0

Graph the given function. Then, evaluate the specified limits. If a limit does
not exist or is not defined, so state.

5. f : (1,∞)→ R, f(x) = x2 + 2; lim
x→1

f(x), lim
x→1+

f(x), lim
x→1−

f(x)

6. f : (−∞, 1)→ R, f(x) = x2 + 2; lim
x→1

f(x), lim
x→1+

f(x), lim
x→1−

f(x)

7.

g(x) =


x for x < −1

2 for x = −1

−x2 for x > −1 ;

lim
x→−1

g(x), lim
x→−1+

g(x), lim
x→−1−

g(x)

8.

g(x) =

{
3 for x ≥ 2

1 for x < 2 ;

lim
x→2

g(x); lim
x→2+

g(x); lim
x→2−

g(x)

9. True or False: if lim
x→c

f(x) exists and f is defined on both sides of c, then

both lim
x→c+

f(x) and lim
x→c−

f(x) exist.

10. True or False: if both one-sided limits lim
x→c+

f(x) and lim
x→c−

f(x) exist, then

lim
x→c

f(x) exists.



3.3 Properties of Limits

This section establishes some useful properties of limits, the development of
which provides additional practice with the concept of the limit of a function.

existence
versus
uniqueness

Mathematicians are extremely fond of existence and uniqueness arguments. An
existence argument shows that a certain object exists, but does not address the
issue: How many? A uniqueness argument answers the question ‘How many?’
with a definitive: Exactly one.

existence of
lim
x→c

f(x)
When does the limit limx→c f(x) exist? The definition answers this question:
it exists when there is a number l with the property that one can get f(x) as
close to l as desired, by requiring that x ∈ D(f) be sufficiently close to c, but
not equal to c.

When
limx→cf(x)
exists,
is it unique?

Is it possible that there are two different numbers l and k, both satisfying the
definition of the limit of a function? Or, is the limit unique? If you stop to think
about this for a moment, you’ll probably conclude that f(x) can’t be close to
two different numbers at the same time. But how can this be argued precisely?

the way
mathematicians
show uniqueness

The way mathematicians usually establish uniqueness is to:

• Suppose that there are two;

• Show that these two are the same.

a typical
uniqueness argument

That is, suppose a mathematician is asked to prove the following theorem.
(Remember, a theorem is a mathematical result that is both important and
true.)

Theorem. An object with property P is unique.

Don’t worry about what property P is; here we are discussing the form of a
typical uniqueness argument, and are not concerned with specific content.

Here’s how the proof would go:

Proof. Suppose that x and y both satisfy property P . (More stuff here.) Then,
x = y.

Early on in the proof, x could potentially be different from y; all that is known
is that they both satisfy ‘property P ’. But then, information about ‘property
P ’ is used to show that x must equal y.

the symbol
is used to mark
the end of proofs

The symbol is an end-of-proof marker. It is really just a courtesy to the
reader; a gentle reminder that the author has finished showing whatever was
set out to be shown.

EXERCISE 1 ♣ Prove that there is a unique solution to the linear equation

ax+ b = c, a 6= 0 ,

by supposing that both X and Y are solutions, and showing that X = Y . Be
sure to write down complete mathematical sentences.

The next theorem states, in the language of mathematics, that limits are unique.

133
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THEOREM

limits are unique

Suppose that:
lim
x→c

f(x) = l and lim
x→c

f(x) = k

Then, l = k.

a motivation for
the proof

Before jumping into the rigorous proof, just stop and think. How could it be
shown that l must equal k?

If l is not equal to k, then there’s some positive distance between them; call it
ε. Since ε is positive, so is ε/3. Looking back at the precise definition of the
limit of a function, one observes that ε represents any positive number. The
definition can certainly be applied, taking this positive number to be ε/3. (If
this seems awkward to you, rewrite the definition, using ω instead of ε. Then,
take ω to be ε/3.)

Since it is being assumed that both

lim
x→c

f(x) = l and lim
x→c

f(x) = k ,

one must be able to get f(x) within ε/3 of both l and k, by requiring that x be
sufficiently close to c.

So, get a number δ1 such that whenever x is within δ1 of c, f(x) must be within
ε/3 of l.

And, get a number δ2 so that whenever x is within δ2 of c, then f(x) must be
within ε/3 of k.

a contradiction Take the minimum of δ1 and δ2, and call it δ. Then, whenever x is within δ of
c, f(x) must be within ε/3 of both l and k. This is impossible; it is an example
of what mathematicians call a contradiction. By assuming that k and l are
different, one is led to a contradiction. Thus, it must be that k and l are NOT
different; that is, they must be equal.

EXERCISE 2 ♣ In the preceding argument, the author chose to get the function values f(x)
within ε/3 of both l and k. Would ε/2 have worked? How about ε/4? Why do
you suppose the author chose ε/3?
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The following proof ‘formalizes’ the ideas discussed above.

PROOF

limits are unique

Suppose that:
lim
x→c

f(x) = l and lim
x→c

f(x) = k

If l = k, we’re done. So suppose that l 6= k. Then, there is some positive dis-
tance between l and k; call it ε. Since ε is positive, so is ε/3. Since limx→c f(x) =
l, there exists δ1 such that whenever x ∈ D(f) and 0 < |x− c| < δ1, it must be
that |f(x)− l| < ε/3.

Since limx→c f(x) = k, there exists δ2 such that whenever x ∈ D(f) and 0 <
|x− c| < δ2, it must be that |f(x)− k| < ε/3.

Take δ to be the minimum of δ1 and δ2 . Then, for any x ∈ D(f) with 0 <
|x − c| < δ, we must have both |f(x) − l| < ε/3 and |f(x) − k| < ε/3, which is
impossible.

Thus, it must be that k = l.

EXERCISE 3 ♣ Get another calculus book, and look up the uniqueness of limits theorem.
Compare with what has been discussed here. Is the statement of the theorem
the same? Read the proof (slowly and carefully). Is the proof exactly the
same? Not every proof uses a contradiction argument. How does the other
proof establish that l = k?

FF
the logical justification
for
proof by contradiction

The form of proof, called proof by contradiction, is justified by the following
logical equivalence:

A⇒ B ⇐⇒ (notB ∧A) =⇒ (S ∧ notS) ,

where S is any statement.

In the previous proof, the statement A is

lim
x→c

f(x) = l and lim
x→c

f(x) = k ;

the statement B is:
l = k

The contradiction (S∧notS) is the fact that f(x) must be IN a certain interval
(say, around l) and NOT IN this interval, at the same time.

Next, some rules are developed that tell us many situations in which limits are
‘easy’ to find.
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in many cases,
evaluating limits
is easy;

direct substitution

For many ‘nice’ functions f , evaluating limits is as easy as direct substitution;
that is:

lim
x→c

f(x) = f(c)

This is called direct substitution because, to evaluate the limit, one need only
substitute the number c into the expression for f .

For example:

lim
x→1

(x2 − 4) = 12 − 4 = −3

and

lim
x→4

√
x =
√

4 = 2

(Functions that are ‘nice’ like this are given a special name—they are called
continuous! This will be studied in more detail in the next section on continu-
ity.)

The next two theorems tell us many ‘nice’ functions for which evaluating lim-
its is this easy! The numbering scheme (e.g., P1, P2, P3) is merely for easy
reference in the exercises and examples.

THEOREM

Properties
of Limits

Let b and c denote real numbers; n is a positive integer.

P1) lim
x→c

b = b (The limit of a constant function is the constant.)

P2) lim
x→c

x = c

P3) lim
x→c

xn = cn

some remarks on
proving theorems

The proofs of theorems that appear in mathematics books are usually precise,
slick, clean, beautiful. Too often, students think that these proofs merely ‘jump
onto’ the paper from the pencils of mathematicians. Not true. Mathematicians
rarely ‘jump into’ a proof. Instead, they play with what they’re trying to prove.
They do things that help them believe that it is true. They may ‘try out’ the
theorem in some simple cases, in an attempt to figure out what makes it work.

how you,
as a reader,
should approach theo-
rems

When you read a theorem, you should do the following:

• Ask yourself: Do I understand what this is telling me that I can DO?
Remember, theorems are usually statements of fact. But, facts can tell you
what to do, if you understand the language.

• Ask yourself: Do I BELIEVE this result? Play with it. Try it in some
simple cases. Draw some graphs. Read and understand the proof.
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investigating the
limit properties
of the previous theorem

Let’s investigate the properties in the previous theorem, the way a good reader
should. Begin with property P1:

lim
x→c

b = b

What does this say that you can DO? In words, this property states that the
limit of a constant function is the constant. It tells you that evaluating the
limit of a constant function is easy; just write down the constant.

Next, is this result BELIEVABLE? Recall that the graph of the constant func-
tion f(x) = b is a horizontal line, that crosses the y-axis at the number b. No
matter what the x-value happens to be, the function value is constant at b.
Certainly the result is believable.

A precise proof of property P1 must appeal to the definition. It must be shown
that one can get the function values as close to b as desired, by requiring that x
be sufficiently close to c. Indeed, in this case, no matter what positive number
one chooses for ε, any δ will work. Here’s a precise proof:

PROOF of (P1)
lim
x→c

b = b
Let b and c be real numbers. Choose ε > 0, and let δ = 1. If 0 < |x − c| < 1,
then |b− b| = 0 < ε. Thus, limx→c b = b.

EXERCISE 4 ♣ Are there any other values of δ that would work in the previous proof? Why
do you suppose the author chose δ to be 1?

EXERCISE 5 Consider property P2:
lim
x→c

x = c

♣ 1. What is this telling you that you can DO?

♣ 2. Do you believe it? Make a sketch that might help you believe this result.

♣ 3. Prove that limx→c x = c, by writing down a precise ε-δ argument. Use
the 4-step process discussed in section 3.2 to find a ‘δ that works’.



138 copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org

investigating
lim
x→c

xn = cn
Finding the ‘δ that works’ is more delicate when investigating limx→c x

n, in
part due to the fact that different values of c and n will lead to different choices
for δ. However, the sketches below certainly make plausible the idea that as x
approaches c, xn must approach cn.

Next, some Operations with Limits.

THEOREM
Operations
with Limits

Let b and c be real numbers; n is a positive integer. Suppose that both lim
x→c

f(x)

and lim
x→c

g(x) exist. Then:

O1) lim
x→c

bf(x) = b
[
lim
x→c

f(x)
]

(You can ‘pull constants out’ of the limit.)

O2) lim
x→c

[
f(x) + g(x)

]
= lim
x→c

f(x) + lim
x→c

g(x)

(The limit of a sum is the sum of the limits.)

O3) lim
x→c

f(x)g(x) =
[
lim
x→c

f(x)
][

lim
x→c

g(x)
]

(The limit of a product is the product of the limits.)

O4) If lim
x→c

g(x) 6= 0, then lim
x→c

f(x)

g(x)
=

lim
x→c

f(x)

lim
x→c

g(x)

(The limit of a quotient is the quotient of the limits.)

O5) lim
x→c

(f(x))n =
[
lim
x→c

f(x)
]n

(Power rule)

EXERCISE 6 ♣ 1. Does this theorem tell us that

lim
x→c

[
f(x)− g(x)

]
= lim
x→c

f(x)− lim
x→c

g(x) ,

whenever both individual limits exist? Why or why not?

♣ 2. Does this theorem tell us that

lim
x→c

f(x) + lim
x→c

g(x) = lim
x→c

[
f(x) + g(x)

]
,

whenever both individual limits exist? Why or why not?
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EXERCISE 7 ♣ 1. Evaluate the limit:

lim
x→0

x · 1

x

(Hint: Remember that x is not allowed to equal 0. What is the value of
x · 1x for values of x near 0?)

♣ 2. Find the flaw in this student’s argument.

Student’s answer:

By O3:

lim
x→0

x · 1

x
=
(

lim
x→0

x
)
·
(

lim
x→0

1

x

)
Since limx→0

1
x does not exist, it must be that limx→0 x · 1x also does not

exist.

investigating the
operations with limits

Let’s investigate property O1:

lim
x→c

bf(x) = b
[
lim
x→c

f(x)
]

the hypotheses
of a theorem;

singular: hypothesis

The hypotheses of a theorem are the things that are assumed to be true. (Sin-
gular: hypothesis.) One hypothesis of the previous theorem is that limx→c f(x)
exists. Thus, there is some number that f(x) gets close to as x approaches c;
in keeping with tradition, let’s call this number l. How do the numbers bf(x)
differ from f(x)? They are each multiplied by b. Thus, as f(x) gets close to l,
bf(x) must get close to b · l. That is, if

lim
x→c

f(x) = l

then:
lim
x→c

bf(x) = b · l = b · lim
x→c

f(x)

So the result does indeed seem plausible.

Similar reasoning should make the remaining operations plausible. We will look
at one precise proof, which makes use of the triangle inequality, discussed next.

the triangle inequality,

|a+ b| ≤ |a|+ |b|
Let a and b be real numbers. Then:

|a+ b| ≤ |a|+ |b|
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PARTIAL PROOF

of the
triangle inequality

Let a and b be real numbers. Since every real number is either nonnegative
(≥ 0) or negative (< 0), there are several cases to be considered, as suggested
by the ‘tree diagram’ below.

Recall the precise definition of the absolute value function:

|x| =
{
x for x ≥ 0

−x for x < 0

Also recall that the number |x| is often called the magnitude of x.

Case 1 (a ≥ 0 and b ≥ 0). In this case, |a| = a and |b| = b. (Why?) Also, since
both a and b are nonnegative, so is a + b, so that |a + b| = a + b. In this case
one actually obtains equality:

|a+ b| = a+ b = |a|+ |b|

Case 2 (a ≥ 0 and b < 0). In this case, writing down all the details often seems
to obscure the simple idea, illustrated by the sketches below. The point is that
when a and b have different signs, |a+ b| is either |a| − |b| (if the magnitude of
a is bigger) or |b| − |a| (if the magnitude of b is bigger). But in either case, the
difference is less than or equal to |a|+ |b|.

EXERCISE 8 ♣ 1. Write down the proof of

|a+ b| ≤ |a|+ |b|

in the case when a < 0 and b < 0. Be sure to write complete mathematical
sentences.

♣ 2. Is the case
a < 0 and b ≥ 0

really any different from the case

a ≥ 0 and b < 0 ?

Why or why not?
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F

Why the name
‘triangle inequality’?

F The triangle inequality also holds when a and b are ordered pairs of real
numbers. The ‘length’ of an ordered pair is found using Pythagorean’s theorem:

‖(a1, a2)‖ :=
√
a21 + a22

Although the absolute value symbol | · | is used to talk about the ‘length’
(magnitude) of a real number, the norm symbol ‖ · ‖ is traditionally used to
talk about other lengths.

In this setting, the fact that

‖a+ b‖ ≤ ‖a‖+ ‖b‖

has a nice geometric interpretation: in a triangle, the length of a side cannot
exceed the sum of the lengths of the remaining two sides. This is the motivation
for the name triangle inequality.

With the triangle inequality in hand, the precise proof of operation (O2) is now
presented.

PROOF of (O2)

that the
limit of a sum
is the
sum of the limits

Suppose that both lim
x→c

f(x) and lim
x→c

g(x) exist, say:

lim
x→c

f(x) = l and lim
x→c

g(x) = k

Choose ε > 0. Then, ε/2 is also positive, and there exists a corresponding δ1
such that when x ∈ D(f) and 0 < |x− c| < δ1, it must be that |f(x)− l| < ε/2.
(♣ Why?)

Also, there exists δ2 such that when x ∈ D(g) and 0 < |x− c| < δ2, it must be
that |g(x)− k| < ε/2. (♣ Why?)

Let δ := minimum(δ1, δ2). Then, if x ∈ D(f) ∩ D(g) and 0 < |x − c| < δ, one
obtains:

|f(x) + g(x)− (l + k)| = |(f(x)− l) + (g(x)− k)|
≤ |f(x)− l|+ |g(x)− k|
< ε/2 + ε/2

= ε

This says that:

lim
x→c

(f(x) + g(x)) = l + k

= lim
x→c

f(x) + lim
x→c

g(x)
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EXERCISE 9 ♣ In the proof above, supply reasons for each of these lines:

|f(x) + g(x)− (l + k)| = |(f(x)− l) + (g(x)− k)| Reason:

≤ |f(x)− l|+ |g(x)− k| Reason:

< ε/2 + ε/2 Reason:

= ε Reason:

EXERCISE 10 ♣ Let a and b be positive numbers. Convince yourself that if
m := minimum(a, b), then m ≤ a and m ≤ b. (A number line sketch may be
all you need to convince yourself of this fact.)

Where was this fact used in the proof of of (O2)?

extending the
operations to
more than
two functions:

the ‘treat it as
a singleton’
technique

Mathematicians realize that facts like

lim
x→c

[
f(x) + g(x)

]
= lim
x→c

f(x) + lim
x→c

g(x) ,

although seemingly holding only for two functions, actually hold for any finite
number of functions. The proof uses a very common ‘treat it as a singleton’
technique. Assume in what follows that all the individual limits exist.

lim
x→c

f(x) + g(x) + h(x) = lim
x→c

[
f(x) + g(x)

]
+ h(x) (associative law)

= lim
x→c

[
f(x) + g(x)

]
+ lim
x→c

h(x) (O2)

= lim
x→c

f(x) + lim
x→c

g(x) + lim
x→c

h(x) (O2 again)

EXERCISE 11 ♣ Assuming that all the individual limits exist, show that:

lim
x→c

f(x)g(x)h(x) =
[
lim
x→c

f(x)
]
·
[
lim
x→c

g(x)
]
·
[
lim
x→c

h(x)
]

Be sure to write complete mathematical sentences, and give reasons supporting
each step in your argument.

In closing, the tools developed in this section are used to show that evaluating
limits of ANY polynomial is as easy as direct substitution:

THEOREM

Evaluating limits
of polynomials

Let P be any polynomial:

P (x) = anx
n + · · ·+ a1x+ a0

Then:
lim
x→c

P (x) = P (c)
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PROOF

lim
x→c

P (x) = lim
x→c

(anx
n + · · ·+ a1x+ a0) (definition of P )

= lim
x→c

anx
n + · · ·+ lim

x→c
a1x+ lim

x→c
a0 (O2)

= an lim
x→c

xn + · · ·+ a1 lim
x→c

x+ a0 (O1) and (P1)

= anc
n + · · ·+ a1c+ a0 (P3)

= P (c) (polynomial P , evaluated at c)

EXAMPLE For example:

lim
x→1

(x2 − 3x+
√

2) = 12 − 3(1) +
√

2 = −2 +
√

2

QUICK QUIZ

sample questions

1. Explain, in a couple English sentences, how a mathematician often shows
that an object is UNIQUE.

2. Under what condition(s) is the limit of a sum equal to the sum of the limits?

3. Give a precise statement of the ‘triangle inequality’ for real numbers.

4. Suppose you are told that, for a given function f and constant c, ‘evaluating
the limit lim

x→c
f(x) is as easy as direct substitution’. What does this mean?

5. Suppose that:

lim
x→1

f(x) = 3, lim
t→1

g(t) = 5, and lim
y→1

h(y) = 2

Can you evaluate the following limit?

lim
z→1

−2f(z) + g(z)

h(z)

If so, do it.

KEYWORDS

for this section

Existence and uniqueness arguments, the end-of-proof symbol , uniqueness
of limits, direct substitution, properties of limits, how you should approach the-
orems, operations with limits, the triangle inequality, extending operations to
more than two functions, limits of polynomials.
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END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a sentence (SEN).

♣ For any sentence, state whether it is TRUE, FALSE, or CONDITIONAL.

1. If lim
x→c

f(x) = l and lim
y→c

f(y) = m, then l = m.

2. If lim
t→c

f(t) = q and lim
x→c

f(x) = r, then q = r.

3. lim
x→c

f(x) = lim
y→c

f(y)

4. lim
x→c

f(x) = lim
x→d

f(x)

5. If ε > 0, then ε
2 > 0.

6. If ε
2 > 0, then ε > 0.

7. ε > 0 ⇐⇒ ε
2 > 0

8. ε > 0 ⇐⇒ 2ε > 0

9. ε > 0 ⇐⇒ (ε− .1) > 0

10. lim
x→c

d = d (Here, it is assumed that c and d are real numbers.)

11. lim
x→2

x100 = 2100

12. lim
y→−1

y = −1

13. lim
x→c

[f(x) + g(x)] = lim
x→c

f(x) + lim
x→c

g(x)

14. If the limits limx→c f(x) and limx→c g(x) both exist, then
lim
x→c

[f(x) + g(x)] = lim
x→c

f(x) + lim
x→c

g(x).

For the remaining problems, suppose that:

lim
x→c

f(x) = −1, lim
x→c

g(x) = 2, and lim
x→c

h(x) = 0

If possible, evaluate the following limits. If you don’t have enough informa-
tion to evaluate the limit, so state. Be sure to write complete mathematical
sentences.

15. lim
t→c

[f(t) + g(t)]

16. lim
t→c

(f − g)(t)

17. lim
y→d

[f(y)g(y)]

18. lim
x→c

(
[3g(x)− f(x)] · h(x)

)



3.4 Continuity

Introduction Intuitively, a function is continuous if its graph can be traced without lifting a
pencil. This notion is made precise in this section.

Mathematicians define what it means for a function to be continuous at a point:
roughly, ‘f is continuous at the point (c, f(c))’ means that:

• f is defined at c (so that f(c) makes sense)

• as x approaches c, f(x) approaches f(c)

The phrase ‘f is continuous at the point (c, f(c))’ is usually shortened to ‘f is
continuous at c’.

The precise definition follows:

DEFINITION

continuity
at a point

A function f is continuous at c if f is defined at c, and:

lim
x→c

f(x) = f(c)

this definition
is saying
three things

It is important to realize that the statement limx→c f(x) = f(c) is saying three
things:

1) f(c) exists (i.e., c is in the domain of f)

2) lim
x→c

f(x) exists

3) lim
x→c

f(x) = f(c) (that is, the numbers above are equal!)

145
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f is
discontinuous at c

If any one of these three criteria fail, then f is not continuous at c. In this case,
one says that f is discontinuous at c.

Finding limits
at a point of continuity
is easy!
Use direct substitution.

Suppose f is continuous at c. Then, we know that f is defined at c; that is,
f(c) exists. Also, evaluating limx→c f(x) is as easy as direct substitution, since
continuity at c tells us that the limit is equal to f(c)!

Example In the previous section, it was shown that for any polynomial P :

lim
x→c

P (x) = P (c)

Here, c is any real number. This result says that polynomials are continuous
everywhere.

Thus, for example:

lim
x→7.2

(4x4 −
√

2x+ π) = 4(7.2)4 −
√

2(7.2) + π

EXERCISE 1 ♣ 1. Evaluate the following limits:

a) lim
x→2

(x2 − x+ 1)

b) lim
x→π

(x2 − x+ 1)

c) lim
x→b

(x2 − x+ 1) (here, b is a real number)

d) lim
x→n

(x2 − x+ 1) (here, n is an integer)

e) lim
x→d

(ax2 + bx+ c) (here, a, b, c and d are real numbers)

♣ 2. Find a function f and a number c such that f is continuous at c and
limx→c f(x) = 2.

How can a function
FAIL to be
continuous at c?

Since there are really three requirements for a function to be continuous at c,
there are also three ways that a function can fail to be continuous at c.

The function g with graph shown below illustrates the three ways that a function
can be discontinuous at c. Refer to this graph for the discussions below.

f may not be
defined at c

Whenever a function is not defined at c, (that is, f(c) does not exist), then f
is not continuous at c.

The function g is discontinuous at x1, because g is not defined at x1.
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the limit as
x approaches c
may not exist

If limx→c f(x) does not exist, then f is not continuous at c.

This function g is discontinuous at x3, because limx→x3
g(x) does not exist.

both f(c) and
lim
x→c

f(x) may exist,

but they aren’t equal

It is possible for both f(c) and limx→c f(x) to exist, but not be equal.

The function g is discontinuous at x2.

In this case, g is defined at x2; g(x2) = l.

Also, the limit of g as x approaches x2 exists; limx→x2 g(x) = k.

However, these two numbers are not equal ! That is:

lim
x→x2

g(x) 6= g(x2)

two types of
discontinuities

If a function is discontinuous at c, then the discontinuity can be classified,
depending on how the definition of continuity fails.

DEFINITION

removable
discontinuity

A function f has a removable discontinuity at c whenever limx→c f(x) exists,
but is not equal to f(c).

In this case, the discontinuity can be easily removed by merely defining (or
redefining) the function f at c!

EXAMPLE

removable discontinu-
ities

The functions whose graphs are shown below all have removable discontinuities
at x = 2.

In the first case, limx→2 f(x) exists, but f is not defined at 2. This discontinuity
can be easily removed by defining f(2) = l.

In the second and third cases, limx→2 f(x) exists, and f(2) exists, but these
numbers are not equal. These discontinuities can be easily removed by redefin-
ing f at 2 so that f(2) = l.

DEFINITION

nonremovable
discontinuity

A function f has a nonremovable discontinuity at c whenever
limx→c f(x) does not exist.

In this case, the discontinuity can not be easily removed!
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EXAMPLE

nonremovable
discontinuities

The functions with graphs shown below all have nonremovable discontinuities
at x = 2. In all cases, limx→2 f(x) does not exist.

Observe that f may or may not be defined at a nonremovable discontinuity.

Any attempt to ‘patch up’ these discontinuities would require major reconstruc-
tive work. Essentially, one must grab both pieces of the graph and pull them
together. No matter how this is done, it requires redefining the function on
some entire interval, as opposed to just at a single point. Thus, this type of
discontinuity is not easy to remove!

classifying
discontinuities

To classify a discontinuity means to state if the discontinuity is removable or
nonremovable.

For example, suppose you are asked to classify the discontinuities of the function
shown below:

The correct response is:

f has a removable discontinuity at 5.

f has a nonremovable discontinuity at 0.

Be sure to write complete mathematical sentences! Do not merely say: ‘remov-
able discontinuity at 5’.
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EXERCISE 2 ♣ 1. Classify the discontinuities of the function shown below.

♣ 2. If a discontinuity is removable, indicate how it can be ‘removed’.

DON’T ASK
THIS QUESTION!

Consider the function f shown below. Students like to ask the question: Is this
function continuous?

Now, does this question really make sense? Continuity has only been defined
at a point! That is, we have not defined what it means for a function f to be
continuous; we have only defined what it means for a function f to be continuous
at a point c.

The function shown is not continuous at c, because it’s not defined at c. But,
f IS continuous at every point where it is defined. Therefore, the absolutely
correct answer to the not-so-correct question Is this function continuous? is:

The function f is continuous at every point in its domain.

or,

The function f is continuous at every point where it is defined.

continuity on
an interval

If a function happens to be continuous on an entire interval of real numbers,
then it has some particularly nice properties. First, a brief discussion of inter-
vals.
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open intervals

closed intervals

A finite interval is said to be open if it does not include either endpoint. Thus,
(a, b) is an open interval. The word ‘open’ refers to the fact that every point
in this interval has some space around it (on both sides) that remains entirely
inside the interval. In other words, each point in the interval has some room
both to the left and to the right that is still in the interval. (Think of ‘the wide
open spaces’ !)

A finite interval is said to be closed if it includes both endpoints. Thus, [a, b] is
a closed interval. Observe that the endpoints a and b do NOT have room both
to the right and left that is still in the interval. There is no room to the left of
a; and there is no room to the right of b.

A finite interval that includes only one endpoint is not open and not closed.
Thus, the intervals (a, b] and [a, b) are not open, and not closed. Thus, the
words ‘open’ and ‘closed’ are used differently in mathematics than in English.
In English, if a door is not open, then it is closed. In mathematics, just because
an interval is not open, does NOT mean that it is closed.

DEFINITION

continuity on
an interval [a, b]

A function f is continuous on the interval [a, b] if it satisfies the following
conditions:

• f is defined on [a, b]

• f is continuous at each point in (a, b)

• As x approaches a from within the interval (from the right), f(x) ap-
proaches f(a). That is, f is well-behaved at the left endpoint.

This can be stated in terms of a right-hand limit:

lim
x→a+

f(x) = f(a)

• As x approaches b from within the interval (from the left), f(x) approaches
f(b). That is, f is well-behaved at the right endpoint.

This can be stated in terms of a left-hand limit:

lim
x→b−

f(x) = f(b)

Some illustrative sketches appear below.
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NOTE: A function f may be defined outside of [a, b]. However, when answering
the question, ‘Is f continuous on [a, b]?’, the function outside of [a, b] is IG-
NORED. That is, to investigate the continuity of a function f on [a, b], all one
cares about is how f acts on [a, b], and not outside of this interval.

A function that is continuous on a closed interval satisfies some particularly
nice properties. These properties will be investigated in the last two sections of
this chapter.

EXERCISE 3 Sketch graphs of functions satisfying the following requirements:

♣ 1. f is defined on [a, b], but limx→a+ f(x) 6= f(a)

♣ 2. f is defined on [a, b], but limx→b− f(x) 6= f(b)

♣ 3. f is continuous on [a, b], f(a) = 2 and f(b) = 0

♣ 4. f is defined on all of R, f is continuous on [a, b], but f is not continuous
at a

continuity of
sums, products,
and scalar multiples

Suppose that functions f and g are both continuous at c. That is:

lim
x→c

f(x) = f(c) and lim
x→c

g(x) = g(c)

Then, by properties of limits:

lim
x→c

f(x) + g(x) = f(c) + g(c)

lim
x→c

f(x) · g(x) = f(c) · g(c)

lim
x→c

k · f(x) = k · f(c)

Thus, if f and g are both continuous at c, then so are the sum f+g, the product
f · g, and the scalar multiple kf .

EXERCISE 4

quotients of
continuous functions

♣ State a similar result regarding quotients of functions that are both contin-
uous at c.
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continuity of
composite functions

Under what conditions should the composition (f ◦g) be continuous at c? When
x is close to c, we want f(g(x)) close to f(g(c)).

This can be guaranteed in two steps.

First, require that when x is close to c, then g(x) is close to g(c). That is,
require that g be continuous at c.

Next, require that when the inputs to f are close to the number g(c), then the
outputs are close to f(g(c)). That is, require that f be continuous at g(c).

Precisely, if g is continuous at c and f is continuous at g(c), then the composition
f ◦ g is continuous at c.

EXERCISE 5 Suppose that g(3) = 9 and f(9) = 2.

♣ 1. Under what conditions on f and g will the composition f◦g be continuous
at 3?

♣ 2. Under these conditions, what is

lim
x→3

f(g(x)) ?

QUICK QUIZ

sample questions

1. Give a precise definition of what it means for a function f to be continuous
at c.

2. Suppose that limx→c f(x) = 2 and f(c) = 3. Is f continuous at c? If not,
classify the discontinuity.

3. Under what condition(s) does f have a nonremovable discontinuity at c?

4. For a given function f and constant c ∈ D(f), under what condition(s) is
evaluating the limit limx→c f(x) as easy as ‘direct substitution’?

5. Sketch the graph of a function satisfying the following properties: D(f) =
[1, 3], f(1) = 2, f is NOT continuous at x = 1, f IS continuous at x = 3.

KEYWORDS

for this section

Precise definition of continuity at a point: What three things is this definition
saying? When can direct substitution be used to find a limit? Removable and
nonremovable discontinuities, classifying discontinuities, open and closed in-
tervals, difference between English and mathematical usage of the words ‘open’
and ‘closed’, continuity on an interval [a, b], continuity of sums, products, scalar
multiplies, quotients, and composite functions.
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END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a sentence (SEN).

♣ For any sentence, state whether it is TRUE, FALSE, or CONDITIONAL.

1. f is continuous at c

2. f(c) = 5

3. f(c)

4. limx→c f(x)

5. limx→c f(x) = f(c)

6. If P is a polynomial, then limx→c P (x) = P (c).

7. The function f has a removable discontinuity at x = 2 .

8. If limx→c f(x) does not exist, then f has a nonremovable discontinuity at
c.

9. The function f is continuous on [a, b].

10. The function f(x) = x2 is continuous on [1, 3].

11. If functions f and g are both continuous at c, then so is f + g.

12. If functions f and g are both continuous at x = 2, then so is the product
function fg.

13. If a finite interval of real numbers is not open, then it is closed.

14. If a finite interval of real numbers is not closed, then it is open.

15. (a, b)

16. (a, b] is an open interval



3.5 Indeterminate Forms

Introduction;
0
0 situations

Consider the function given by the rule f(x) = 3x
x ; its graph is shown below.

Clearly, limx→0
3x
x = 3. Note, however, that if one merely tried to plug in 0 for

x when investigating this limit, a ‘ 00 ’ situation would have occurred.

Whenever direct substitution into limx→c f(x) yields a 0
0 situation, then the

function f is not defined at c, since division by zero is not allowed. But the
limit MAY still exist. Or, it may not exist. To see which of these two situations
occurs, it is necessary to rewrite the function f to get it into a form where one
can better analyze what’s happening near c.

EXAMPLE

a 0
0 situation;

the limit exists

Problem: Evaluate the limit limx→0
3x
x .

Solution: Remember that when investigating a limit as x approaches 0, x is
not allowed to equal 0. And, for all values of x except 0, 3x

x = 3. Therefore,
the limit statement can be rewritten in an easier form:

lim
x→0

3x

x
= lim

x→0
3 (

3x

x
= 3 whenever x 6= 0)

= 3 (the limit of a constant function)

When evaluating the limit limx→c f(x), the function f may be replaced by ANY
function that agrees with f NEAR c (but not necessarily AT c).

EXERCISE 1 ♣ Evaluate the limit:

lim
x→1

3− 3x

x− 1

Be sure to write complete mathematical sentences.

EXAMPLE

a 0
0 situation;

the limit does not exist

Problem: Evaluate the limit:

lim
x→0

3x

x2

Solution: Again, direct substitution yields a 0
0 situation.

lim
x→0

3x

x2
= lim

x→0

3

x

Since limx→0
3
x does not exist, neither does limx→0

3x
x2 .

154
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EXAMPLE Problem: Evaluate the limit:

lim
x→1

x2 + x− 2

x− 1

Solution: Direct substitution of x = 1 into this limit statement yields a 0
0

situation. It is necessary to rewrite x2+x−2
x−1 in a way that better displays what

is happening near x = 1. Since 1 is a zero of the numerator, x− 1 is a factor of
the numerator. Indeed, factoring and canceling yields:

x2 + x− 2

x− 1
=

(x− 1)(x + 2)

x− 1
(factor the numerator)

for x 6=1
= x + 2 (cancel factor of 1) (*)

Thus:

lim
x→1

x2 + x− 2

x− 1
= lim

x→1

(x− 1)(x + 2)

x− 1
= lim

x→1
(x + 2)

= 3

a ‘restricted’ equal sign The second ‘=’ sign that appears in (*) above is a sort of ‘restricted’ equal sign.

It is NOT completely correct to say that (x−1)(x+2)
x−1 = x + 2, since these two

expressions are NOT equal for all values of x. The left-most expression is not
defined when x is 1; the right-most expression is 3 when x is 1.

To bring attention to this difference in the expressions, the necessary restriction
is indicated over the equal sign. Thus, the reader becomes aware that the
equality only holds when x is not equal to 1.

If the ‘restricted’ equal sign seem bothersome to you, there is an alternate (but
more cumbersome) solution. One can instead say:

x2 + x− 2

x− 1
=

(x− 1)(x + 2)

x− 1
;

and for x 6= 1, this latter expression simplifies to x + 2.

an important distinction The equal sign in the sentence

lim
x→1

(x− 1)(x + 2)

x− 1
= lim

x→1
(x + 2)

is not a restricted equal sign. This equal sign is asserting that two real numbers
are equal. Remember that every limit, if it exists, is a real number.

However, take away the limit instruction, and a restricted equal sign is needed:

(x− 1)(x + 2)

x− 1

for x 6=1
= x + 2

One way to view the ‘=’ sign in this latter sentence, is that it is being used
to compare two functions. Two functions are equal only if they have the same
domains, and the outputs agree for all allowable inputs. A precise statement
follows.
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DEFINITION

equality of functions

Let f and g be functions of one variable. Then:

f = g ⇐⇒
D(f) = D(g) and
f(x) = g(x) for all x in
the common domain

EXERCISE 2 ♣ 1. What mathematical sentence is being defined in the previous definition?

♣ 2. What does the symbol ‘⇐⇒ ’ mean in this definition?

♣ 3. Suppose you are told that g and h are both functions of one variable,
and g = h. What can you conclude?

♣ 4. Suppose you are told that g and h are both functions of one variable,
D(g) = D(h) := D, and g(x) = h(x) ∀ x ∈ D. What can you conclude?

♣ 5. Let f and g be defined by the rules:

f(x) = x · x− 1

x− 1
and g(x) = x

Does f = g?

♣ 6. Let f and g be defined by the rules:

f(x) =
3x

x2
and g(x) =

3

x

Does f = g?

EXERCISE 3 Evaluate the following limits. Be sure to write complete mathematical sen-
tences.

♣ 1. lim
x→1

x2 + x− 2

3x2 − x− 2

♣ 2. lim
x→−2

x2 + x− 2

x3 − 7x− 6

EXERCISE 4 In the sentences below, replace the question marks with an equal sign ‘=’ or an
appropriate ‘restricted’ equal sign.

♣ 1. lim
x→2

ex(x− 2)

2− x
? − lim

x→2
ex ? e2

♣ 2. xex−2ex
2−x ? − ex

EXAMPLE

a ∞∞ situation

Problem: Evaluate the limit:

lim
x→0

3/x

1/x

Solution: Direct substitution yields an ∞∞ situation. However, for x 6= 0 it is

true that 3/x
1/x = 3, and so:

lim
x→0

3/x

1/x
= lim

x→0
3 = 3
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EXAMPLE Problem: Evaluate the limit:

lim
x→0

1/x2

1/x

Solution:

lim
x→0

1/x2

1/x
= lim

x→0

1

x

Since limx→0
1
x does not exist, neither does limx→0

1/x2

1/x .

Hence, limits of the form ∞
∞ may or may not exist.

EXAMPLE

a 1∞ situation

Consider next the one-sided limit:

lim
x→0+

(1 + x)1/x

The chart below suggests what happens as x approaches zero from the positive
side:

Based on these results, it should not be surprising that:

lim
x→0+

(1 + x)1/x = e

(This limit is sometimes taken as the definition of the irrational number e.)

indeterminate forms;
0
0 , ±∞

±∞ , 1∞
Limits that result in a 0

0 or ±∞±∞ or 1∞ situation under direct substitution are
called indeterminate forms. Such limits may or may not exist. They always
require further analysis, to see what’s really happening near the x-value of
interest.

EXERCISE 5 Evaluate the following limits, if they exist:

♣ 1. lim
x→1

x3 − 1

x− 1

♣ 2. lim
x→2

x3 − 4x2 − 11x + 30

x− 2
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evaluating a limit
by
rationalizing
the numerator

Recall that rationalizing means to rewrite in a form with no radicals. Thus,
to rationalize the numerator means to rewrite the numerator in a form that
contains no radicals.

Consider limx→0

√
x+1−1
x . Observe that direct substitution would result in a ‘ 00 ’

situation. To get better insight into this limit, you might want to plug numbers

like −.001 and .001 into
√
x+1−1
x . Does it appear to be getting close to any

particular number?

Here’s how to “massage” the function into a form that is more suitable for
seeing what happens for values near zero:

lim
x→0

√
x + 1− 1

x
= lim

x→0

√
x + 1− 1

x
·
√
x + 1 + 1√
x + 1 + 1

= lim
x→0

(x + 1)− 1

x(
√
x + 1 + 1)

= lim
x→0

1√
x + 1 + 1

=
1

2

Do you believe this answer, based on your earlier analysis?

EXERCISE 6 Let’s investigate the previous example a bit more closely.

♣ 1. Is the sentence

(x + 1)− 1

x(
√
x + 1 + 1)

=
1√

x + 1 + 1

true? Why or why not? Is a ‘restricted’ equal sign needed here?

♣ 2. Is the sentence

lim
x→0

(x + 1)− 1

x(
√
x + 1 + 1)

= lim
x→0

1√
x + 1 + 1

true? Why or why not? Is a ‘restricted’ equal sign needed here?

EXERCISE 7 ♣ Evaluate lim
x→0

3x√
x + 4− 2

. If the limit does not exist, so state.

QUICK QUIZ

sample questions

1. What is an ‘indeterminate form’? Answer in a complete sentence.

2. Evaluate limx→1
x2−1
x−1 . If the limit does not exist, so state. Be sure to write

a complete mathematical sentence.

3. Is the sentence
x2 − 1

x− 1
= x + 1

true for ALL values of x? Why or why not?

4. Graph the equation y = x2−1
x−1 .

5. Graph the function f(x) = x2−1
x−1 .

6. Let f and g be functions of one variable. Give a precise definition of the
sentence ‘f = g’.
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KEYWORDS

for this section

What is meant by 0
0 , ±∞±∞ and 1∞ situations? Restricted equal sign, equality of

functions, indeterminate forms, rationalizing the numerator.

END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a sentence (SEN).

♣ For any sentence, state whether it is TRUE, FALSE, or CONDITIONAL.

1. For all real numbers x, x3−1
x−1 = x2 + x + 1.

2. For all real numbers x except 1, x3−1
x−1 = x2 + x + 1.

3. Let f(x) = x3−1
x−1 and g(x) = x2 + x + 1. Then, f = g.

4. limx→1
x3−1
x−1

5. limx→1
x3−1
x−1 = limx→1(x2 + x + 1)

6. When evaluating a limit limx→c f(x), the function f can be replaced by
any function g that agrees with f , except possibly at c.

7. Suppose that whenever x 6= c, f(x) = g(x). Then, lim
x→c

f(x) = lim
x→c

g(x).

8. f = g

♣ Evaluate the following limits. If a limit does not exist, so state. Be sure to
write complete mathematical sentences.

9. lim
x→−1

x3 + x2 − 3x− 3

x + 1

10. lim
x→1

x3 + x2 − 3x− 3

x + 1

11. lim
x→2

x + 2

x2 + 4x + 4

12. lim
x→−2

x + 2

x2 + 4x + 4

13. lim
t→0+

(1 + t)1/t

14. lim
y→0+

(y + 1)1/y



3.6 The Intermediate Value Theorem

Introduction This section and the next present two fundamental properties of functions that
are continuous on a closed interval.

the Intermediate
Value Theorem

In this section, the Intermediate Value Theorem is discussed. Roughly, it says
that a function continuous on [a, b] must take on all values between f(a) and
f(b); that is, all intermediate values. The idea is simple: since f is continuous
on [a, b], whenever the inputs are close, so must be the outputs. So if one begins
at the point (a, f(a)) and traces the function, it is impossible to reach the point
(b, f(b)) without passing through all y-values between f(a) and f(b). This idea
is illustrated below.

the word ‘between’;

d is between a and b

Precise statements of the Intermediate Value Theorem usually use the word
‘between’. Here’s the mathematical meaning of the word ‘between’:

Given real numbers a and b, one says that d is between a and b if:

• a 6= b, and

• d lies in the open interval bounded by a and b

Perhaps a better phrase would be ‘strictly between’; however, this is not in
common usage.

THEOREM

the Intermediate
Value Theorem (IVT)

Let f be continuous on [a, b]. If D is any number between f(a) and f(b), then
there exists a number d between a and b with f(d) = D.

160
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the IVT is
an EXISTENCE
theorem

The Intermediate Value Theorem is an existence theorem. That is, under ap-
propriate hypotheses, it guarantees the existence of a number with a certain
property.

Be a good reader!

check that all the
hypotheses are
really needed

When presented with a theorem, a good reader will ‘play with’ the hypotheses,
to see if they are all really needed to obtain the stated result.

Remember that the hypotheses of a theorem are the things that are assumed to
be true. The singular form of ‘hypotheses’ is ‘hypothesis’. The hypothesis of the
Intermediate Value Theorem is that f is continuous on [a, b]. Remember that
this requires that f be defined on [a, b], continuous on (a, b), and well-behaved
at the endpoints. Are all these requirements really necessary?

The sketches below illustrate that they are.

The first and second sketches illustrate situations where there is no d between
a and b with f(d) = D. In both cases, f is not continuous at each point in the
open interval (a, b).

The third sketch illustrates another situation where there is no d between a and
b with f(d) = D. Here, f is not well-behaved at the left-hand endpoint, a.

d may NOT be unique Note that the Intermediate Value Theorem is NOT a uniqueness theorem. It
only guarantees the existence of a certain number; it makes no claims about
‘how many’ such numbers there may be.

Indeed, the sketch below illustrates that an ‘intermediate value’ may be taken
on ANY given number of times.
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EXERCISE 1

practice with
the IVT

♣ 1. Sketch the graph of a function f that satisfies the following requirements:
f is continuous on [a, b], f(a) = 3, f(b) = 4. Must there be a number
c ∈ (a, b) with f(c) = π? Why or why not? If so, label it on your graph.

♣ 2. Suppose f is continuous at each point in (−5, 5). Must f be continuous
on the interval [−2, 2]? Why or why not? Can you generalize this example?

♣ 3. Suppose f is continuous on [a, b], f(a) < 0 and f(b) > 0. Must there
exist a number c between a and b with f(c) = 0? Why or why not?

♣ 4. Suppose that f(0) = 2, f(1) = 3, but there is no number between 0 and
1 with function value 2.5. What conclusion, if any, can you make?

EXAMPLE

using the IVT
to guarantee existence
of a solution
to an equation,
and estimate its value

This example illustrates a very common use of the Intermediate Value Theorem:
to guarantee existence of a solution to a given equation, and estimate the value
of this solution.

Consider the equation x2 = 2. We want a (real) number which, when squared,
yields the number 2. How do we know that such a number exists? The Inter-
mediate Value Theorem can be used to guarantee a solution, as follows:

Define f(x) := x2. Then f is continuous on any interval [a, b]. We want to find
a number x for which f(x) = 2. Since f(1) = 12 = 1 and f(2) = 22 = 4, there
must exist d1 ∈ (1, 2) with f(d1) = 2 (Why?) Thus, d21 = 2, so d1 is a solution
of the equation x2 = 2. Now we have existence of a solution to this equation
that lies between 1 and 2; and it has been approximated within 1 unit. That
is, the solution lies in an interval of length 1.

Knowing that a solution d1 lies between 1 and 2 is okay, but it would be nice
to get a better estimate of the number d1. So, let’s refine our approach. Let’s
make a table of some functions values:

Since f(1.4) = (1.4)2 = 1.96 and f(1.5) = (1.5)2 = 2.25, the intermediate value
theorem guarantees the existence of d2 ∈ (1.4, 1.5) with d22 = 2. The solution
has been approximated within 0.1.
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One more time. Here’s another table of function values:

Since f(1.41) = 1.9881 and f(1.42) = 2.0164, there must exist d3 ∈ (1.41, 1.42)
with d23 = 2. The solution has been approximated within 0.01. It is easy to see
how this process can continue.

The exact solution to x2 = 2 in the interval being investigated is, of course,√
2 ≈ 1.4142.

EXERCISE 2 ♣ 1. Use the Intermediate Value theorem to find a solution to the equation
x4 − 8x2 = −15 that lies in the interval [0, 2]. Approximate the solution to
within 0.01; that is, get an interval of length .01 that contains a solution.

♣ 2. Find another solution to x4 − 8x2 = −15 that lies in the interval [2, 3].
Approximate it to within 0.1.

♣ 3. Find the exact solutions to the equation x4 − 8x2 = −15. Be sure to
write a complete mathematical sentence. Which of these solutions were you
finding in parts (1) and (2)?
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EXAMPLE Now consider the equation x3 = 2x + 3. Suppose it is desired to locate and
estimate a solution of this equation. Since the variable x appears on both sides
of the equation, the approach taken in the previous example must be modified.
The notion of equivalence comes to the rescue.

Since
x3 = 2x+ 3 ⇐⇒ x3 − 2x− 3 = 0 ,

these two equations have exactly the same truth values. They are interchange-
able. We can work with whichever one is easier to work with. In this case, it is
easier to work with x3 − 2x− 3 = 0.

If we can find a value of x that makes x3 − 2x − 3 = 0 true, then this same x
will make x3 = 2x+ 3 true.

Define f(x) := x3 − 2x− 3. A quick table shows that f(1) = −4 and f(2) = 1.
Thus, the intermediate value theorem guarantees the existence of a number
d1 ∈ (1, 2) with f(d1) = 0. That is, d31 − 2d1 − 3 = 0.

Another table of values shows that f(1.8) = −0.7680 and f(1.9) = 0.0590, so
there must be a solution d2 in (1.8, 1.9).

Another table shows that f(1.89) = −0.0287 and f(1.9) = 0.0590. Thus, there
must be a solution d3 in (1.89, 1.90).

Note that for this equation, it is not easy to find an exact solution.

EXERCISE 3 ♣ Use the Intermediate Value Theorem to show the existence of a solution to
the equation x3−x2 = 5x−5 that lies between 2 and 3. Then, approximate
this solution to within 0.01.

EXERCISE 4 ♣ 1. Suppose that f is continuous on [a, b], and f(a) = f(b) := D. Must
there be d ∈ [a, b] with f(d) = D?

♣ 2. Suppose that f is continuous on [a, b], and f(a) = f(b) := D. Must
there be d ∈ (a, b) with f(d) = D? Justify your answer. Be sure to write
complete mathematical sentences.

EXERCISE 5 ♣ 1. On a number line, show c, d and c+d
2 for various choices of c and d.

♣ 2. Let c and d be real numbers with c < d. Prove that c+d
2 is exactly

half-way between c and d.

♣ 3. Suppose that f is continuous on [a, b]. Must there exist d ∈ [a, b] with

f(d) = f(a)+f(b)
2 ? Why or why not?
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An ‘implication’ is
a sentence of the form:

If A, then B

The second sentence in the Intermediate Value Theorem is:

If D is any number between f(a) and f(b), then there exists
a number d between a and b with f(d) = D.

This is a sentence of the form

If A, then B

IF
D is any number between f(a) and f(b),

THEN
there exists a number d between a and b with f(d) = D.

A sentence of the form
If A, then B

is called an implication. Implications are the most common type of mathe-
matical sentence. Therefore, to understand mathematics, you must understand
implications. In this section, the study of implications begins. This study will
continue throughout the text.

intuition for
the sentence
‘If A, then B’

Everyone is familiar with sentences of the form ‘If A, then B’ because they are
as common in English as they are in mathematics. Fortunately, there are a lot
of similarities between the English and mathematical meanings. So let’s review
the English meaning, and then move on to the (more precise) mathematical
meaning.

Suppose a person is trying to sell raffle tickets, and says to you,

If your ticket is chosen, then you’ll get $1,000.

This is an (English) sentence of the form ‘If A, then B’. You know what
it means: if the first part of the sentence is true—that is, if your ticket is
chosen—then the second part of the sentence will also be true—you will get
$1,000.

Suppose the big day arrives, and your ticket isn’t selected. The first part of the
sentence is not true in this case. And, you don’t get $1,000. Does this make the
person who sold you the raffle ticket into a liar? Of course not! The sentence

‘If your ticket is chosen, then you’ll get $1,000.’

is still true. It’s just that this sentence only guarantees us that the second part
will be true IF the first part is true!

another English
example of an
‘If A, then B’
sentence

Here’s another example. Suppose your parents say,

If you get an ‘A’ in calculus, then we’ll take you out to dinner.

Now, if you get an ‘A’ and your parents don’t take you out, then they’ve broken
their promise. (In English, a sentence that is false is called a broken promise or
a lie!) However, suppose you get a ‘B’. Your parents know you worked really,
really hard and decide to take you out anyway. Now, did they break their
promise? Of course not. They promised that if you DO get an ‘A’, then they’ll
take you out. Their promise didn’t give any information about what might
happen if you don’t get an ‘A’.

In both of the preceding examples, it appears that in order for the sentence ‘If
A, then B’ to be TRUE, it must be that whenever A is true, B must also be
true.
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a true mathematical
sentence of the form
‘If A, then B’

Here’s a very simple mathematical implication:

If x = 2, then x2 = 4

Use your intuition: would you want to say that this sentence is true or false?
Based on English sentences of the same form, you’d probably want to say that
it is true: because whenever the sentence x = 2 is true, then the sentence x2 = 4
is also true. The only number that makes ‘x = 2’ true is 2, and 22 is equal to
4.

Indeed, to a mathematician, the sentence

If x = 2, then x2 = 4

is true. This is because WHENEVER the sentence x = 2 is true, the sentence
x2 = 4 is also true.

FF

implicit
universal quantifier

Really, the sentence

If x = 2, then x2 = 4

is a (true) implicit generalization,

For all x, if x = 2 then x2 = 4.

However, it is common usage to leave the universal quantifier ‘For all’ implicit,
rather than explicit.

a false mathematical
sentence of the form
‘If A, then B’

Now consider the implication:

If x2 = 4, then x = 2

Where does your intuition lead you? Would you want to call this sentence true
or false? In order to be true, you probably want to be assured that WHEN-
EVER x2 = 4 is true, then x = 2 must also be true. This is not the case. It is
possible to choose x such that x2 = 4 is true, but x = 2 is false. Just choose x
to be −2. Then, (−2)2 = 4 is true, but −2 = 2 is false. Thus, the mathematical
sentence

If x2 = 4, then x = 2

is false.

the truth table
for the sentence
If A, then B

Now let’s investigate the mathematical sentence ‘If A then B’ even more pre-
cisely. The sub-sentences A and B can be true or false, and there are four
possible combinations:

It is conventional to give the truth values of the sentence ‘If A, then B’ by using
a truth table:
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Look at the truth table. Under what conditions is the sentence If A, then B
TRUE? Well, it is true if A is true, and B is true. The first line of the truth
table tells us this. This is not surprising.

The sentence ‘If A, then B’ is also true if A is false. The third and fourth
lines of the truth table tell us this. This is in perfect harmony with the English
usage. If your parents say,

If you get an ‘A’ in calculus, then we’ll buy you a dinner.

and then buy you a dinner when you get a ‘B’, they didn’t lie. Their statement
was still true.

‘hypothesis’ and
‘conclusion’
of an implication

In the sentence ‘If A, then B’, A is called the hypothesis (of the implication)
and B is called the conclusion (of the implication).

The third and fourth lines of the truth table tell us that if the hypothesis of an
implication is false, then the sentence ‘If A, then B’ is automatically true.

IMPORTANT!

To check that
an implication
is true,
one need only check that
whenever A is true,
so is B

Here’s an extremely important consequence of the definition of the sentence ‘If
A, then B’. To see if a sentence of this form is TRUE, we need only verify that
whenever A is true, so is B. We don’t bother to check what happens if A is
false: because if A is false, the sentence is automatically true.

EXERCISE 6

the word ‘hypothesis’
in mathematics

♣ We have run across the word hypothesis a few times now. We talked ear-
lier about the hypotheses of a theorem; now we have the hypothesis of an
implication. Does it make sense to use the same word in both situations?
Comment.

An alternate form
of the sentence
‘If A, then B’ ;

A =⇒ B

Since implications are extremely common in mathematics, it should not be
surprising that there is more than one way to say the same thing. The sentence
‘If A, then B’ can also be written in the form

A =⇒ B

and read as ‘A implies B’.

The next example gives some practice with implications.
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EXAMPLE

practice with
implications

Determine if the following implications are TRUE or FALSE. If an implication
involves a variable, then in order to be true, it must be true for all possible
choices of the variable.

• If 2 = 1, then 2 = 5

This sentence is true. Here, A is false, B is false, and ‘If A, then B’ is true
(line 4 of the truth table). Whenever the hypothesis of an implication is false,
the implication is automatically true. Some students have trouble with this:
they can’t believe that a sentence can be true with so much false stuff floating
around!

• x > 2 =⇒ x > 1

This sentence is true. Whenever x is a number greater than 2, then it is also
greater than 1. That is, whenever x > 2 is true, then x > 1 must also be true.
Note that this sentence is true for ALL real numbers x. In particular, if x is 1,
then the sentence

1 > 2 =⇒ 1 > 1

is automatically true, because the hypothesis is false.

• If x > 1, then x > 2

This sentence is false. It is possible to make x > 1 true, but x > 2 false. Choose,
say, x = 1.5.

showing that an
implication is false

If an implication involves a variable, then to show that it is FALSE, you must
produce a specific choice for the variable that makes the hypothesis TRUE, but
the conclusion FALSE. Here’s the format to use in such a situation:

Problem: TRUE or FALSE: x > 1 =⇒ x > 2

Solution: FALSE. Let x = 1.5. Then, the hypothesis

1.5 > 1

is true, but the conclusion
1.5 > 2

is false.

counterexample A specific choice of variable(s) for which a sentence is false is called a coun-
terexample.

Problem: Decide if the sentence ‘If x > 1, then x > 2’ is true or false. If false,
give a counterexample.

Solution: The sentence is false. Let x = 1.9. Then, the hypothesis 1.9 > 1 is
true, but the conclusion 1.9 > 2 is false.

EXAMPLE Problem: Is the sentence
y2 = 9 =⇒ y = 3

true or false? If false, give a counterexample.

Solution: The sentence is false. Let y = −3. Then, the hypothesis (−3)2 = 9
is true, but the conclusion −3 = 3 is false.
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EXERCISE 7 Decide if the following mathematical sentences are true or false. If false, give a
counterexample, using the form illustrated above.

♣ 1. If x = 3, then x2 = 9

♣ 2. If x2 = 9, then x = 3

♣ 3. x = 2 =⇒ |x| = 2

♣ 4. If |x| = 2, then x = 2

♣ 5. a < b =⇒ |a| < |b|

♣ 6. If 0 < a < b, then |a| < |b|

EXERCISE 8 For this entire exercise, assume that the sentence A =⇒ B is TRUE.

♣ 1. What (if anything) can you conclude about the truth value of A?

♣ 2. What (if anything) can you conclude about the truth value of B?

♣ 3. Suppose you know that A is true. What (if anything) can you conclude
about the truth value of B?

♣ 4. Suppose you know that B is true. What (if anything) can you conclude
about the truth value of A?

♣ 5. Suppose you know that A is false. What (if anything) can you conclude
about the truth value of B?

♣ 6. Suppose you know that B is false. What (if anything) can you conclude
about the truth value of A?

QUICK QUIZ

sample questions

1 Give a precise statement of the Intermediate Value Theorem.

2 Suppose that f is continuous on the interval [1, 3]; f(1) is negative, and
f(3) is positive. Must the function f take on the value 0 on [1, 3]? Why or
why not?

3 TRUE or FALSE: 1 = 2 =⇒ 3 = 4.

4 TRUE or FALSE: If |x| = 1, then x = 1. If the sentence is false, give a
counterexample.

5 Give the truth table for the mathematical sentence A =⇒ B.

KEYWORDS

for this section

The Intermediate Value Theorem, use of the word ‘between’, using the IVT to
guarantee and estimate solutions to equations. Implications: notation, truth
table, hypothesis, conclusion, counterexample.
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END-OF-SECTION
EXERCISES

Determine if the following implications are TRUE or FALSE. If false, give a
counterexample. The context will determine if the variable(s) used are numbers,
functions, sentences, or sets.

Remember that if a sentence involves a variable, then to be TRUE, the sentence
must be true for all possible choices of the variable.

1. If f is continuous on [a, b] and D is any number between f(a) and f(b),
then there exists a number d between a and b with f(d) = D.

2. If f is continuous on [0, 2], f(0) = 1, and f(2) = 4, then there exists
d ∈ (0, 2) with f(d) = 3.

3. If A is false, then the sentence A =⇒ B is true.

4. If B is false, then the sentence A =⇒ B is false.

5. If B is true, then the sentence ‘If A, then B’ is true.

6. If A is true, then the sentence ‘If A, then B’ is true.

7. If |t| = 0, then t = 0

8. If |t| = 1, then t = 1

9. If t = 1, then |t| = 1

10. If t = −1, then |t| = 1



3.7 The Max-Min Theorem

Introduction This section presents a second fundamental property of functions that are con-
tinuous on a closed interval. Roughly, the Max-Min Theorem says that a func-
tion continuous on [a, b] must attain both a maximum and minimum value on
this interval.

We begin with a discussion of maximum and minimum values on an interval.

interval I In the next definition, I is an interval of real numbers containing c. For example,
I may be of any of these forms:

(a, b) [a, b] (a, b] [a, b) (a, c] [a, c] [c, b) [c, b]

DEFINITION

minimum of f on I;

maximum of f on I;

extreme values of f on I

Let f be defined on an interval I containing c.

The number f(c) is a minimum (value) of f on I ⇐⇒ f(c) ≤ f(x) ∀ x ∈ I

The number f(c) is a maximum (value) of f on I ⇐⇒ f(c) ≥ f(x) ∀ x ∈ I

When such maximum or minimum values do occur, they are called extreme
values of f on I. Note that a ‘value’ is a number.

One is usually interested not only in the number f(c) but also the place or
places where this number occurs. Such a point (c, f(c)) is called an extreme
(maximum or minimum) point of f on I.

171
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interpreting
this definition

This definition assigns meaning to the phrase ‘f(c) is a minimum of f on I’.
The assigned meaning is this: f(c) ≤ f(x) ∀ x ∈ I. That is, no matter what
value of x is chosen from I, it must be that f(c) ≤ f(x). Thus, f(c) is the least
number taken on by f over the interval I.

The definition can also be used ‘from right to left’. That is, if it is known that
f(c) ≤ f(x) ∀ x ∈ I, then, by this definition, f(c) is a minimum of f on I.

Definitions are always statements of equivalence. This definition states that the
two sentences

f(c) is a minimum of f on I

and
f(c) ≤ f(x) ∀ x ∈ I

are equivalent, and hence can be used interchangeably.

F

every definition is
(either implicitly
or explicitly)
a statement of
equivalence

Every definition is a statement of equivalence. Since mathematicians know this
fact, they often get a bit sloppy about how they state definitions. It is common
to see things like this:

DEFINITION. If object x has property P , then x is called a glob.

Or,

DEFINITION. The object x is called a glob if it has property P .

What the author really means here is:

DEFINITION. x has property P ⇐⇒ x is a glob

So: if x has property P , then it is a glob. And, if x is a glob, then x has
property P . The two sentences are interchangeable.

That is, although definitions are commonly stated as sentences of the form ‘If
A, then B’, they are ALWAYS really statements of equivalence.

This is NOT true of theorems, however!
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extreme values
may or may not occur

The following examples show that extreme values on an interval I may or may
not exist.

In the first sketch below, the minimum value of f on I := (a, b) is 2, and is
attained in two places; f(c1) = f(c2) = 2. Thus, (c1, 2) and (c2, 2) are both
minimum points of f on I. Also, the maximum value of f on I is 4; (c3, 4) is a
maximum point of f on I.

In the second sketch, take I to be the interval (a, b]. There is no minimum
value. The number 2 is ‘trying’ to be the minimum value, but is never taken
on. That is, there is no c ∈ I with f(c) = 2. The only outputs taken on are
those in the interval (2, 3): does this set (2, 3) have a least element? No! One
can ‘reach into’ the output pile (2, 3) and choose a number as close to 2 as
desired; and then reach in again and choose a number even closer to 2. Since
the number 2 is NOT in this pile, there is no least element. There is also no
maximum value. ♣ Why?

In the third sketch, take I := (a, b]. The maximum value of f on I is 3; the
point (b, 3) is a maximum point. There is no minimum value.

In the last sketch, take I := [a, b]. The minimum value is 2; the point (a, 2) is
the only minimum point. The maximum value is 4, and is attained (taken on)
by every x ∈ (a, b]. That is, the points (x, 4) are all maximum points, for every
x ∈ (a, b].

Observe, in all these examples, that whenever a maximum or minimum value
FAILS to exist, it is due either to a discontinuity of the function, or a missing
endpoint.

EXERCISE 1

practice with
extreme values

For each of the following, make a sketch illustrating a function f and an interval
I satisfying the stated requirements:

♣ 1. I is an open interval, f is continuous at every point in I, 3 is the
minimum value on I, there is no maximum value

♣ 2. I is neither open nor closed, f is not continuous at every point in I, −1
is the minimum value on I, 2 is the maximum value on I

♣ 3. f is defined on [a, b], limx→a+ f(x) = 2, the minimum value of f on I is
0, the maximum value of f on I is 2
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EXERCISE 2

minimum values
versus
minimum points

♣ 1. If a function f has a minimum value on I, must this minimum value
be unique? That is, can there be two different numbers, both of which are
minimum values on I?

♣ 2. If a function f has a minimum point on I, must this point be unique?
Or, can there be more than one point where the minimum value is attained?

conditions under
which
extreme values
will always exist

The next theorem tells us that if a function is continuous on a closed interval,
then it must take on both a maximum and minimum value on this interval.

THEOREM

the Max-Min Theorem

If a function f is continuous on a closed interval [a, b], then f must take on
both a maximum value M and a minimum value m on [a, b]. That is, there
must exist c1 ∈ [a, b] for which f(c1) = M . Also, there must exist c2 ∈ [a, b] for
which f(c2) = m.

FF

idea of proof of
the Max-Min Theorem

To prove the Max-Min Theorem, one first shows that every continuous function
on a closed interval is bounded on this interval. Let M be the least upper bound
of the set {f(x) | x ∈ [a, b]}, and define:

g(x) :=
1

M − f(x)

Argue by contradiction. If f does NOT take on the value M , then g is continu-
ous on [a, b], and hence must be bounded on [a, b]. But, g is NOT bounded on
[a, b], since in this case f(x) must take on values arbitrarily close to M . This
provides the desired contradiction.

FF

a more general
topological result

The Max-Min Theorem is a special case of an extremely important topological
theorem: every continuous function on a compact set attains both a maximum
and a minimum.
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check that
all the hypotheses
are needed

To use the Max-Min Theorem, one must have a function f that is continuous
on a closed interval [a, b]. That is, f must be defined on [a, b], continuous on
the open interval (a, b), and well-behaved at the endpoints. Take away any of
these conditions, and extreme values are no longer guaranteed.

The first sketch below illustrates that continuity on (a, b) is needed.

The second sketch illustrates that the function must be well-behaved at the
endpoints.

The third sketch illustrates that the function must be defined on a closed in-
terval.

EXERCISE 3 ♣ 1. Sketch the graph of a function that is NOT continuous on [a, b], attains
a minimum on [a, b], does not attain a maximum on [a, b].

♣ 2. Sketch the graph of a function that is NOT continuous on [a, b], attains
a maximum on [a, b], but not a minimum.

♣ 3. Sketch the graph of a function that is NOT continuous on [a, b], and
attains both a maximum and minimum on [a, b].

♣ 4. Sketch the graph of a function that is NOT continuous on [a, b], and
does not attain a maximum or minimum on [a, b].

♣ 5. If f is NOT continuous on [a, b], can the Max-Min Theorem be used to
reach any conclusion about extreme values of f on [a, b]?

EXERCISE 4 ♣ 1. Suppose you are given a function f and a closed interval I, and it is
known that f does NOT attain a maximum value on I. Is f continuous on
I?

♣ 2. Suppose f is defined on [a, b] and continuous on (a, b). It is known that f
does NOT attain a maximum value on [a, b]. Make some conclusion about
the behavior of f on [a, b].

In the next two chapters, calculus tools are developed to help locate maximum
and minimum values, when they exist.

more on
implications

This section is concluded with some additional study of implications. Note that
the form of the Max-Min Theorem is an implication:

IF
f is continuous on a closed interval [a, b],

THEN

f must take on both a maximum and minimum
value on I.
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the ‘contrapositive’
of an implication

The contrapositive of the implication

If A, then B

is another implication:

If (not B), then (not A)

EXAMPLE

finding contrapositives

The contrapositive of the true implication

x = 1 =⇒ x2 = 1

is:
x2 6= 1 =⇒ x 6= 1

EXAMPLE

finding contrapositives

The contrapositive of the true implication

If f is continuous on [a, b], then f attains a maximum value on [a, b]

is:

If f does not attain a maximum value on [a, b], then f is not continuous on [a, b]

relationship between
an implication
and its
contrapositive

Is there any nice relationship between an implication and its contrapositive?
Where does intuition lead you? Roughly, a true sentence ‘If A, then B’ says
that whenever A is true, B must also be true. So if B isn’t true, then A can’t be
true; because if A WERE true, B would have to be true. This is the intuition
behind the result:

An implication is equivalent to its contrapositive.

That is:
If A, then B ⇐⇒ If (not B), then (not A)

In alternate notation:

A⇒ B ⇐⇒ not B ⇒ not A

The proof is easy: just show that both sentences have precisely the same truth
values, regardless of the truth values of A and B!
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EXERCISE 5 Determine if the following implications are true or false. Then, find their con-
trapositives.

♣ 1. If x ∈ [1, 2], then x > 0

♣ 2. If x ∈ [0, 1), then x > 0

♣ 3. x ∈ [0, 1) =⇒ x ≥ 0

♣ 4. If f is continuous on [a, b], then f attains a minimum value on [a, b].

♣ 5. Suppose that a < b, and D is a number between f(a) and f(b). Inves-
tigate this implication concerning f :

If f is continuous on [a, b], then there exists a number c ∈ [a, b] with f(c) =
D.

QUICK QUIZ

sample questions

1. Let f be defined on an interval I containing c. Give a precise definition of
the sentence, ‘the number f(c) is a maximum of f on I’.

2. Sketch the graph of a function f that is defined on I := [1, 3], has a mini-
mum value on I, but has no maximum value on I.

3. Sketch the graph of a function f that is continuous on (a, b) but attains
NO maximum or minimum value on (a, b).

4. Give a precise statement of the Max-Min Theorem.

5. What is the contrapositive of A =⇒ B? What is the relationship between
an implication and its contrapositive?

KEYWORDS

for this section

Extreme values for a function on an interval, extreme values may or may not
exist, extreme values versus extreme points, the Max-Min Theorem, the contra-
positive of an implication.



178 copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org

END-OF-SECTION
EXERCISES

♣ Sketch the graph of each function f on the given interval I.

♣ Find the maximum and minimum value of f on I, if they exist.

♣ List all maximum points and minimum points (if any).

Be sure to answer using complete mathematical sentences. Here’s a sample
problem.

SAMPLE: f(x) = x2, I = (0, 2]

SOLUTION: The graph is shown at left. The maximum value of f on I is 4;
there is no minimum value. The only maximum point is (2, 4).

1. f(x) = x2, I = [0, 2)

2. f(x) = x2, I = (0, 2)

3. f(x) = 4, I = R
4. f(x) = −2, I = (0,∞)

5. f(x) = (x− 2)2 + 1, I = (1, 3)

6. f(x) = (x− 2)2 + 1, I = [1, 3)

7. f(x) = |2x + 1|, I = (−1, 2]

8. f(x) = |2x + 1|, I = [− 3
4 , 0)

♣ Determine if the following implications are true or false.

♣ If an implication is false, give a counterexample.

♣ Then, find the contrapositive of the implication.

Here’s a sample problem:

SAMPLE: If f is continuous on (1, 5), then f attains a maximum value on
(2, 4)

SOLUTION: FALSE. Let f be the function graphed at left. Then the hy-
pothesis ‘f is continuous on (1, 5)’ is TRUE, but the conclusion ‘f attains a
maximum value on (2, 4)’ is FALSE.

The contrapositive is: If f does not attain a maximum value on (2, 4), then f
is not continuous on (1, 5). (The contrapositive is of course also false.)

9. If f is continuous on [a, b], then f attains a maximum value on [a, b]

10. If f does not attain a maximum value on [a, b], then f is not continuous on
[a, b]

11. If f is continuous on (a, b], then f attains a maximum value on (a, b]

12. If f is continuous on [a, b), then f attains a minimum value on [a, b)

13. If f is continuous on (0, 5), then f attains both a maximum and minimum
value on [1, 2]

14. If f is continuous on (−5,−1), then f attains both a maximum and mini-
mum value on (−4,−2)

15. If f is continuous on R, then f attains a maximum value on R; that is,
there exists c ∈ R such that:

f(x) ≤ f(c) ∀ x ∈ R

16. If f is continuous on R, then f attains a minimum value on R; that is, there
exists c ∈ R such that:

f(c) ≤ f(x) ∀ x ∈ R



NAME
SAMPLE TEST, worth 100 points, Chapter 3
Show all work that leads to your answers. Good luck!

5 pts Give a precise (ε–δ) definition of the mathematical sentence: lim
x→c

f(x) = l

15 pts All the following questions have to do with the true limit statement lim
x→2

x2 = 4.

(2 pts) Very roughly, lim
x→2

x2 = 4 says (fill in the blanks):

Whenever is close to , it must be that
is close to .

(2 pts) More precisely, the sentence says (fill in the blanks):

It is possible to get as close to as desired, merely
by requiring that be sufficiently close to .

The precise definition of lim
x→2

x2 = 4 involves the sentence ‘0 < |x− 2| < δ’.

(3 pts) For what value(s) of x is the sentence 0 < |x−2| < δ true? Show these numbers
on the number line below.

(8 pts) Fill in the boxes on the graph below with appropriate numbers/symbols that
illustrate the ‘4-step process’ showing that the limit statement lim

x→2
x2 = 4 is

true. Be sure to conclude with a ‘δ that works’.

12 pts TRUE or FALSE. (2 pts each) (Circle the correct response.)

T F For all real numbers a and b, |a+ b| ≤ |a|+ |b|.
T F If direct substitution into lim

x→c
f(x) yields a ‘ 00 ’ situation, then the limit does

not exist.

T F (2 = 1) and (1 + 1 = 2) =⇒ 4 = 3

T F If an interval of real numbers is not open, then it is closed.

T F If f is continuous on [a, b], then f must attain a maximum value on [a, b].

T F If f is continuous on [a, b], then there exists c ∈ [a, b] for which f(c) = f(a)+f(b)
2 .

179
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8 pts Evaluate the following limits, if they exist:

(3 pts) lim
t→−1

(t3 − 2t2 + 3)

(5 pts) lim
x→2

x3 − x2 − x− 2

x2 − 4

4 pts Prove that an implication A =⇒ B is equivalent to its contrapositive. (HINT: Make a
truth table! I’ve got you started.)

6 pts (4 pts) The implication
IF x2 = 4, THEN x = 2

is false. Give a counterexample, by filling in the blanks:

Let x = . Then is true, but
is false.

(2 pts) TRUE or FALSE:
x = 2 =⇒ x2 = 4

6 pts Graph f(x) = x2−1
x−1 in the space provided below.
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24 pts All the following questions refer to the graph of the function f shown below.

Find the following numbers/sets, if they exist. If they do not exist, so state. Be sure to
write complete mathematical sentences. (2 pts each)

f(−1) lim
x→−1

f(x) lim
x→−1.01

f(x)

D(f) R(f) lim
x→−1+

f(x)

lim
x→2

f(x) lim
x→−1−

f(x) f(−1.1)

(2 pts) {x | f has a nonremovable discontinuity at x}

(2 pts) {x | f(x) < 0}

(2 pts) Is f continuous on [−1, 0]? (YES or NO)

10 pts Sketch the graph of a function f satisfying each set of requirements:

(5 pts) D(f) = (a, b), f is continuous on (a, b), limx→a+ f(x) = 3, limt→b− f(t) = −1

(5 pts) f is continuous on [0, 2], f(0) = 1, f(2) = −1. Must f attain a maximum
value on [0, 2]? Why or why not?

10 pts FILL IN THE BLANKS.

(5 pts) The Intermediate Value Theorem says: Let f be on [a, b]. If
D is any number between and , then a
number d between and for which .

(5 pts) A function f has a removable discontinuity at c whenever
exists, but is not equal to .
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CHAPTER 4

THE DERIVATIVE

The tangent lines to the graph of a function can give us
very important information about the function. Their
slopes tell us where the function is increasing and de-
creasing. Where a tangent line has zero slope, the
function may have a maximum or minimum point.

In this chapter, a new function is introduced, named
f ′ and called the derivative of f , that tells us about
the slopes of the tangent lines to the graph of f .

copyright Dr. Carol JVF Burns http://www.onemathematicalcat.org



4.1 Tangent Lines

Introduction Recall that the slope of a line tells us how fast the line rises or falls. Given
distinct points (x1, y1) and (x2, y2), the slope of the line through these two
points is

change in y

change in x
=

rise

run
=
y2 − y1

x2 − x1
,

providing that x2 6= x1. If x2 = x1, the line is vertical, and the slope does not
exist.

For given points (x1, y1) and (x2, y2) satisfying the additional requirement that
x2 − x1 = 1, the slope of the line becomes:

y2 − y1

x2 − x1
=
y2 − y1

1

This simple observation gives an important interpretation of the slope of a line:
it is a number that tells the vertical change per (positive) unit horizontal change
when traveling from point to point on the line. For example, the lines shown
below have (from left to right) slopes 5, −4, and 1

2 .

When traveling along a line from left to right:

• lines with large positive slopes are steep ‘uphills’;

• lines with small positive slopes are gradual ‘uphills’;

• lines with large negative slopes are steep ‘downhills’; and

• lines with small negative slopes are gradual ‘downhills’.

182



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 183

EXERCISE 1 ♣ 1. Prove that:
y2 − y1

x2 − x1
=
y1 − y2

x1 − x2

Therefore, the order that the points are listed when calculating the slope
of a line is unimportant.

♣ 2. A line has slope 3. If the x-values of two points on the line differ by 1,
how much do their y-values differ by? If the x-values of two points differ
by 2, how much do their y-values differ by?

♣ 3. On the same graph, sketch lines that have slopes 1, 10, and 1
10 .

♣ 4. On the same graph, sketch lines that have slopes −1, −10, and − 1
10 .

tangent lines;
informal discussion

The tangent line to a graph at a point P is the line that best approximates the
graph at that point. In other words, it is the best linear approximation at P .

Tangent lines may or may not exist, as illustrated below. When they do exist,
it is intuitively clear how they should be drawn.

finding the slopes
of tangent lines

GOAL: Find the slope of the tangent line to the graph of a function f at the
point (x, f(x)).

PROBLEM: Two points are needed to find the slope of a line!

To remedy this problem, choose a second point that is close to (x, f(x)), and
find the slope of the line through these two points. When the second point is
very close to (x, f(x)), this line should be a good approximation to the tangent
line.

Let h denote some small number, positive or negative. (Think of h as being,
say, 0.1, 0.001 or −0.01.) Then, the point (x+h, f(x+h)) is close to (x, f(x)).
If h > 0, the new point is to the right of (x, f(x)). If h < 0, the new point is to
the left of (x, f(x)).
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secant line The line through these two points (x, f(x)) and (x+h, f(x+h)) is called a secant
line. It serves as an approximation to the desired tangent line. In general, the
closer the second point (x + h, f(x + h)) is to the initial point (x, f(x)), the
better the approximation.

The slope of the secant line through the points (x, f(x)) and (x+ h, f(x+ h))
is:

slope of secant line =
f(x+ h)− f(x)

(x+ h)− x

=
f(x+ h)− f(x)

h

difference quotient The quantity
f(x+ h)− f(x)

h

obtained above is called a difference quotient. It represents the slope of the
secant line through the points (x, f(x)) and (x+ h, f(x+ h)).

let h→ 0 Since we expect the slope of the secant line to better approximate the slope of
the tangent line as the second point moves closer to the first (which happens
as h approaches 0), it is natural to investigate the limit:

lim
h→0

f(x+ h)− f(x)

h

This limit may or may not exist. If it does exist, then there is a tangent line to
the graph of f at the point (x, f(x)), and the limit value gives the slope of the
tangent line to the graph of f at the point (x, f(x)). This result is summarized
next.

DEFINITION

slope of the
tangent line
to the graph of f
at the point (x, f(x)).

If the limit

m = lim
h→0

f(x+ h)− f(x)

h

exists, then there is a nonvertical tangent line to the graph of f at the point
(x, f(x)), and the number m gives the slope of this tangent line.

investigating
the limit;
what are x and h?

The limit

lim
h→0

f(x+ h)− f(x)

h

uses two letters, x and h. The letter h is the dummy variable for the limit; it
merely represents a number that is getting arbitrarily close to zero. The limit
can equally well be written with a different dummy variable, say:

lim
∆x→0

f(x+ ∆x)− f(x)

∆x
or lim

t→0

f(x+ t)− f(x)

t

(The symbol ∆x is read as ‘delta x’, and denotes a change in x.)
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The letter x that appears in the limit is the x-value of the point where the slope
of the tangent line is desired. If, for example, the slope is desired at the point
(2, f(2)), then the limit becomes:

lim
h→0

f(2 + h)− f(2)

h

Note that the limit limh→0
f(x+h)−f(x)

h can only be investigated at a value of x
where f is defined, so that f(x) makes sense.

the limit is
a 0

0 situation
Observe that direct substitution of h = 0 into the limit

lim
h→0

f(x+ h)− f(x)

h

yields a 0
0 situation. Therefore, this limit can never be evaluated directly. It is

necessary to get f(x+h)−f(x)
h into a form that displays what is happening when

h is close to zero, but not equal to zero. In many cases, one tries to simplify
the difference quotient to a point where there is a factor of h in the numerator,
that can be cancelled with the h in the denominator.

EXAMPLE

using the
limit formula
to find the slopes
of tangent lines

It’s always best to test a new result in a situation where you already know the
answer. So, let’s work first with the function f(x) = 3x. The graph of f is a
line of slope 3. If P is any point on this line, then the tangent line at P is the
line itself, and we should find that the slope of the tangent line is 3. Let’s see
if the above formula bears this out.

Let the ‘first point’ be (x, f(x)) = (x, 3x), and let the ‘second point’ be (x +
h, f(x+ h)) = (x+ h, 3(x+ h)). The slope of the secant line between these two
points is

f(x+ h)− f(x)

h
=

3(x+ h)− 3x

h
=

3h

h
,

and thus:

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

3h

h
= 3

Thus, for any point (x, f(x)) on the graph, the slope of the tangent line is 3, as
expected.

EXERCISE 2 ♣ 1. Consider the function f(x) = −3x. Using the limit formula, find the
slope of the tangent line at the point (1,−3).

♣ 2. Consider the function f(x) = −3x. Using the limit formula, find the
slope of the tangent line at a typical point (x, f(x)).

♣ 3. Consider the function f(x) = kx, where k is a nonzero constant. Using
the limit formula, find the slope of the tangent line at a typical point
(x, f(x)).

♣ 4. Consider the zero function f(x) = 0. Using the limit formula, find the
slope of the tangent line at a typical point (x, f(x)).
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EXAMPLE

using the
limit formula
to find the slopes
of tangent lines

Next, consider the function f(x) = −x2 + 2, with graph shown below.

We expect to find that:

• the slope of the tangent line at x = 0 is 0

• when x is small and positive, the slopes are small and negative

• when x is a large negative number, the slopes are large and positive

Let’s see if this is borne out. Here, f(x+ h) = −(x+ h)2 + 2, and we get:

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(
−(x+ h)2 + 2

)
− (−x2 + 2)

h

= lim
h→0

−(x2 + 2xh+ h2) + 2 + x2 − 2

h

= lim
h→0

−x2 − 2xh− h2 + x2

h

= lim
h→0

h(−2x− h)

h
= lim

h→0
(−2x− h)

= −2x

Observe that this is a complete mathematical sentence. For a particular value
of x, the ‘=’ signs denote equality of real numbers. Do NOT drop the limit
instruction until you actually let h go to 0. This sentence shows that the limit
exists for every value of x, and is equal to −2x. That is, the slope of the tangent
line at a point (x, f(x)) is −2x.

The expected results are obtained:

• When x = 0, the slope of the tangent to the point (0, 2) is −2(0) = 0, as
expected.

• When x = 0.1, the slope of the tangent line to the point (0.1, 1.99) is
−2(0.1) = −0.2, a small negative number, as expected.

• When x = −4, the slope of the tangent line to the point (−4,−14) is
−2(−4) = 8, a large positive number, as expected.
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EXERCISE 3 ♣ 3. Graph the function f(x) = x2.

♣ 2. What do you expect for the slope of the tangent line when x = 0? When
x is a small positive number? When x is a large negative number?

♣ 3. Using the limit formula, calculate the slope of the tangent line at a
typical point (x, f(x)).

♣ 4. What is the slope of the tangent line at (x, f(x))? Does this agree with
your expectations?

characterizing a
two-sided limit
by using
one-sided limits

Suppose a function g is defined both to the left and to the right of c. In order
for the two-sided limit

lim
x→c

g(x)

to exist, the function values g(x) must approach the same number as x ap-
proaches c coming in from both sides.

That is, the two-sided limit limx→c g(x) exists exactly when both one-sided
limits

lim
x→c+

g(x) and lim
x→c−

g(x)

exist, and have the same value.

This observation is used in the next examples.
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EXAMPLE

A function which
does not have a
tangent line at a
point

Consider the function f defined piecewise as follows:

f(x) =

{
2x− 1 when x ≥ 2

− 1
3x+ 11

3 when x < 2

The graph of f is shown below.

First consider a point (x, f(x)) when x > 2. In this case, to the immediate left
and right of the point (x, f(x)) the function f looks like:

f(x) = 2x− 1

(♣ Why?) Thus, we find that:

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(
2(x+ h)− 1

)
− (2x− 1)

h
= (♣ You fill in the details.)

= 2

Similarly, if x < 2, the slopes of tangent lines are all − 1
3 . (♣ Be sure to check

this yourself.)

The interesting situation occurs when x = 2; let us now investigate the limit:

lim
h→0

f(2 + h)− f(2)

h

Remember that this limit is, in general, a 2-sided object. Since the function f
being investigated IS defined both to the right (h > 0) and left (h < 0) of 2,
we must see what happens as h approaches 0 from the right-hand side and the
left-hand side.

Whenever h > 0 (h approaches 0 from the right-hand side), we have 2 + h > 2,
so that

f(2 + h)− f(2)

h
=

(2(2 + h)− 1)− 3

h
= 2

and so:

lim
h→0+

f(2 + h)− f(2)

h
= 2



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 189

Whenever h < 0 (so that h approaches 0 from the left-hand side), we have
2 + h < 2, so that

f(2 + h)− f(2)

h
=

(− 1
3 (2 + h) + 11

3 )− 3

h

= −1

3

and so:

lim
h→0−

f(2 + h)− f(2)

h
= −1

3

Since the right and left hand limits do not agree, the two-sided limit

lim
h→0

f(2 + h)− f(2)

h

does not exist.

That is, there is no tangent line to f at x = 2. This result was, of course,
expected!

EXERCISE 4 Consider the function f , with graph shown below.

♣ 1. Give a piecewise description for this function f .

Now, attempt to find the tangent line at the point (1, 3), as follows:

♣ 2. Find: lim
h→0+

f(1 + h)− f(1)

h

♣ 3. Find: lim
h→0−

f(1 + h)− f(1)

h

♣ 4. Does limh→0
f(1+h)−f(1)

h exist? Why or why not?
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EXERCISE 5 When h is a number near zero, x+ h is a number near x. So, in evaluating the
limit

lim
h→0

f(x+ h)− f(x)

h
,

we require that f be defined on some interval containing x. This interval can
be of any of these forms:

♣ 1. If f is defined on an interval (a, b) containing x, then is the limit

lim
h→0

f(x+ h)− f(x)

h

a genuine two-sided limit? Why or why not?

♣ 2. If f is only defined on an interval of the form [x, b), then is the limit

limh→0
f(x+h)−f(x)

h a genuine two-sided limit? If not, what type of limit is
it?

♣ 3. If f is only defined on an interval of the form (a, x], then is the limit

limh→0
f(x+h)−f(x)

h a genuine two-sided limit? If not, what type of limit is
it?

ALGEBRA REVIEW

point-slope form for lines

identifying lines Two pieces of (non-contradictory, non-overlapping) information uniquely deter-
mine a line. The most common information given to identify a line is:

• two distinct (different) points on the line; or

• the slope of the line, and a point on the line.

Suppose that the slope of a line is known, call it m; and a point on the line is
known, call it (x1, y1). Now, let (x, y) denote any other point on the uniquely
identified line (so x 6= x1). Using the points (x1, y1) and (x, y) to compute the
(known) slope:

y − y1

x− x1
= m ⇐⇒ y − y1 = m(x− x1)

Thus, any point (x, y) lying on the line with slope m through (x1, y1) makes
the equation y − y1 = m(x− x1) true; and any point that makes the equation
true lies on the line.

point-slope form
of a line

That is, the equation of a line that has slope m and passes through the point
(x1, y1) is given by:

y − y1 = m(x− x1)

This is called the point-slope form of a line.

EXAMPLE

using
point-slope form

Problem: Find the equation of the line that has slope 2, and passes through
the point (−1, 3).

Solution: The information is ideally suited to point-slope form:

y − 3 = 2(x− (−1)) ⇐⇒ y = 3 + 2(x+ 1) ⇐⇒ y = 2x+ 5
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Problem: Find the equation of the line that passes through the points (5,−2)
and (−1, 3).

Solution: First, find the slope of the line:

m =
3− (−2)

(−1)− 5
=

5

−6
= −5

6

Then, use either point, the known slope, and point-slope form. Using the point
(5,−2), the equation is:

y − (−2) = −5

6
(x− 5)

Using the point (−1, 3), the equation is:

y − 3 = −5

6
(x− (−1))

EXERCISE 6 ♣ Verify that the two equations obtained above are equivalent; that is, they
describe precisely the same line. That is, show that:

y − (−2) = −5

6
(x− 5) ⇐⇒ y − 3 = −5

6
(x− (−1))

One way to do this is to put both equations into the same form; say, y =
mx+ b form, or ax+ by+ c = 0 form. Once they’re in the same form, they
are easy to compare.

QUICK QUIZ

sample questions

1. Use a limit to compute the slope of the tangent line to the graph of f(x) = x
at x = 2. Be sure to write complete mathematical sentences.

2. In the expression lim
h→0

f(x+ h)− f(x)

h
, what is the dummy variable?

Rewrite the limit using a different dummy variable (you choose).

3. In the expression lim
h→0

f(x+ h)− f(x)

h
, what does x represent?

4. In the limit lim
h→0

f(x+ h)− f(x)

h
, what does f(x+h)−f(x)

h represent?

5. Let f : [0, 3]→ R be defined by f(x) = x2. Graph f . Does

lim
h→0

f(0 + h)− f(0)

h

exist? If so, what is it?

KEYWORDS

for this section

Tangent lines, finding the slopes of tangent lines, secant lines, difference quo-
tient, slope of the tangent line to the graph of a function f at the point (x, f(x)),
characterizing a two-sided limit by using one-sided limits.
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END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a sentence (SEN).

♣ For any sentence, state whether it is TRUE, FALSE, or CONDITIONAL.

1. lim
h→0

f(x+ h)− f(x)

h

2. lim
∆x→0

g(x+ ∆x)− g(x)

h

3. lim
h→0

f(x+ h)− f(x)

h
= m

4. lim
∆x→0

g(x+ ∆x)− g(x)

h
= m

5. The slope of the tangent line to the graph of f(x) = x2 at the point (x, x2)
equals 2x.

6. The slope of the tangent line to the graph of g(x) = 5 at the point (x, 5)
equals 0.

♣ For the remaining problems, define a function g by

g(h) :=
f(x+ h)− f(x)

h
,

where f is a function of one variable, with x ∈ D(f).

7. Find g(0.1) and g(∆x).

8. Rewrite the limit lim
h→0

f(x+ h)− f(x)

h
in terms of the function g .

9. When is a number h in the domain of g? Answer using a complete mathe-
matical sentence.

10. What does the number g(h) tell us?

11. What does the number lim
h→0

g(h) tell us, when it exists?

12. Write down the ε-δ definition of the sentence:

lim
h→0

g(h) = m

Be sure to write a complete mathematical sentence.



4.2 The Derivative

Introduction In the previous section, it was shown that if a function f has a nonvertical
tangent line at a point (x, f(x)), then its slope is given by the limit:

lim
h→0

f(x+ h)− f(x)

h
(*)

This is potentially very powerful information about the function f . For exam-
ple, places where a tangent line has slope 0 often correspond to maximum or
minimum values of a function.

Also, the slope of the tangent line at (x, f(x)) tells how the function values
f(x) are changing at the instant one is ‘passing through’ the point (x, f(x)):
whether the graph is rising or falling, and how quickly.

Because of the importance of this slope information, the limit (∗), when it
exists, is given a special name: it is called the derivative of f at x, and denoted
by f ′(x) (read ‘f prime of x’). This is summarized below.

DEFINITIONS

differentiable at x;

the derivative
of f at x;

differentiation

For a given function f and x ∈ D(f), if the limit

lim
h→0

f(x+ h)− f(x)

h

exists, then one says that f is differentiable at x, and writes:

f ′(x) := lim
h→0

f(x+ h)− f(x)

h

The number f ′(x) is called the derivative of f at x.

The process of finding f ′(x) is called differentiation.

193
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DEFINITION

f ′,

the derivative function

Given a function f , we now have a way to construct a new function, named f ′.
This function f ′ is called the derivative of f . The domain of f ′ is the set of all
x ∈ D(f) for which the limit

lim
h→0

f(x+ h)− f(x)

h

exists.

If f is differentiable at every point in its domain, then D(f ′) = D(f). However,
f may not be differentiable at every point in its domain. So, the domain of f ′

may be ‘smaller’ than the domain of f . In general, all that can be said is that
D(f ′) ⊂ D(f).

The derivative f ′ takes an input x, and gives as an output the slope of the
tangent line to the graph of f at the point (x, f(x)).

EXAMPLE

differentiating
f(x) = 2x+ 1

Let f be defined by f(x) = 2x+ 1. The graph of f is a line L with slope 2. At
any point on this line, the tangent line is the line L itself. So, at every point,
the slope of the tangent line is 2. Thus, the function f ′ has the same domain
as f , and is defined by f ′(x) = 2.

One usually abbreviates the problem as follows:

PROBLEM: Differentiate: f(x) = 2x+ 1

SOLUTION: f ′(x) = 2

In particular, f ′(0) = 2, f ′(π) = 2, and f ′(−1002.1) = 2 .

EXAMPLE

differentiating
a function that is
defined piecewise

PROBLEM: Differentiate:

f(x) =

{ −1 for x ≤ 0

1 for x > 0

SOLUTION: For all positive and negative x, tangent lines exist and have slope
zero. However, f is not differentiable at 0. Intuitively, this is clear; there is
no obvious way to draw a tangent line at the point (0,−1). This conclusion is
confirmed by investigating the right-hand limit at x = 0 :

lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0+

1− (−1)

h
= lim

h→0+

2

h
,

which does not exist. Thus, the two-sided limit does not exist.

Summarizing:

f ′(x) =

{
0 for x 6= 0

not defined for x = 0

In particular, f ′(0.1) = 0, f ′(−0.001) = 0, and f ′(0) does not exist.

In this example, D(f) = R, and D(f ′) = {x |x 6= 0}. Using interval notation,
one can alternately write D(f ′) = (−∞, 0) ∪ (0,∞). Unfortunately, both of
these are pretty long expressions for the domain of f ′. There is a simpler
expression, that makes use of set subtraction, discussed next.
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DEFINITION

set subtraction

Let A and B be sets. Define a new set, denoted by A−B, and read as ‘A minus
B’, by:

A−B := {x |x ∈ A and x /∈ B}

Thus, the set A − B consists of all the elements of A that are not elements of
B. (In other words, take A and ‘subtract off’ any elements of B.)

EXAMPLE

set subtraction

For example, if
A = R and B = [1, 2) ,

then:
A−B = (−∞, 1) ∪ [2,∞) and B −A = ∅

If A = {1, 2, 3} and B = {3, 4, 5} then:

A−B = {1, 2} and B −A = {4, 5}

This notation gives an easier way to describe the domain of f ′ in the previous
example: D(f ′) = R− {0} .

EXERCISE 1 ♣ 1. Why is it incorrect to say D(f ′) = R− 0 ?

For each of the following sets A and B, find both A−B and B−A. Be sure to
answer using complete mathematical sentences.

♣ 2. A = R, B = (−∞, 2]

♣ 3. A = (−3, 3], B = [−1, 4)

♣ 4. A = R, B is the set of irrational numbers

Find sets A and B so that S = A−B. (There is not a unique correct answer.)

♣ 5. S = (−1, 0) ∪ (0, 1]

♣ 6. S = {1, 2, 3}
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EXAMPLE

differentiating
f(x) = |x|;
a function that is
continuous at a point,
but not
differentiable there

Consider the function f(x) = |x|.
For x > 0, f(x) = |x| = x is certainly differentiable with derivative f ′(x) = 1 .

For x < 0, f(x) = |x| = −x is also differentiable with derivative f ′(x) = −1 .

When x = 0, there is no tangent line. In this case, both one-sided limits exist,
but do not agree:

lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0+

|h| − |0|
h

= lim
h→0+

h

h
= 1

and

lim
h→0−

|0 + h| − |0|
h

= lim
h→0−

|h|
h

= lim
h→0−

−h
h

= −1

Since the one-sided limits do not agree, the two-sided limit does not exist, and
f is not differentiable at x = 0.

Summarizing:

f ′(x) =


1 for x > 0

not defined for x = 0

−1 for x < 0

Thus, for example, f ′(1.7) = 1, f ′(−4/3) = −1, and f ′(0) does not exist.

EXERCISE 2 Let f(x) = 3x− 1.

♣ 1. Graph f . What is D(f)?

♣ 2. What is the function f ′ ? In particular, what is D(f ′)?

Now, let f(x) = |x− 3| .

♣ 3. Give a piecewise description for f .

♣ 4. Graph f . What is D(f)?

♣ 5. For x > 3, what is f ′(x)?

♣ 6. For x < 3, what is f ′(x)?

♣ 7. Show that f ′ is not defined at x = 3, by investigating the limits:

lim
h→0+

f(3 + h)− f(3)

h
and lim

h→0−

f(3 + h)− f(3)

h

♣ 8. Write down a piecewise description of f ′.

♣ 9. Graph f ′.
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EXAMPLE

a ‘patched together’
function that
IS differentiable
at the patching point

PROBLEM: Is the function

f(x) =

{
x2 x ≥ 1

2x− 1 x < 1

differentiable at x = 1?

SOLUTION: Note that f(1) = 12 = 1. Investigate both one-sided limits:

lim
h→0+

f(1 + h)− f(1)

h
= lim

h→0+

(1 + h)2 − 1

h

= lim
h→0+

1 + 2h+ h2 − 1

h

= lim
h→0+

h(2 + h)

h
= 2

and

lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−

(2(1 + h)− 1)− 1

h
= lim

h→0−

2h

h
= 2

Since both one-sided limits agree,

lim
h→0

f(1 + h)− f(1)

h

exists and equals 2. Thus, f is differentiable at 1, and f ′(1) = 2. That is, the
tangent line to the graph of f at the point (1, 1) has slope 2.

EXERCISE 3 Let f be defined by:

f(x) =

{
x2 for x ≤ −1

−2x− 1 for x > −1

♣ 1. Graph f . What is D(f)?

♣ 2. Does f ′(x) exist for x < −1? If so, what is it?

♣ 3. Does the limit limx→−1− f
′(x) exist? If so, what is it?

♣ 4. Does f ′(x) exist for x > −1? If so, what is it?

♣ 5. Investigate two appropriate one-sided limits to decide if f ′(−1) exists.
If it does, what is it?

♣ 6. Is there a tangent line to the graph of f at the point with x-value −1?
If so, what is its slope?

♣ 7. Graph f ′. What is D(f ′)?
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EXAMPLE

a function that is
differentiable
at an endpoint
of its domain

PROBLEM: Consider the function f : [1, 2]→ R, f(x) = 1
x . Is f differentiable

at x = 1?

SOLUTION: Note that f(1) = 1
1 = 1. For f to be differentiable at x = 1, the

limit

lim
h→0

f(1 + h)− 1

h

must exist. Does it? Remember that to investigate this limit, one only considers

values of h that are close to 0 and in the domain of the function f(1+h)−1
h . When

is h in the domain of f(1+h)−1
h ? Only when 1+h ∈ D(f). And for this function,

1 + h ∈ D(f) only when h > 0. Here, the ‘two-sided limit’ is identical to the
right-hand limit.

When a function is only defined on one side of a point, the ‘two-sided limit’ is
actually just a one-sided limit.

Thus, one has:

lim
h→0

f(1 + h)− f(1)

h
= lim

h→0+

1
1+h − 1

h
(line 1)

= lim
h→0+

1
1+h −

1+h
1+h

h
(line 2)

= lim
h→0+

1− 1− h
h(1 + h)

(line 3)

= lim
h→0+

−1

1 + h
= −1 (line 4)

Thus, f is differentiable at x = 1, and f ′(1) = −1.

EXERCISE 4 ♣ 1. Give a reason (or reasons) for each line of the preceding display. The
lines are numbered for easy reference.

Consider the function f : [0, 4]→ R given by f(x) = (x− 1)2.

♣ 2. Graph f .

♣ 3. Is f differentiable at x = 0? That is, does the limit

lim
h→0

f(0 + h)− f(0)

h

exist? Justify your answer. Be sure to write complete mathematical sen-
tences.
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EXAMPLE

a function that is not
differentiable at an
endpoint of its domain

Let f(x) =
√
x.

For all x > 0 one has:

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

√
x+ h−

√
x

h
(line 1)

= lim
h→0

√
x+ h−

√
x

h
·
√
x+ h+

√
x√

x+ h+
√
x

(line 2)

= lim
h→0

(x+ h)− x
h(
√
x+ h+

√
x)

(line 3)

= lim
h→0

1√
x+ h+

√
x

(line 4)

=
1

2
√
x

(line 5)

Thus, at each point (x,
√
x) for x > 0, the tangent line exists and has slope

1
2
√
x

.

EXERCISE 5 ♣ Give a reason (or reasons) for each line in the display above. The lines are
numbered for easy reference.

Now think about what happens when x = 0. In this case, the limit is actually
a right-hand limit, and reduces to:

lim
h→0+

√
0 + h−

√
0

h
= lim

h→0+

√
h

h

For h > 0, we can write h = (
√
h)2, so that:

√
h

h
=

√
h

(
√
h)2

=
1√
h

But as h→ 0+, 1√
h

does not approach a specific real number. It gets arbitrarily

large. There is a vertical tangent line at the point (0, 0), and a vertical line has
no slope. So f is not differentiable at 0.

Caution!

‘no slope’ versus
‘zero slope’

Every horizontal line has zero slope. Choosing any two points on the line, and
traveling from one point to the other via the rule ‘rise, then run’ yields:

rise

run
=

0

some nonzero number
= 0

Every vertical line has no slope; that is, the slope is undefined. For if any two
points are chosen on the line, computation of the slope yields

rise

run
=

some nonzero number

0
,

and division by zero is undefined.

Thus, no slope and zero slope have entirely different meanings. This can be
confusing, because in English, the words ‘no’ and ‘zero’ are often used as syn-
onyms.
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reading info from
a graph

Consider the function f whose graph is shown below:

Read the following information from the graph, if possible. If a quantity does
not exist, so state.

f(−1), f ′(−1), f ′(−1.5), f ′(1.5), f ′(2), f(4), f ′(6), f ′(7)

SOLUTION:

• f(−1) = 1

• f ′(−1) does not exist

• f ′(−1.5) = 0

• f ′(1.5) = 2 (Use the known points (1,−1) and (2, 1) to compute the slope.)

• f ′(2) does not exist

• f(4) = 2

• f ′(6) = 0

• f ′(7) > 0; one might estimate that f ′(7) ≈ 1

Now, answer the following questions about f :

• What is D(f)?

• What is R(f)?

• Where is f continuous?

• Where is f differentiable?

• What is {x | f(x) > 0}?

• What is {x | f(x) ∈ [−1, 1]}?

• What is {x | f(x) = 1}?
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SOLUTION:

For all these answers, the assumption is made that the patterns indicated at
the four borders of the graph continue.

• D(f) = R

• R(f) = R

• f is continuous at all x in the set (−∞,−1) ∪ (−1, 4) ∪ (4,∞). A simpler
notation for this set is R− {−1 , 4}.

• f is differentiable at all x in the set R− {−1 , 1 , 2 , 4}.

• Some approximation is necessary here.
{x | f(x) > 0} = (−∞,−1] ∪ (1.5, 3.5) ∪ [4, 10)

• Some approximation is necessary here.
{x | f(x) ∈ [−1, 1]} = (−∞, 3.8) ∪ {6} ∪ (9.5, 10.5)

• Some approximation is necessary here.
{x | f(x) = 1} = (−∞,−1] ∪ {2, 6, 9.5}

EXERCISE 6 Consider the function f whose graph is shown below. Read the following infor-
mation from the graph, if possible. Approximate, when necessary. If a quantity
does not exist, so state. Be sure to write complete mathematical sentences.

♣ 1. f(0), f(1), f ′(1), f ′(2), f ′(1.34),

f(3), f(4), f ′(π), f ′(1000)

♣ 2. What is D(f)?

♣ 3. What is D(f ′)?

♣ 4. What is R(f)?

♣ 5. Where is f continuous? Classify any discontinuities.

♣ 6. What is {x | f(x) ≤ 0}?

♣ 7. What is {x | f ′(x) < 0}?
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‘reconstructing’
a function
from its derivative

Suppose that a function f has derivative f ′ whose graph is shown below. What,
if anything, can be said about the graph of f?

SOLUTION:

For x < 0, the tangent lines to the graph of f must all have slope 1.

For 0 < x < 1, the tangent lines to the graph of f must all have slope 0.

For x > 1, the tangent lines to the graph of f must all have slope −1.

There is not a unique function f that satisfies these requirements. For example,
any of the following graphs would produce the specified derivative:

EXERCISE 7 Suppose that a function f has derivative f ′ whose graph is shown below:

♣ 1. What, if anything, can be said about the graph of f?

♣ 2. Graph three different functions f that could have the specified derivative.
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QUICK QUIZ

sample questions

1. Give a precise definition of f ′(x).

2. What is the difference between f ′ and f ′(x)?

3. If A = [0, 4) and B = {0, 2, 4}, find A−B and B −A.

4. For the function given below, find and graph f ′.

5 TRUE or FALSE: If f is differentiable at x, then f is defined at x.

KEYWORDS

for this section

Differentiable at x, f ′(x) is the derivative of f at x, differentiation, f ′ is the
derivative function, finding derivatives using the definition, set subtraction.

END-OF-SECTION
EXERCISES

For each function f listed below, do the following:

♣ Graph f . What is D(f)?

♣ Find f ′. When necessary, use the definition of derivative.

♣ Graph f ′. What is D(f ′)?

1. f(x) = |x− 2|

2. f(x) =

{
2 for − 3 < x ≤ 0
1
x for 0 < x < 4

3. f(x) =

{
x2 for x ≤ 1

2x for x > 1

♣ Use the definition of the derivative to find f ′(c) for each function f and
number c ∈ D(f).

4. f(x) = 3x2 − 1, c = 2

5. f(x) = 1
x−1 , c = 2

6. f(x) =
√
x+ 1, c = 4

♣ Find the equation of the tangent line to the graph of the function f at the
specified point. Feel free to use any earlier results.

The point-slope form may be useful: remember that

y − y1 = m(x− x1)

is the equation of the line that has slope m and passes through the point (x1, y1).

7. f(x) = x2, c = 3

8. f(x) =
√
x, c = 0

9. f(x) = (x+ 2)2 + 1, c = −2



4.3 Some Very Basic
Differentiation Formulas

Introduction If a differentiable function f is quite simple, then it is possible to find f ′ by
using the definition of derivative directly:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

However, this process is quite tedious. Also, as f gets more complicated, the
limit gets increasingly more difficult to evaluate.

In this section, some differentiation formulas are developed to make life easier.

First, some notation:

NOTATION
for the derivative

prime notation;

f has derivative f ′

There are several notations used for the derivative.

So far, the prime notation has been used: if f is differentiable at x, then the
slope of the tangent line at the point (x, f(x)) is the number f ′(x). The name
of the derivative function is f ′; f ′(x) is the function f ′, evaluated at x.

If y is a differentiable function of x, then its derivative can be denoted, using
prime notation, by y′. For example, if y = x2, then y′ = 2x. If it is desired
to emphasize that y′ is being evaluated at a particular input c, one can write
y′(c).

NOTATION
for the derivative

Leibniz notation;

y has derivative dy
dx ;

dy
dx evaluated at c
is denoted by either
dy
dx (c) or
dy
dx |x=c

If y is a differentiable function of x, then its derivative can alternately be de-
noted by dy

dx . This is the Leibniz notation for the derivative. Read ‘ dydx ’ as ‘dee
y, dee x’.

For example, if y = x2, then dy
dx = 2x. Again, if it is desired to emphasize that

dy
dx is being evaluated at a particular input c, one can write dy

dx (c) or dy
dx |x=c .

These latter two expressions can both be read as: ‘dee y, dee x, evaluated at c’.
In particular, the vertical bar ‘|’ is read as ‘evaluated at’.

Similarly, if f is a differentiable function of x, its derivative in Leibniz notation
is df

dx (read as ‘dee f , dee x’). If one wants to emphasize that this derivative is

being evaluated at a particular value, say c, then one writes df
dx (c) or df

dx |x=c .

One problem with Leibniz notation is that the name of the function and an
output of the function are confused. When one says:

if y = x2, then dy
dx = 2x,

the symbol dy
dx is really being used as both the function name and its output.

Strictly speaking, one should write: if y = x2, then dy
dx (x) = 2x. However, this

is not common practice.

an important use
of Leibniz notation:
the operator d

dx

The notation d
dx can be used to denote an instruction: d

dx acts on a differentiable
function of x to produce its derivative.

For example, one can write:

d

dx
(3x− 1) = 3 and

d

dt
(t2) = 2t and

d

dz
(2z + 1) = 2

This ‘ ddx ’ notation is often used in stating differentation formulas. Also, it is
convenient if you are asked to differentiate a function that is not given a name.

204
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EXERCISE 1

practice with
notation

Let f(x) = x2.

Rewrite the following sentences about f , using prime notation.

♣ 1. df
dx = 2x

♣ 2. df
dx (3) = 6

♣ 3. df
dx |x=3 = 6

♣ 4. df
dt = 2t

♣ 5. df
dt (3) = 6

♣ 6. df
dt |t=3 = 6

Rewrite the following sentences using Leibnitz notation.

♣ 7. f ′(x) = 2x

♣ 8. f ′(3) = 6

♣ 9. f ′(t) = 2t

compiling some
differentiation tools

We now begin to compile some tools that will help us differentiate functions
more easily.

DIFFERENTIATION
TOOL

the derivative of a
constant is 0

Let f(x) = k, for k ∈ R . Then f ′(x) = 0 .

alternate
notation

This rule can be rewritten, using the ‘ ddx ’ operator, as follows:

For every real number k :
d

dx
(k) = 0

PROOF Proof. Let f(x) = k, for k ∈ R. Then, for every x :

lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

k − k
h

= 0

Thus, f ′(x) = 0.

EXAMPLE Remember that the symbol ‘ ’ merely marks the end of the proof.

If f(x) =
√
π2 − 5, then f ′(x) = 0 .

If y = e− 3, then dy
dx = 0 .

d
dx

( √
7

3
√
2

)
= 0

If f(x) = a+ b, where a and b are constants, then f ′(x) = 0 .

EXERCISE 2 Rewrite each of these examples, using alternate notation.
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DIFFERENTIATION
TOOL

constants can be
‘slid’ out of the
differentiation
process

Suppose that f is differentiable at x, and let k ∈ R. Recall that the function
kf is defined by the rule:

(kf)(x) := k · f(x)

Then:
(kf)′(x) = k · f ′(x)

In words, the derivative of a constant times a differentiable function is the
constant, times the derivative of the function.

alternate
notation

This rule can be rewritten, using a mixture of the ‘ ddx ’ operator and prime
notation, as:

d

dx

(
kf(x)

)
= k · f ′(x)

PROOF Proof. Let f be differentiable at x, and let k ∈ R. It is necessary to show that
the function given by (kf)(x) = k · f(x) is differentiable at x.

lim
h→0

(kf)(x+ h)− (kf)(x)

h

= lim
h→0

kf(x+ h)− kf(x)

h
(defn of kf)

= lim
h→0

k · f(x+ h)− f(x)

h
(factor out k)

= k · lim
h→0

f(x+ h)− f(x)

h
(prop. of limits, f diff. at x)

= k · f ′(x) (f is diff at x)

Thus, the function kf is differentiable at x, and has derivative given by:

(kf)′(x) = k · f ′(x)

What made this
proof work?
Properties of limits!

Observe what made this proof work: since we knew, a priori, that f was dif-

ferentiable at x (so that limh→0
f(x+h)−f(x)

h exists), we were able to use the
property of limits to slide the constant out. The properties of limits will play
a crucial role in the proofs of all the differentiation formulas.

EXAMPLE If f(x) = 2x, then f ′(x) = 2 · ddx (x) = 2(1) = 2 .

If h is differentiable at x, and f(x) =
√

2h(x), then f ′(x) =
√

2h′(x).

If y = 1
2t = 1

2 ·
1
t , then dy

dt = 1
2 ·

d
dt

(
1
t

)
. (This last example can be completed

after the statement of another differentiation tool, the Simple Power Rule.)

DIFFERENTIATION
TOOL

differentiating sums
and differences

Suppose that both f and g are differentiable at x. Then the functions f + g
and f − g are also differentiable at x, and:

(f + g)′(x) = f ′(x) + g′(x)

(f − g)′(x) = f ′(x)− g′(x)

In words, the derivative of a sum is the sum of the derivatives, and the derivative
of a difference is the difference of the derivatives.
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alternate
notation

This rule can be rewritten, using a mixture of the ‘ ddx ’ operator and prime
notation, as:

d

dx

(
f(x) + g(x)

)
= f ′(x) + g′(x)

PROOF Proof. It is shown first that, under the stated hypotheses, f+g is differentiable
at x.

Recall that the function f + g is defined by the rule (f + g)(x) := f(x) + g(x).

Since, by hypothesis, both f and g are differentiable at x, it is known that f ′(x)
and g′(x) exist.

Then:

(f + g)′(x)

:= lim
h→0

(f + g)(x+ h)− (f + g)(x)

h
(defn. of derivative)

= lim
h→0

f(x+ h) + g(x+ h)− f(x)− g(x)

h
(defn of f + g)

= lim
h→0

f(x+ h)− f(x)

h
+
g(x+ h)− g(x)

h
(regroup)

= lim
h→0

f(x+ h)− f(x)

h
+ lim
h→0

g(x+ h)− g(x)

h
(limit of a sum, hypotheses)

= f ′(x) + g′(x)

To see that f − g is differentiable at x, we can now cite earlier results. Note
that:

(f − g)(x) := f(x)− g(x) = f(x) + (−g(x)) = f(x) + (−g)(x)

So, the function f − g can be written as a sum of two functions, with names f
and −g. Then:

(f − g)′(x) = f ′(x) + (−g)′(x) (Why?)

= f ′(x) + (−g′(x)) (Why?)

= f ′(x)− g′(x)

EXERCISE 3 ♣ 1. Prove the previous result yourself, without looking at the book. You
could be asked to write down a precise proof on an in-class exam.

♣ 2. Under what hypotheses is the limit of a sum equal to the sum of the
limits? Was this result used in the previous proof? Where? Were the
hypotheses met?

♣ 3. Re-prove the fact that (f − g)′(x) = f ′(x) − g′(x) (under suitable hy-
potheses), but this time DON’T cite earlier results. Just use the definition
of derivative.
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Does the rule
apply when there are
more than 2 terms?

Although the previous result is stated for only 2 terms, does it tell us that, say,

(f + g + h)′(x) = f ′(x) + g′(x) + h′(x) ,

providing that f , g and h are all differentiable at x? Of course! Just pull out
the old ‘treat it as a singleton’ trick:

(f + g + h)′(x) =
(
(f + g) + h

)′
(x) (group)

= (f + g)′(x) + h′(x) (use result once)

= f ′(x) + g′(x) + h′(x) (use result again)

EXERCISE 4 ♣ Prove that, under suitable hypotheses:

(f + g + h+ k)′(x) = f ′(x) + g′(x) + h′(x) + k′(x)

SIMPLE POWER
RULE

differentiating xn

For all positive integers n :
d

dx
xn = nxn−1

More generally, if n is a real number, and I is any interval on which both xn

and nxn−1 are defined, then xn is differentiable on the interval I, and:

d

dx
xn = nxn−1

EXAMPLE Here are some very basic applications of the Simple Power Rule:

• If f(x) = x2, then f ′(x) = 2x2−1 = 2x . Here, the Simple Power Rule was
applied with n = 2 .

• d
dxx

3 = 3x3−1 = 3x2

• If y = x1007, then dy
dx = 1007x1006. Here, the Simple Power Rule was

applied with n = 1007 .

• The slope of the tangent line to the graph of f(x) = x7 at the point (2, 27)
is f ′(2) = 7(26) .

EXAMPLE

rewriting the function,
to make it ‘fit’
the Simple Power Rule

Here are some more advanced applications of the Simple Power Rule. The
Simple Power Rule is used whenever the function being differentiated looks
like (or can be made to look like) xn. The laws of exponents, and fractional
exponent notation, are used extensively to rewrite functions, to get them into
a form where the Simple Power Rule can be applied. The Algebra Review in
this section reviews the necessary tools.

Problem: Differentiate f(x) = 1
x .

Solution: Rewrite the function as f(x) = x−1. Taking n = −1 in the Simple
Power Rule, one obtains:

f ′(x) = (−1)x−1−1 = −x−2 = − 1

x2

On what interval(s) is this formula valid? It is valid on any interval for which
BOTH 1

x and − 1
x2 are defined. Both expressions are defined on R−{0}. Thus,

the formula is valid for all real numbers, except 0.
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EXAMPLE Problem: Differentiate y =
√
x .

Solution: Rewrite y, using fractional exponents, as y = x1/2. Taking n = 1
2 in

the Simple Power Rule, one obtains:

dy

dx
=

1

2
x

1
2−1 =

1

2
x−1/2 =

1

2
· 1

x1/2
=

1

2
√
x

On what interval(s) is this formula valid? The expression
√
x is defined for

x ≥ 0. The expression 1
2
√
x

is defined for x > 0. BOTH expressions are defined

on (0,∞). Thus, the formula is valid for all positive real numbers.

put the derivative
in a form that matches
the original
function form

It is always a good idea to put the derivative in a form that agrees, as closely
as possible, with the form of the original function. Since the original function
in this example was given in radical form, y =

√
x, the derivative was also

rewritten in radical form, dy
dx = 1

2
√
x

.

d
dxkx

n = nkxn−1 Using both the Simple Power Rule and the fact that constants can be ‘slid out’
of the differentiation process yields an extremely useful formula:

d

dx
kxn = k

d

dx
xn = k(nxn−1) = knxn−1

Thus, for example:

• If f(x) = 3x2, then f ′(x) = 6x .

• d
dxπx

11 = 11πx10

• If y =
√

2x, then dy
dx = (1)(

√
2)x1−1 =

√
2x0 =

√
2 .

It is not necessary to write out all these steps. You should be able to
recognize y = kx as a line that has slope k. Thus, dy

dx = k .

• The slope of the tangent line to the graph of y = 3x5 at the point (1, 3) is
dy
dx |x=1 . Here, dy

dx = 15x4, so that dy
dx |x=1 = 15(1)4 = 15 .

EXERCISE 5

practice with
the Simple Power Rule

For each of the functions listed below, do the following:

• Write the function in the form f(x) = xn.

• Differentiate, using the Simple Power Rule.

• On what interval(s) is the formula obtained for the derivative valid?

• Find the equation of the tangent line to the graph of f when x = 1 .

♣ 1. f(x) = 3
√
x

♣ 2. f(x) = 1√
x

♣ 3. f(x) =
√
x

3
√
x2
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idea of proof
of the
Simple Power Rule

When the exponent is a positive integer, the idea of the proof of the Simple
Power Rule is very simple. This idea is illustrated by considering a special case:

Show that if f(x) = x3, then f ′(x) = 3x2.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)3 − x3

h

= lim
h→0

(x3 +

one factor of h︷ ︸︸ ︷
3x2h +

more than one h︷ ︸︸ ︷
3xh2 + h3 )− x3

h
(expand (x+ h)3)

= lim
h→0

h(3x2 + 3xh+ h2)

h

= lim
h→0

(3x2 + 3xh+ h2)

= 3x2

A brief review of Pascal’s Triangle, a tool for easily expanding (a + b)n for
positive integers n, will enable you to repeat this argument for higher values of
n.

Pascal’s Triangle Let a and b be any real numbers. Observe the following pattern:

(a+ b)0 = 1

(a+ b)1 = (1)a+ (1)b

(a+ b)2 = (1)a2 + 2ab+ (1)b2

(a+ b)3 = (a+ b)(a+ b)2

= (a+ b)(a2 + 2ab+ b2)

= a3 + 2a2b+ ab2 + ba2 + 2ab2 + b3

= (1)a3 + 3a2b+ 3ab2 + (1)b3

A ‘triangle’ is formed. Each new row is easily obtained from the previous row
by simple addition. It can be proven (F say, by induction) that this pattern
continues forever.

finding (x+ h)7 For example, suppose we want to expand (x+ h)7. Long multiplication would
be extremely tedious. Instead, first write the appropriate types of terms in the
expansion. Each term has variable part xihj , where the exponents add up to
7. The first term has x7 and h0; the second x6 and h1, the third term has x5

and h2, and so on. So we get the term types:

x7 x6h x5h2 x4h3 x3h4 x2h5 xh6 h7

Now, get the correct coefficients from Pascal’s triangle (from the row beginning
with the numbers ‘1 7 . . . ’):

(1)x7 + 7x6h+ 21x5h2 + 35x4h3 + 35x3h4 + 21x2h5 + 7xh6 + (1)h7

Thus:

(x+ h)7 = x7 + 7x6h+ 21x5h2 + 35x4h3 + 35x3h4 + 21x2h5 + 7xh6 + h7
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EXERCISE 6 ♣ 1. Use Pascal’s triangle to expand (x+ h)9.

♣ 2. Use Pascal’s triangle to expand (x− h)4.

Hint: Write (x− h)4 = (x+ (−h))4, so the appropriate term ‘types’ are:

x4 x3(−h) x2(−h)2 x(−h)3 (−h)4

♣ 3. Prove that if f(x) = x4, then f ′(x) = 4x3.

FF The complete proof of the Simple Power Rule would take several pages, and we
do not yet have at our disposal all the necessary tools. However, a sketch of
the proof is as follows:

• First prove the result when x is a positive integer. (An easier proof than
the one sketched above uses the product rule for differentiation.)

• Use the quotient rule for differentiation to extend the result to the negative
integers.

• Use the formula for the derivative of an inverse function to extend the result
to exponents of the form 1

n .

• Write xp/q = (x1/q)
p

to extend the result to all rational exponents.

• Use the exponential function to make sense of irrational exponents: xr =
er ln x. (Here, we require x to be positive.) Differentiate to complete the
proof.

DIFFERENTIATION
TOOL

differentiating ex

If f(x) = ex, then f ′(x) = ex.

Thus, the derivative of the exponential function is itself ! This is a property of
the exponential function that is not shared by any other function. Make sure
you understand what this fact is saying: if you look at any point on the graph
of the function ex, then the y-value of the point also tells you the slope of the
tangent line to that point!
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idea of proof Let f(x) = ex. Then:

lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

ex+h − ex

h

= lim
h→0

exeh − ex

h

= lim
h→0

ex
(
eh − 1

h

)

If it can be shown that limh→0
eh−1
h = 1, then we can complete the proof:

lim
h→0

ex
(
eh − 1

h

)
= ex · lim

h→0

eh − 1

h

= ex(1) = ex

A graph of g(h) := eh−1
h for values of h close to 0 is shown, which illustrates

the fact that limh→0
eh−1
h = 1 .

DIFFERENTIATION
TOOL

differentiating lnx

If f(x) = lnx, then f ′(x) = 1
x .

the result is
believable

Observe that this result is believable: when x is large, the slopes of tangent
lines to the graph of lnx are small; and when x is close to 0, the slopes are large
and positive.

EXAMPLE To differentiate functions involving ex and lnx, it is often necessary to first
rewrite the function, using properties of exponents and logs. These properties
are reviewed in the Algebra Review at the end of this section.

Problem: Differentiate f(x) = e2+x.

Solution: First write f(x) = e2+x = e2ex. Then,

f ′(x) = e2
d

dx
ex = e2ex = e2+x .

Another (easier) way to differentiate f will be possible after we study the Chain
Rule for Differentiation.
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EXAMPLE Problem: Differentiate g(x) = ln 2x .

Solution: First write g(x) = ln 2 + lnx. Then:

g′(x) = 0 +
1

x
=

1

x

Another (easier) way to differentiate g will be possible after we study the Chain
Rule for Differentiation.

EXERCISE 7 Differentiate each of the following functions. It will be necessary to first rewrite
the functions, using properties of exponents and logarithms.

♣ 1. f(x) = ex+5; interpret your result graphically.

♣ 2. f(x) = ln 7x

♣ 3. Do you think that we have the necessary tools yet to differentiate f(x) =
e2x ? Why or why not?

♣ 4. Do you think that we have the necessary tools yet to differentiate g(x) =
ln (x+ 3) ? Why or why not?

A chart summarizing the tools developed in this section is given below:

DIFFERENTIATION TOOLS

prime notation d
dx operator

if f(x) = k, then f ′(x) = 0 d
dx (k) = 0

(kf)′(x) = k · f ′(x) d
dx

(
kf(x)

)
= k · f ′(x)

(f + g)′(x) = f ′(x) + g′(x) d
dx

(
f(x) + g(x)

)
= f ′(x) + g′(x)

(f − g)′(x) = f ′(x)− g′(x) d
dx

(
f(x)− g(x)

)
= f ′(x)− g′(x)

if f(x) = xn, then f ′(x) = nxn−1 d
dxx

n = nxn−1

if f(x) = ex, then f ′(x) = ex d
dx (ex) = ex

if f(x) = lnx, then f ′(x) = 1
x

d
dx (lnx) = 1

x

ALGEBRA REVIEW

radicals and fractional exponents, properties of logarithms

radicals A radical is an expression of the form

n
√
x , (*)

for n = 2, 3, 4, . . . .

When n = 2, (*) is written more simply as
√
x, and is read as the square root

of x .

When n = 3, 3
√
x is read as the cube root of x .

For n ≥ 4, n
√
x is read as the nth root of x .
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meaning of
n
√
x

The purpose of radicals is to ‘undo’ exponents. That is, radicals provide a sort
of inverse to the ‘raise to a power’ operation. Unfortunately, the ‘raise to a
power’ functions f(x) = xn are only 1−1 if n is odd. When n is even, special
considerations need to be made.

ODD roots First consider f(x) = x3. Here, f is 1−1, and its inverse is the cube root
function, f−1(x) = 3

√
x . That is:

For all real numbers x and y :

y = 3
√
x ⇐⇒ y3 = x

Rephrasing, y is the cube root of x if and only if y, when cubed, equals x .

Thus, 3
√

8 = 2, since 2 is the unique number which, when cubed, equals 8 .

Also, 3
√
−8 = −2, since −2 is the unique number which, when cubed, equals

−8 .

Indeed, for all real numbers x, and for n = 3, 5, 7, 9, . . . ,

n
√
xn = x ,

since x is the unique real number which, when raised to an odd nth power,
equals xn.
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EVEN roots When n is even, f(x) = xn is NOT 1−1. Consider, for example, f(x) = x2.
Here, (as for all even powers), R(f) = [0,∞). Given z ∈ R(f), there are TWO
inputs which, when squared, give z. Mathematicians have agreed to choose the
NONNEGATIVE number which works. Precisely, we have:

For all x ≥ 0 and for all real numbers y :

y =
√
x ⇐⇒ y ≥ 0 and y2 = x

That is, y is the square root of x if and only if y is nonnegative, and y, when
squared, equals x .

Thus,
√

4 = 2, since 2 is nonnegative, and 22 = 4 .

The expression
√
−4 is not defined, because there is NO real number, which

when squared, equals −4 .

What is
√
x2? There are TWO real numbers which, when squared, give x2 :

x and −x. We need to choose whichever is nonnegative. The absolute value
comes to the rescue:

For all real numbers x : √
x2 = |x|

Indeed, for all nonnegative real numbers x, and for all n = 2, 4, 6, 8, . . . , we
have:

n
√
xn = |x|

EXERCISE 8

practice with
radicals

♣ 1. Consider this mathematical sentence:

For all real numbers x and y :

y = 3
√
x ⇐⇒ y3 = x (*)

This sentence compares two ‘component’ sentences. What are they? What
is (*) telling us that they have in common?

What is (*) telling us (if anything) when y = 2 and x = 8? How about
when y = −2 and x = 8?

♣ 2. Consider this mathematical sentence:

For all x ≥ 0 and for all real numbers y :

y =
√
x ⇐⇒ y ≥ 0 and y2 = x (**)

What two component sentences are being compared? What do they have
in common?

What is (**) telling us (if anything) when y = 2 and x = 4? How about
when y = −2 and x = 4?

Evaluate the following roots. Be sure to write complete mathematical sentences.
State any necessary restrictions on x and y.

♣ 3. 5
√
−32

♣ 4. 4
√

(−2)4

♣ 5.
6
√
x6

♣ 6.
9
√
x9
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fractional
exponent
notation

When working with radicals in calculus, it is usually more convenient to use
fractional exponent notation rather than radical notation.

Whenever n
√
x is defined, it can be alternately written as x

1
n .

Thus:

•
√

5 = 5
1
2

• 3
√
x = x1/3 for all real numbers x

• 4
√
x = x1/4 for all nonnegative real numbers x

Then, using properties of exponents (which are summarized below for your
convenience), one can make sense of arbitrary rational exponents:

x
p
q = (xp)

1
q = q
√
xp

or

x
p
q = (x

1
q )p = ( q

√
x)p ,

provided that both q
√
xp and ( q

√
x)p are defined. Use whichever representation

is easiest for a given problem.

PROPERTIES OF EXPONENTS

Assume that a, b, n and m are restricted to values for which each expression is defined.

am · an = am+n (same base, multiplied, add exponents)

am

an = am−n (same base, divided, subtract exponents)

(am)n = amn (power to a power, multiply exponents)

(ab)m = ambm (product to a power,
each factor gets raised to the power)

(ab )m = am

bm (quotient to a power,
both numerator and denominator get raised to the power)

a−n = 1
an (definition of negative exponents)

a0 = 1 for a 6= 0 (definition of zero exponent)

EXERCISE 9 ♣ Convince yourself that each of these exponent laws ‘makes sense’. Just look
at special cases, where convenient.

For example, for positive integers m and n :

am · an =

m factors of a︷ ︸︸ ︷
(a · . . . · a) ·

n factors of a︷ ︸︸ ︷
(a · . . . · a) =

m+n factors of a︷ ︸︸ ︷
am+n
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EXAMPLE

working with
fractional exponents

Problem: Rewrite using fractional exponent notation. State any necessary
restrictions on x and y. Where possible, write in two different ways.

1. y =
5
√
x3

2. f(x) =
√
x

3√
x5

x

Solutions:

1. y =
5
√
x3 = (x3)1/5 = x3·

1
5 = x3/5

2. Observe that D(f) = {x | x > 0}. For such x :

f(x) =

√
x

3
√
x5

x
=
x1/2(x5)1/3

x

=
x1/2x5/3

x
=
x

1
2+

5
3

x

=
x

3
6+

10
6

x
=
x

13
6

x
6
6

= x
13
6 −

6
6 = x7/6

= (x7)1/6 =
6
√
x7

Alternately, if desired:

x7/6 = (x1/6)7 = ( 6
√
x)7

All the steps were shown in the above display. You will probably be able
to do a number of these steps in your head.

properties of lnx Next, some properties of logarithms are reviewed.

a precise view
of functions

Whenever f is a function, then every input has a unique corresponding output.
In other words, whenever two inputs are the same (and perhaps just have
different names), then they must have the same output. Precisely, whenever f
is a function with domain elements a and b :

a = b =⇒ f(a) = f(b) (1)

Thus, whenever the sentence ‘a = b’ is true, so is the sentence ‘f(a) = f(b)’.

a precise view
of a 1−1 function

If f is, in addition, a 1−1 function, then every output has a unique correspond-
ing input. In other words, whenever two outputs are the same, then they must
have come from the same input. Precisely, whenever f is a 1−1 function with
domain elements a and b :

f(a) = f(b) =⇒ a = b (2)

Thus, whenever the sentence ‘f(a) = f(b)’ is true, so is the sentence ‘a =
b’. Putting (1) and (2) together, whenever f is a 1−1 function with domain
elements a and b :

a = b ⇐⇒ f(a) = f(b)

Thus, if two inputs are the same, so are the corresponding outputs (the function
condition); and whenever two outputs are the same, so are the corresponding
inputs (the 1−1 condition).
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EXAMPLE The function f(x) = ex is 1−1 and has domain R . Thus, for all real numbers
x and y :

x = y ⇐⇒ ex = ey

The function g(x) = lnx is 1−1 and has as its domain the set of positive real
numbers. Thus, for all positive real numbers x and y :

x = y ⇐⇒ lnx = ln y

ex and lnx
are inverse functions

In addition, recall that ex and lnx are inverse functions. Thus, a point (x, y)
lies on the graph of f(x) = ex exactly when the point (y, x) lies on the graph
of g(x) = lnx. That is, for all y > 0 and for all real numbers x :

y = ex ⇐⇒ x = ln y

We are now in a position to verify some important properties of logarithms,
which are summarized below for convenience:

PROPERTIES OF LOGARITHMS
Assume that a and b are restricted to values for which each expression is defined

ln(ab) = ln a+ ln b

ln
a

b
= ln a− ln b

ln ab = b ln a

sample proof The first equation says that the log of a product is the sum of the logs.

Here is its proof. The remaining proofs are left as exercises.

Let a > 0 and b > 0, so that all three expressions ln(ab), ln a, and ln b are
defined. Then:

y = ln a+ ln b ⇐⇒ ey = eln a+ln b (ex is a 1−1 function)

⇐⇒ ey = eln aeln b (properties of exponents)

⇐⇒ ey = ab (ex and lnx ‘undo’ each other)

⇐⇒ ln ey = ln ab (lnx is a 1−1 function)

⇐⇒ y = ln ab

Thus, the sentences y = ln a + ln b and y = ln ab always have the same truth
values. That is, ln ab = ln a+ ln b .

EXERCISE 10 ♣ 1. In words, what does

ln
a

b
= ln a− ln b

say? Prove it. Be sure to justify every step of your proof.

♣ 2. Prove that:
ln ab = b ln a

Be sure to write complete mathematical sentences, and justify every step
of your proof.
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QUICK QUIZ

sample questions

1. Differentiate f(x) =
√
x . Write the derivative using both prime notation,

and Leibniz notation.

2. TRUE or FALSE: d
dx ( π

√
2

7+
√
3
) = 0

3. TRUE or FALSE: The slope of the tangent line to the graph of y = x3 at
the point (2, 8) is 12. Show any work leading to your answer.

4. Expand (a− b)4, using Pascal’s Triangle.

5. Let g(x) = ex + lnx. Find g′(x).

KEYWORDS

for this section

Prime notation for the derivative, Leibniz notation for the derivative, the op-
erator d

dx , the derivative of a constant, constants can be ‘slid out’ of the differ-
entiation process, differentiating sums and differences, the Simple Power Rule
for differentiation, Pascal’s Triangle, differentiating ex and lnx, radicals and
fractional exponent notation, properties of lnx.

END-OF-SECTION
EXERCISES

♣ Differentiate the following functions. Feel free to use any tools developed in
this section.

♣ 1. f(x) = (2x+ 1)3

♣ 2. g(x) =
√
x+1
7
√
x

♣ 3. h(x) =

{
3x2 − 2x+ 1 x ≥ 1

4x− 2 x < 1

What is D(h)?
What is D(h′)?

♣ 4. h(x) =

{
3x2 − 2x+ 1 x ≥ 1

3x− 1 x < 1

What is D(h)?
What is D(h′)?



4.4 Instantaneous Rates of Change

Introduction The number f ′(x) gives the slope of the tangent line to the graph of f at the
point (x, f(x)) (when the tangent line exists and is not vertical).

Let’s think about this information, from a practical viewpoint. Suppose, in a
certain laboratory, there are two machines; call them machine 1 and machine 2.
Each day, you must take a reading x from machine 1. This reading is then input
into machine 2, which produces an output f(x). Suppose that the relationship
between the input x and the output f(x) is shown below.

When the input is 20, the slope of the tangent line to the graph of f is of
small magnitude. That is, when x changes from 20 by some small amount,
the function value will not change very much. So, if you have misread the
information from machine 1 slightly, this will not dramatically affect the output
from machine 2.

However, when the input is 5, the slope of the tangent line to the graph of f is
of large magnitude. Thus, when x changes from 5 by some small amount, the
function value will change dramatically. So, if you have misread the information
from machine 1 slightly, this will dramatically affect the output from machine
2 (a bad situation).

Thus, the information about how fast the function is changing at a point can
be vitally important.

instantaneous
rates of change

There is an important interpretation of the information that f ′(x) gives us:
f ′(x) tells us how fast the function f is changing at the point (x, f(x)).

More precisely, for a fixed value of c, the number f ′(c) gives the instanta-
neous rate of change of the function values f(x) with respect to x, at the point
(c, f(c)).

That is, f(x) changes f ′(c) times as fast as x at the point (c, f(c)).

In many situations, we can use this information to approximate nearby function
values, as illustrated in the next example.

220
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using f ′(x) to
predict nearby
function values

Consider the function f(x) = x2, with derivative f ′(x) = 2x. The point (3, 9)
lies on the graph of f , and the slope of the tangent line at this point is f ′(3) =
2(3) = 6 .

Suppose that knowledge of the function f is lost; all you now know is that the
point (3, 9) lies on some graph, and the slope of the tangent line at this point
is 6 .

You are asked to approximate the function value when x = 3.1 . This is certainly
possible. You know that when x = 3, the function values are changing 6 times
as fast as the x values. So, if x changes by some small amount, it is reasonable
to expect that f(x) will change by approximately 6 times this amount.

The change in x from x = 3 to x = 3.1 is ∆x = 0.1 . So we expect f(x)
to change by approximately 6(∆x) = 6(0.1) = 0.6 . Thus, it is reasonable to
approximate the new function value by the old function value, plus 0.6 . Thus,
f(3.1) ≈ 9 + 0.6 = 9.6 .

Now, you find the missing paper and remember that f(x) = x2. Thus, it
is now possible to compute the actual value of the function when x = 3.1 :
f(3.1) = (3.1)2 = 9.61 . How far off were you? You had estimated the value at
9.6; the actual value was 9.61. Not bad!

So we can use the information about the value of the derivative at a single point
to approximate values of the function that are nearby!

the slopes of the
tangent lines
are changing
as we move
from point to point

Observe that the approximation we got in the previous example was just that—
an approximation. That is because our answer was based on the fact that the
slope of the tangent line at the point (3, 9) is 6; but as soon as we move away
from that point, this is no longer true. Indeed, the slopes of the tangent lines
increase as we travel from x = 3 to x = 3.1; they increase from 6 to 6.2. So,
actually, the rate of change of the function is faster than 6 over the interval
from x = 3 to x = 3.1 . This is why our approximation of 9.6 was a bit low.
The actual function value is 9.61 .

EXERCISE 1 Suppose that all you know about a function f is that the point (3, 7) lies on
the graph, and the slope of the tangent line at this point is 5 .

♣ 1. Approximate, as best you can, f(3.2) and f(2.9).

♣ 2. Sketch two curves that satisfy f(3) = 7 and f ′(3) = 5 . On your sketches,
show your approximation to f(3.2), and the actual value f(3.2).

♣ 3. Suppose you now learn that f(x) = x2 − x + 1 . Verify that the point
(3, 7) lies on the graph of f , and that the slope of the tangent line here is
5 .

♣ 4. How far off were your estimates? That is, compare the actual values of
f(3.2) and f(2.9) to your estimates from (1).
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FF

f ′ must be
continuous

An underlying assumption in this scheme is that f ′ is continuous in the interval
about x under investigation. It is of course possible for a function f to be
differentiable at x, and yet have f ′ NOT be continuous at x. Take, for example:

f(x) =

{
x2 sin 1

x if x 6= 0

0 if x = 0

This function has as its derivative:

f ′(x) =

{
2x sin 1

x − cos 1
x if x 6= 0

0 if x = 0

So, f is differentiable at 0 and f ′(0) = 0. However, f ′ is not continuous at 0.

In a motivated class, this importance of the continuity of f ′ could be discussed.
Perhaps note that, in analysis, the class of functions that are both differentiable
on a set S AND have the property that f ′ is continuous on S are given a special
name, C1(S), due to their importance!

DEFINITION

average
rate of change

Given a function f and two points P1 = (x1, f(x1)), P2 = (x2, f(x2)) on the
graph of f , we define:

the average rate of change of f from x1 to x2 :=
f(x2)− f(x1)

x2 − x1

Thus, the average rate of change of f from x1 to x2 represents the slope of the
secant line through P1 and P2.

This seems entirely reasonable: if the points are (3, 10) and (5, 30), then the
function has changed by 20 when x has changed by 2, and it seems reasonable
to say that, on average, the function has changed by 20

2 (per a unit change in
x). Of course, as illustrated below, the function may behave entirely differently
between these two points, and yet still exhibit the same average rate of change.

∆f := f(x2)− f(x1)

∆x := x2 − x1

average ROC = ∆f
∆x

Letting ∆f denote the change in function values f(x2)− f(x1), and ∆x denote
the change in x-values x2 − x1, one can write:

average rate of change of f =
∆f

∆x

as ∆x→ 0,
the average ROC
approaches the
instantaneous ROC

Suppose that, for a given function f , there IS a tangent line at the point P1.
If we fix this point P1, and let the second point P2 slide closer and closer to
P1 (thus letting ∆x → 0), then the secant line through P1 and P2 approaches
the tangent line at P1. In words, the average rate of change approaches the
instantaneous rate of change, as ∆x approaches 0 .
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further
appreciation for the
Leibniz notation

Whereas the notation ∆x is used to denote a finite change in x (say from
x = 3 to x = 3.1), it is common in calculus to let (intuitively) dx denote
an infinitesimal change in x . That is, somehow, dx is meant to represent an
arbitrarily small change in x .

Similarly, df is used to denote an arbitrarily small change in function values.

Armed with this intuition, we can gain a further appreciation for the Leibniz
notation for the derivative: As ∆x approaches 0, ∆f

∆x approaches the slope of

the tangent line at x. In general, the closer ∆x is to 0, the closer ∆f
∆x will be to

the slope of the tangent line at x. The Leibniz notation df
dx , therefore, is meant

to connote the image of an infinitesimal change in f divided by an infinitesimal
change in x .

More precisely, of course, the notation df
dx should conjure the image of ∆x going

to 0: it should conjure up the process of the second point sliding ever closer to
the first. If the notation df

dx succeeds in reminding you of this process each time
you see it, then the notation is a good notation.

EXERCISE 2 For the function f(x) = x3, find the average rate of change of f from:

♣ 1. x = 1 to x = 2

♣ 2. x = 1 to x = 1.5

♣ 3. x = 1 to x = 1.2

♣ 4. Find the instantaneous rate of change at x = 1 . Compare with the
average rates of change you just found, and comment.

♣ 5. Why were all of the average rates of change higher than the instantaneous
rate of change?

EXERCISE 3 For the function f(x) = −x2, find the average rate of change of f from:

♣ 1. x = −2 to x = −1

♣ 2. x = −2 to x = −1.5

♣ 3. x = −2 to x = −1.8

♣ 4. Find the instantaneous rate of change at x = −2 . Compare with the
average rates of change you just found, and comment.

♣ 5. Why were all of the average rates of change lower than the instantaneous
rate of change?

EXERCISE 4 ♣ 1. Sketch the graph of a function f that satisfies the following properties:

• The average rate of change from x = 0 to x = 1 is 5 .

• The instantaneous rate of change at x = 0 is −1
and the instantaneous rate of change at x = 1 is 2 .

• f(0.5) = 6

♣ 2. Now, sketch a different curve that satisfies the same properties.

relationship between
differentiability
and
continuity

This section is closed with a very important theorem, stating a relationship
between differentiability and continuity.
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THEOREM
differentiable at x
implies
continuous at x

If a function is differentiable at x, then it is continuous at x.

differentiability is
‘stronger’ than
continuity

One often refers to this fact by saying that differentiability is a stronger condi-
tion than continuity. That is, requiring a tangent line to exist at a point, forces
the function to be continuous at that point.

proving an
implication

This theorem is an implication; that is, it is of the form ‘If A, then B’. Re-
member that a sentence of this form is automatically true whenever A is false;
in such cases, it is called vacuously true. To verify that the sentence is always
true, then, we need only verify that whenever A is true, so is B.

direct proof of
A =⇒ B

The proof of an implication ‘If A, then B’ often takes the following form:

HYPOTHESIS: Suppose A is true.
BODY OF PROOF: Use the fact that A is true (and other necessary

tools) to show that B is true.
CONCLUSION: Conclude that B is true.

This form of proof, where we assume that A is true and then show that B must
also be true, is called a direct proof of A =⇒ B.

In preparation for the proof of the preceding theorem, the next exercise ad-
dresses equivalent characterizations of continuity.

EXERCISE 5

equivalent
characterizations
of continuity at x

Recall that, by definition:

f is continuous at c ⇐⇒ lim
x→c

f(x) = f(c)

This limit statement makes precise the following intuition: whenever the inputs
to f are close to c, the corresponding outputs are close to the number f(c).

♣ 1. What is the dummy variable in the limit statement limx→c f(x) = f(c)?

♣ 2. Rewrite limx→c f(x) = f(c) with dummy variable y .

♣ 3. Now, using dummy variable y, write the limit statement corresponding
to the sentence: f is continuous at x .

♣ 4. Convince yourself that the following sentences are all equivalent ways
to say that ‘f is continuous at x’:

f is continuous at x ⇐⇒ lim
y→x

f(y) = f(x)

⇐⇒ lim
h→0

f(x + h) = f(x)

⇐⇒ lim
h→0

(
f(x + h)− f(x)

)
= 0

For example, if the sentence limh→0 f(x + h) = f(x) is true, then when h
is close to 0, f(x + h) must be close to f(x). But when h is close to 0,
x + h is close to x. So this says that when the inputs are close to x, the
corresponding outputs must be close to f(x), as desired.

One of these equivalent characterizations is used in the next proof.
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PROOF

that f differentiable at x
implies
f continuous at x

Proof. Suppose that f is differentiable at x. That is,

lim
h→0

f(x + h)− f(x)

h

exists, and is given the name f ′(x).

BODY OF PROOF To show that f is continuous at x, it is shown equivalently that:

lim
h→0

(
f(x + h)− f(x)

)
= 0

To this end:

lim
h→0

(
f(x + h)− f(x)

)
= lim

h→0

f(x + h)− f(x)

h
· h (for h 6= 0,

h

h
= 1)

= lim
h→0

f(x + h)− f(x)

h
· lim
h→0

h (property of limits)

= f ′(x) · 0
= 0

CONCLUSION Thus, f is continuous at x.

EXERCISE 6 ♣ 1. What is the hypothesis of the theorem just proved?

♣ 2. Where was this hypothesis used in the previous proof?

short form
of the previous proof

As mathematicians get more and more proficient at writing proofs, typically
the proofs become shorter and shorter. The previous result could be proven
more briefly as follows:

Proof. Let f be differentiable at x. Then

lim
h→0

f(x + h)− f(x) = lim
h→0

f(x + h)− f(x)

h
· h = f ′(x) · 0 = 0.

Observe that all the excess has been cut out of this proof; only the hypothesis
and the ‘heart’ of the body of the proof remain.

the contrapositive
of the previous theorem

The previous result is an implication:

IF f is differentiable at x, THEN f is continuous at x. (1)

The contrapositive of this implication is:

If f is not continuous at x, then f is not differentiable at x. (2)

Since an implication is equivalent to its contrapositive, and since (1) is true
(♣ Why?), sentence (2) is also true. Thus, whenever a function f is NOT
continuous at x, we can conclude that f is NOT differentiable at x. This often
gives an elegant way to prove that a function is not differentiable at a point, as
illustrated next.
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EXAMPLE

not continuous =⇒
not differentiable

Consider the function f : [0, 1]→ R defined by:

f(x) =

{
2x x ∈ [0, 1)

3 x = 1

Since f is not continuous at x = 1, it is not differentiable at x = 1 .

The fact that f is not differentiable at x = 1 could also be proven directly: the
limit

lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−

2(1 + h)− 3

h

= lim
h→0−

2h− 1

h

= lim
h→0−

2− 1

h

does not exist.

However, citing the previous result is more elegant.

QUICK QUIZ

sample questions

1. Let f(x) = x3. Find the average rate of change of f from x = 1 to x = 2 .
What is the graphical interpretation of this number?

2. Let f(x) = x3. Find the instantaneous rate of change of f at x = 1 . What
is the graphical interpretation of this number?

3. Consider the function f graphed below. You are not given enough infor-
mation to find average or instantaneous rates of change. However, you can
answer the following question:

the instantaneous rate of change of f at x = 1 is

(circle one) (less than greater than equal to)

the average rate of change of f from x = 1 to x = 2 .

4. Sketch the graph of a function f that satisfies the following properties:
f(x) < 0 for all x ∈ [1, 3]; f(1) = −5; the average rate of change of f from
x = 1 to x = 3 is 2; and f ′(2) = −1 .

5. Prove that the function f shown below is not differentiable at x = 1 .

KEYWORDS

for this section

Instantaneous rate of change, using f ′(x) to predict nearby function values, av-
erage rates of change, relationship between the instantaneous and average rates
of change, What process should the Leibniz notation df

dx conjure up?, relationship
between differentiability and continuity, direct proof of A =⇒ B, equivalent
characterizations of continuity.
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END-OF-SECTION
EXERCISES

♣ In each question below, you are given a point on the graph of a function f ,
and the instantaneous rate of change of the function at this point.

♣ Use this limited information to predict the value of f at the given nearby
point.

♣ Make a sketch that illustrates what you are doing.

1. point: (1, 3)

instantaneous ROC at this point: 2

nearby point: (2, ?)

2. point: (2, 5)

instantaneous ROC at this point: −1

nearby point: (3, ?)

3. point: f(3) = −1

instantaneous ROC at this point: f ′(3) = 5

nearby point: x = 4

4. point: f(−3) = 2

instantaneous ROC at this point: f ′(−3) = 1

nearby point: x = −4.



4.5 The Chain Rule
(Differentiating Composite Functions)

composite functions;
review

Let f and g be functions of x. Recall that the composition f ◦ g is defined by

(f ◦ g)(x) := f(g(x))

and has domain:

D(f ◦ g) = {x |x ∈ D(g) and g(x) ∈ D(f)}

One reads f ◦ g as ‘f circle g’ or ‘f composed with g’.

EXAMPLE Let f(x) = x2 and g(x) = x + 1. Find f ◦ g and g ◦ f .

(f ◦ g)(x) := f(g(x)) = f(x + 1) = (x + 1)2 = x2 + 2x + 1

(g ◦ f)(x) := g(f(x)) = g(x2) = x2 + 1

Here are the corresponding mapping diagrams:

composition of
functions is NOT,
in general,
commutative!

Observe that for these functions f and g, f ◦ g 6= g ◦ f . Indeed, the only value
of x for which f(g(x)) = g(f(x)) is x = 0 (♣ check this).

Thus, composition of functions is not, in general, commutative!

differentiating
composite functions;
introduction

If f and g are differentiable, then it would be reasonable to hope that f ◦ g is
also differentiable. This is the idea investigated in this section.

228
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EXERCISE 1 ♣ 1. For f(x) = x2 − 1 and g(x) = −2x, find both f ◦ g and g ◦ f .

♣ 2. View the function h(x) = (2x+ 1)2 as a composition of functions. That
is, find functions f and g for which h = f ◦ g. (There is not a unique
answer.) To do this, appropriately ‘name’ the function boxes below.

a motivating
example

Consider the following scenario:

Suppose that Bob runs 2 times as fast as Carol, and Carol runs 3 times as fast
as Julia.

If Julia runs 1 mile/hour, then Carol runs 3(1) miles/hour, and Bob runs 2(3)
= 6 miles/hour. Thus, Bob runs 6 times as fast as Julia.

Observe that the rates multiply. This situation can be rephrased as follows
(here, ‘roc’ and ‘wrt ’ are abbreviations for ‘rate of change’ and ‘with respect to’,
respectively):

roc of Bob wrt Julia = (roc of Bob wrt Carol ) · (roc of Carol wrt Julia)



230 copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org

rephrasing
in terms of
the derivative

Now reconsider the idea in the previous example, but this time in terms of
functions and their derivatives. The critical idea is this:

If a function h is differentiable at c, then:

h(x) changes h′(c) times as fast as x at the point (c, h(c)) (*)

Refer to the ‘function box’ sketch below as you read the following discussion.

We want to find (f ◦ g)′(c).

That is, we want to know how fast the function values (f ◦ g)(x) are changing
with respect to x, at the point

(
c, f(g(c))

)
.

Well, g(x) changes g′(c) times as fast as x at (c, g(c)). (Rewrite (*), with ‘h’
replaced by ‘g’.)

And, f
(
g(x)

)
changes f ′(g(c)) times as fast as g(x) at

(
g(c), f(g(c))

)
. (Rewrite

(*), with ‘h’ replaced by ‘f ’, ‘x’ replaced by ‘g(x)’, and ‘c’ replaced by ‘g(c)’.)

Thus, the rate of change of (f ◦ g)(x) wrt x at (c, f(g(c))) should be:

f ′(g(c)) · g′(c)

And it is! The rule that tells us how to differentiate composite functions is
called the chain rule; the name will be motivated shortly. A precise statement
follows after a couple exercises.

EXERCISE 2 Consider the functions f(x) = x2 and g(x) = x + 1 of an earlier example. It
was found that (f ◦ g)(x) = x2 + 2x + 1 . In this exercise, you will find the
number (f ◦ g)′(2) in two different ways.

♣ 1. Differentiate f ◦ g, and evaluate it at x = 2 . What do you get?

Now, obtain the same result by doing the following:

♣ 2. Find out how fast the function values g(x) are changing wrt x at x = 2 .
That is, find g′(2).

♣ 3. Find out how fast the function values f
(
g(x)

)
are changing wrt g(x)

at g(2). That is, find f ′(g(2)). (This is the function f ′, evaluated at the
number g(2).)

♣ 4. Multiply: f ′(g(2)) · g′(2). Do your answers agree?

EXERCISE 3 ♣ Repeat the previous exercise, except this time analyzing the function g ◦ f
at x = 2 . (You will need to make appropriate changes in the questions.)
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THE CHAIN RULE Suppose that f and g are functions of x satisfying the following conditions:

• g is differentiable at x

• f is differentiable at g(x)

Then, the function f ◦ g is differentiable at x, and:

(f ◦ g)′(x) = f ′(g(x)) · g′(x)

What is f ′(g(x))? Be sure that you understand what f ′(g(x)) represents: it is the function f ′,
evaluated at g(x).

Very roughly, in words, to find out how fast f ◦ g changes with respect to x, we
find how fast f changes wrt g(x), and multiply by how fast g changes wrt x.

Remember, the chain rule tells you how to differentiate composite functions.

EXAMPLE Problem: For the functions f(x) = 3x2− 2x and g(x) = x3, find (f ◦ g)′ in two
different ways.

Solution:

Method I: First find the function f ◦ g :

(f ◦ g)(x) = f(g(x)) = f(x3) = 3(x3)2 − 2x3 = 3x6 − 2x3

Then, differentiation yields:

(f ◦ g)′(x) = 18x5 − 6x2

Method II: By the chain rule, (f ◦ g)′(x) = f ′(g(x)) · g′(x).

f ′(x) = 6x− 2

f ′(g(x)) = f ′(x3) = 6x3 − 2

g′(x) = 3x2

f ′(g(x)) · g′(x) = (6x3 − 2)(3x2) = 18x5 − 6x2

EXERCISE 4 ♣ Let f(x) = x3 and g(x) = 3x2 − 2x. Find (f ◦ g)′ in two different ways.
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motivation for the
name ‘Chain Rule’

The chain rule can be extended to compositions of more than 2 functions, as
follows:

(a ◦ b ◦ c)′(x) =
(
a ◦ (b ◦ c)

)′
(x)

= a′
(
(b ◦ c)(x)

)
· (b ◦ c)′(x)

= a′(b(c(x))) · b′(c(x)) · c′(x)

(Make sure you understand every step here! The Chain Rule was applied twice;
once in going from the first line to the second line; once in going from the second
line to the third line.)

Similarly:

(a ◦ b ◦ c ◦ d)′(x) = a′(b(c(d(x)))) · b′(c(d(x))) · c′(d(x)) · d ′(x)

Granted, the notation gets a bit unwieldy, but the important point is: see the
chains that are forming? This is precisely the motivation for the name.

EXERCISE 5 ♣ Write down the formula for the derivative of a ◦ b ◦ c ◦ d ◦ e at x. Under
what condition(s) do you think your formula holds?

F

function composition
is associative

The previous argument used the fact that composition of functions is associa-
tive. This allows us to write things like a ◦ b ◦ c without ambiguity. Indeed:

a ◦ b ◦ c = (a ◦ b) ◦ c = a ◦ (b ◦ c)

Leibniz notation
for the chain rule

If y is a function of u, and u is a function of x, then the chain rule becomes, in
Leibniz notation:

dy

dx
=

dy

du
· du
dx

Roughly, to find out how fast y changes with respect to x, we find how fast y
changes with respect to u, and multiply by how fast u changes with respect to
x.
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EXAMPLE Problem: Let y = u2 and u = 3x2 − x. Find dy
dx in two ways.

Method I: Write y as a function of x, and differentiate.

y = u2 = (3x2 − x)2 = 9x4 − 6x3 + x2

dy

dx
= 36x3 − 18x2 + 2x

Method II: Use the chain rule.

dy

du
= 2u

du

dx
= 6x− 1

dy

dx
=

dy

du
· du
dx

= (2u) · (6x− 1)

= 2(3x2 − x)(6x− 1)

= (6x2 − 2x)(6x− 1)

= 36x3 − 18x2 + 2x

Note that since we want dy
dx as a function of x, it was necessary to write dy

du in
terms of x.

EXERCISE 6 ♣ 1. Let y = 3u and u = x2 − 1. Find dy
dx in two ways.

♣ 2. Suppose y is a function of u, u is a function of v, and v is a function of
x. Write down the formula for dy

dx , using Leibniz notation.

♣ 3. Let y = u2, u = 3v and v = x3. Find dy
dx in two ways.

some remarks on
the proof of
the chain rule

The proof of the chain rule is nontrivial; even in more advanced calculus books,
it usually appears in an appendix, or as a supplement to the section on the
chain rule.

appreciating the
chain rule

It is often hard for the beginning calculus student to appreciate the importance
of the chain rule. Perhaps this appreciation can begin by seeing all the new
differentiation formulas that are an easy consequence of this rule. . .

how to differentiate
(g(x))n

Recall that the Simple Power Rule tells us how to differentiate xn. However,
we don’t yet know a simple way to differentiate a function raised to a power,
(g(x))n. The chain rule will be used to tell us how to differentiate (g(x))n! The
trick comes in viewing (g(x))n as a composition of functions, as shown below:
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Let f(x) = xn, so that (f ◦ g)(x) = f(g(x)) = (g(x))n.

Thus, finding the derivative of (g(x))n reduces to finding the derivative of the
composite function f ◦ g.

This is easy, by the chain rule. First observe that f ′(x) = nxn−1 (by the Simple
Power Rule), and then:

(f ◦ g)′(x) = f ′(g(x)) · g′(x)

= n(g(x))n−1 · g′(x)

This result is summarized below.

GENERAL
POWER RULE

differentiating
(g(x))n

The general power rule tells us how to differentiate (g(x))n :

d

dx
(g(x))n = n(g(x))n−1 · g′(x)

Observe that the General Power Rule looks a lot like the Simple Power Rule.
The new part is that you must remember to multiply by the derivative of the
function that is being raised to the power.

EXERCISE 7 ♣ Think about what restrictions are necessary (say, on the exponent n and the
function g) in order for the formula

d

dx
(g(x))n = n(g(x))n−1 · g′(x)

to make sense.

EXAMPLE

using the
General Power Rule

Problem: Differentiate f(x) = (3x− 1)7.

Solution: Before the chain rule, we could differentiate this function f , but we
would first need to multiply it out, and then differentiate term-by-term. The
chain rule, however (under the guise of the General Power Rule) makes the
problem easy:

f ′(x) = 7(3x− 1)6 · (3) = 21(3x− 1)6

The final form of the derivative obtained from using the chain rule is also much
more desirable than the form obtained if we first multiplied f out, and then
differentiated!

EXAMPLE Problem: Differentiate y = [x2 − (x + 1)−4]4.

Solution: Be sure to write down complete mathematical sentences!

dy

dx
= 4[x2 − (x + 1)−4]3 · d

dx
[x2 − (x + 1)−4]

= 4[x2 − (x + 1)−4]3 · [2x− (−4)(x + 1)−5(1)]

= 4[x2 − (x + 1)−4]3 · [2x + 4(x + 1)−5]

Make sure you understand every line of this example. The General Power Rule
was used twice—do you see where?

To find dy
dx |x=0, just evaluate the formula at x = 0: dy

dx |x=0 = 4[−1]3 · [4] = −16 .
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EXAMPLE Problem: Let f be a (differentiable) function of one variable.

Find d
dxf(x2 + 2x + 1). (In other words, define h by h(x) := f(x2 + 2x + 1),

and find d
dxh(x).)

Solution:

d

dx
f(

g(x)︷ ︸︸ ︷
x2 + 2x + 1) = f ′(

g(x)︷ ︸︸ ︷
x2 + 2x + 1) · (

g′(x)︷ ︸︸ ︷
2x + 2)

The Chain Rule was applied, taking g(x) = x2 + 2x + 1. The result is the
function f ′, evaluated at x2 + 2x + 1, and then multiplied by 2x + 2 .

Problem: Now, find d
dxf(x2 + 2x + 1)|x=0 .

Solution:

d

dx
f(x2 + 2x + 1)|x=0 = f ′(x2 + 2x + 1) · (2x + 2)|x=0

= f ′(02 + 2(0) + 1) · (2 · 0 + 2)

= f ′(1) · 2
= 2f ′(1)

This result cannot be simplified further, unless additional information is ob-
tained about the function f .

EXERCISE 8 Differentiate the following functions. Use any appropriate method. It may be
necessary to rewrite the functions before differentiating.

Then, find f ′(0) and f ′(1) (if they exist).

♣ 1. f(x) = (2x + 1)7

♣ 2. f(x) = − 1√
x2+3

♣ 3. f(x) = (g(h(x))3, where g and h are differentiable functions of one
variable

♣ 4. f(x) = [x + (x2 − 1)−2]−3

differentiating
eg(x)

To differentiate eg(x), the technique is again to view it as a composition:

First, define f(x) = ex, so that (f ◦ g)(x) = f(g(x)) = eg(x).

We seek (f ◦ g)′(x).

Recall that f ′(x) = ex. Then:

(f ◦ g)′(x) = f ′(g(x)) · g′(x)

= eg(x) · g′(x)

This result is summarized next.
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DIFFERENTIATION
TOOL

differentiating eg(x)

Suppose that g is differentiable at x. Then:

d

dx
eg(x) = eg(x) · g′(x)

EXERCISE 9
d
dx ln g(x) = 1

g(x) · g
′(x)

♣ Use the chain rule to show that:

d

dx
ln g(x) =

1

g(x)
· g′(x)

What restrictions must be placed on g in order that this formula make sense?

EXAMPLE Problem: Differentiate the following functions. Use any appropriate techniques.
Be sure to write complete mathematical sentences.

a) y = ex
2−1

b) f(x) = e
√
2x+1

c) g(t) = ln
√
t

d) y = 3
ln(2x−1)

Solutions:

a) dy
dx = ex

2−1 · (2x) = 2xex
2−1

b)

f ′(x) = e
√
2x+1 · d

dx
(
√

2x + 1) = e
√
2x+1 · d

dx

(
(2x + 1)1/2

)
= e
√
2x+1 · (1

2
)(2x + 1)

1
2−1(2) = e

√
2x+1 · (2x + 1)−

1
2

=
e
√
2x+1

√
2x + 1

c) Whenever possible, simplify the function by using properties of logarithms,
before differentiating: g(t) = ln

√
t = ln(t1/2) = 1

2 ln t

Then, g′(t) = 1
2 ·

1
t = 1

2t .

d) First, rewrite y in a form that ‘fits’ the general power rule:

y = 3[ln(2x− 1)]−1

Then:

dy

dx
= 3(−1)[ln(2x− 1)]−2

d

dx
(ln(2x− 1))

= −3[ln(2x− 1)]−2 · 1

2x− 1
· 2

=
−6

[ln(2x− 1)]2(2x− 1)

We have now added several important results to the list of Differentiation Tools:
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DIFFERENTIATION TOOLS

prime notation d
dx operator

if f(x) = k, then f ′(x) = 0 d
dx (k) = 0

(kf)′(x) = k · f ′(x) d
dx

(
kf(x)

)
= k · f ′(x)

(f + g)′(x) = f ′(x) + g′(x) d
dx

(
f(x) + g(x)

)
= f ′(x) + g′(x)

(f − g)′(x) = f ′(x)− g′(x) d
dx

(
f(x)− g(x)

)
= f ′(x)− g′(x)

if f(x) = xn, then f ′(x) = nxn−1 d
dx (xn) = nxn−1

if f(x) = (g(x))n, then f ′(x) = n(g(x))n−1 · g′(x) d
dx (g(x))n = n(g(x))n−1 · g′(x)

if f(x) = ex, then f ′(x) = ex d
dx (ex) = ex

if f(x) = eg(x), then f ′(x) = eg(x) · g′(x) d
dx (eg(x)) = eg(x) · g′(x)

if f(x) = lnx, then f ′(x) = 1
x

d
dx (lnx) = 1

x

if f(x) = ln(g(x)), then f ′(x) = 1
g(x) · g

′(x) d
dx

(
ln(g(x))

)
= 1

g(x) · g
′(x)

QUICK QUIZ

sample questions

1. Give a precise statement of the Chain Rule for differentiation. What type
of function(s) does the Chain Rule tell you how to differentiate?

2. Let f(x) =
√

2(1− x)7. Find f ′(x).

3. Suppose y is a function of w, w is a function of v, v is a function of u, and
u is a function of t. Write a formula for dy

dt , using Leibniz notation.

4. Fill in the blanks: roughly, the formula

(f ◦ g)′(x) = f ′(g(x)) · g′(x)

tells us that to find out how fast changes with re-
spect to , we find out how fast
changes with respect to , and multiply by how fast

changes with respect to .

5. Differentiate: f(x) = ln 3
√

2x + 1

KEYWORDS

for this section

The chain rule (differentiating composite functions), motivation for the name
‘chain rule’, Leibniz notation for the chain rule, general power rule, differenti-
ating eg(x) and ln(g(x)).
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END-OF-SECTION
EXERCISES

The purpose of these exercises is to give you additional practice with all the
differentiation formulas.

♣ Differentiate each of the following functions. Use any appropriate tools
and notation. Be sure to write complete mathematical sentences. Write the
derivative in a form that resembles, as closely as possible, the original function.

1. f(x) = 2√
ex−1 + x

2. g(x) = 3
√
x2 − 1

3. y = (ex)3

4. y = e3x

5. y = (3t− 4)11

6. y = (2− t)8

7. g(t) = 3 6
√
t2 + t + 1

8. h(t) = − 3

√
1

t2−1

9. f(y) = 7e−y + ln(−y)

10. g(y) = ln 3
√
−y

11. y = (lnx)3

12. y = ln(
√
x(x + 1))

13. y =
−1

t +
√
t− 1

14. y =
2

(e3x − 1)4



4.6 Differentiating Products and Quotients

Introduction The derivative of a sum of differentiable functions is always the sum of the
derivatives. Is the derivative of a product of differentiable functions always the
product of the derivatives? The next example shows that the answer is NO.

EXAMPLE

the derivative of
a product
is NOT the
product of
the derivatives

Let f(x) = x and g(x) = x2. Then, the product function fg is defined by

(fg)(x) := f(x) · g(x) = x3 ,

and has derivative (fg)′(x) = 3x2. However, the product of the derivatives is
f ′(x) · g′(x) = (1) · (2x) = 2x. Note that:

(fg)′(x) 6= f ′(x) · g′(x)

EXERCISE 1

the derivative of
a quotient
is NOT the
quotient of
the derivatives

♣ Find a pair of functions f and g for which:

(f
g

)′
(x) 6= f ′(x)

g′(x)

The correct rule to be used for differentiating products is called the Product
Rule for Differentiation, and is stated next. Since it is such a surprising result,
it is absolutely necessary to study the proof carefully, to understand what gives
rise to this formula!

PRODUCT RULE
for differentiation

Suppose that f and g are both differentiable at x. Then, the product function
fg is also differentiable at x, and:

(fg)′(x) = f(x)g′(x) + f ′(x)g(x)

In words, the derivative of a product is the first times the derivative of the
second, plus the derivative of the first times the second.

The Product Rule is also commonly written as:

d

dx
f(x)g(x) = f(x)g′(x) + f ′(x)g(x)

The trick in the proof of the Product Rule is to add zero in an appropriate
form, in order to rewrite the difference quotient for fg in a way that brings the
difference quotients for f and g into the picture. Study the following proof:

239
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PROOF
of the Product Rule

Proof. Let f and g be differentiable at x, and let (fg)(x) = f(x)g(x). Then
(fg)(x+h) = f(x+h)g(x+h). The lines below are numbered for easy reference:

(1) (fg)′(x) := lim
h→0

(fg)(x + h)− (fg)(x)

h

(2) = lim
h→0

f(x + h)g(x + h)− f(x)g(x)

h

(3) = lim
h→0

f(x + h)g(x + h)

add 0︷ ︸︸ ︷
−f(x + h)g(x) + f(x + h)g(x)−f(x)g(x)

h

(4) = lim
h→0

f(x + h)
g(x + h)− g(x)

h
+

f(x + h)− f(x)

h
g(x)

(5) = lim
h→0

f(x + h)
g(x + h)− g(x)

h
+ lim

h→0

f(x + h)− f(x)

h
g(x)

(6) = lim
h→0

f(x + h) lim
h→0

g(x + h)− g(x)

h
+

(
lim
h→0

f(x + h)− f(x)

h

)
g(x)

(7) = f(x)g′(x) + f ′(x)g(x)

a discussion of
each line of
the previous proof;

lines (1)–(5)

You must understand the previous proof. In particular, it is essential that you
understand the justification for each step in this proof.

In line (1), the definition of the derivative is used, applied to the function fg.

In line (2), the definition of the function fg is used.

In line (3), the number 0 is added in an appropriate form. The motivation for
adding zero in this form is to bring the difference quotients for f and g into the
picture!

In line (4), f(x + h) is factored out of the first two terms; and g(x) is factored
out of the last two terms.

In line (5), the limit of a sum is written as the sum of the limits. Is this
allowable? Only if the individual limits

lim
h→0

f(x + h)
g(x + h)− g(x)

h
and lim

h→0

f(x + h)− f(x)

h
g(x)

exist! Do they? The next few steps show that, indeed, they do.

line (6) In the first part of line (6), the limit of a product is written as the product of
the limits. Again, this is allowable only if each individual limit

lim
h→0

f(x + h) and lim
h→0

g(x + h)− g(x)

h

exists. We see in the next step that, indeed, these limits DO exist!

In the second part of line (6), one notes that g(x) is constant relative to the
limit being investigated. That is, g(x) has nothing to do with h; and constants
can be ‘slid out’ of the differentiation process.

line (7) In line (7), it is finally demonstrated that all the individual limits exist, thus
justifying, (after the fact), the limit operations used in the previous few steps.

Both limh→0
g(x+h)−g(x)

h and limh→0
f(x+h)−f(x)

h exist and equal, respectively,
g′(x) and f ′(x), by the hypothesis that f and g are differentiable at x.
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Why is
lim
h→0

f(x + h) = f(x)?
Why is

lim
h→0

f(x + h) = f(x) ?

Note that this (true) sentence states that as h approaches 0, the numbers f(x+
h) approach f(x). But when h is close to 0, x + h is close to x; so, rephrasing,
when the inputs to f are close to x, the corresponding outputs are close to f(x).
This is precisely what it means for f to be continuous at x ! Indeed,

f is continuous at x ⇐⇒ lim
h→0

f(x + h) = f(x) ,

so that the statement ‘limh→0 f(x + h) = f(x)’ gives an equivalent characteri-
zation of continuity of f at x.

But how do we know that f is continuous at x? By hypothesis, f is differentiable
at x. Since differentiability is a stronger condition than continuity, f must also
be continuous at x.

EXERCISE 2

prove the
product rule

♣ Prove the product rule for differentiation, without looking at the book. Be
sure to justify each step in your proof. It would not be unreasonable for your
instructor to ask you to prove the product rule on an in-class exam.

‘testing’ the
Product Rule

When presented with a new result, it is always a good idea to ‘test it out’ in
a situation where you already know the answer, to gain confidence. Therefore,
we first differentiate a product whose derivative can be found by other means,
so that we have a way to ‘check’ the answer derived from the product rule.

Problem: Let f(x) = (x2 + 1)(2x + 5). Find f ′ by
(a) multiplying f out, and differentiating term-by-term; and
(b) using the product rule.

Solution:

(a) f(x) = 2x3 + 5x2 + 2x + 5, so:

f ′(x) = 6x2 + 10x + 2

(b) Using the product rule:

f ′(x) = (x2 + 1)(2) + (2x)(2x + 5)

= 2x2 + 2 + 4x2 + 10x

= 6x2 + 10x + 2

Compare!
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EXERCISE 3 ♣ Let f(x) = (x + 4)(2x3 − 1). Find f ′ in two ways: by multiplying out and
differentiating term-by-term, and by using the product rule. Compare your
results.

EXAMPLE

using the
Product Rule

Problem: Differentiate f(x) = x
√

3x + 2 .

Solution: Note carefully how the d
dx operator is used for intermediate steps in

the solution that follows:

f ′(x) = x
d

dx
(3x + 2)1/2 + (1)

√
3x + 2 (product rule)

= x · 1

2
(3x + 2)−1/2(3) +

√
3x + 2 (general power rule)

=
3x

2
√

3x + 2
+
√

3x + 2 (simplify)

It is sometimes desirable to write the formula for f ′ in a way that has no radicals
in denominators. This is accomplished by rationalizing the denominator in the
first term. The word ‘rationalize’ means to ‘remove the radical’. Thus, to
‘rationalize the denominator’ means to ‘remove the radical in the denominator’.
Rewriting the first term yields

3x

2
√

3x + 2
=

3x

2
√

3x + 2
·
√

3x + 2√
3x + 2

=
3x
√

3x + 2

2(3x + 2)
,

so that f ′(x) becomes:

f ′(x) =
3x
√

3x + 2

2(3x + 2)
+
√

3x + 2

The result can be expressed as a single term by getting a common denominator
and combining fractions:

f ′(x) =
3x
√

3x + 2

2(3x + 2)
+
√

3x + 2 · 2(3x + 2)

2(3x + 2)

=

√
3x + 2(3x + 2(3x + 2))

2(3x + 2)

=

√
3x + 2(9x + 4)

2(3x + 2)
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EXAMPLE

using the
Product Rule

Problem: Differentiate f(x) = 3x2 ·h(2x−1), where h is a differentiable function
of one variable.

Solution: Observe that h(2x − 1) denotes the function h, acting on the input
2x− 1, and NOT h times 2x− 1. Thus, h(2x− 1) is a composition of functions,
which is differentiated using the chain rule. The overall form of the function f
being differentiated is a product: it is the function 3x2, multiplied by h(2x−1).
Thus, the product rule is first applied; note how the d

dx operator is conveniently
used for intermediate steps:

f ′(x) = 3x2 · d

dx

(
h(2x− 1)

)
+ 6x · h(2x− 1) (product rule)

= 3x2 · h′(2x− 1) · 2 + 6x · h(2x− 1) (chain rule)

= 6x2 · h′(2x− 1) + 6x · h(2x− 1) (simplify)

This expression for f ′ cannot be simplified further, unless we are given addi-
tional information about the function h.

EXAMPLE

generalizing the
product rule

Problem: Find d
dxa(x)b(x)c(x). Assume that a, b, and c are differentiable.

Solution: Use the ‘treat it as a singleton’ trick!

d

dx
a(x)b(x)c(x) =

d

dx
[
(
a(x)b(x)

)
· c(x)] (group)

= a(x)b(x) · c′(x) +

(
d

dx
a(x)b(x)

)
· c(x) (product rule)

= a(x)b(x)c′(x) +
[
a(x)b′(x) + a′(x)b(x)

]
c(x) (product rule)

= a(x)b(x)c′(x) + a(x)b′(x)c(x) + a′(x)b(x)c(x) (multiply out)

= a′(x)b(x)c(x) + a(x)b′(x)c(x) + a(x)b(x)c′(x) (rearrange)

Observe the pattern? By defining the function abc via the rule

(abc)(x) := a(x)b(x)c(x) ,

this result can be written as:

(abc)′(x) = a′(x)b(x)c(x) + a(x)b′(x)c(x) + a(x)b(x)c′(x)

It can also be shown that, (suppressing the ‘(x)’, for convenience):

(abcd)′ = a′bcd + ab′cd + abc′d + abcd′

The ‘regular’ product rule of course also follows this pattern:

(fg)′ = f ′g + fg′

These generalized results are extremely useful when differentiating products
with more than two factors.
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EXERCISE 4 ♣ 1. Make a conjecture (educated guess) about the formula for (abcde)′.
Assume that a, b, c, d and e are all differentiable. Feel free to suppress the
‘(x)’ in your answer.

♣ 2. Use a ‘generalized’ product rule to differentiate f(x) = (2x + 1)(x2 −
3)(4− x).

EXAMPLE

differentiating
a quotient

Problem: Use any available differentiation tools to find d
dx

(
f(x)
g(x)

)
.

Solution:

d

dx

(
f(x)

g(x)

)
=

d

dx

(
f(x) · 1

g(x)

)
(rewrite as a product)

= f(x)
d

dx
(g(x))−1 + f ′(x) · 1

g(x)
(product rule)

= f(x) · (−1)(g(x))−2g′(x) +
f ′(x)

g(x)
(general power rule)

=
−f(x)g′(x)

(g(x))2
+

f ′(x)

g(x)
· g(x)

g(x)
(simplify, get common denom.)

=
g(x)f ′(x)− f(x)g′(x)

(g(x))2
(simplify)

The formula just derived tells us how to differentiate a quotient of functions,
and is called the Quotient Rule for Differentiation. Note that the derivative of
a quotient is not the quotient of the derivatives! That is:

d

dx

(
f(x)

g(x)

)
6= f ′(x)

g′(x)

(This should not be a surprise; a quotient is a special kind of product—and
we already learned that the derivative of a product is NOT the product of the
derivatives.) A precise statement of the quotient rule follows:

QUOTIENT RULE
for differentiation

Suppose that f and g are both differentiable at x, and g(x) 6= 0. Then, the

function f
g is also differentiable at x, and:

(f
g

)′
(x) =

g(x)f ′(x)− f(x)g′(x)

(g(x))2

In words, the derivative of a quotient is: the bottom, times the derivative of
the top, minus the top, times the derivative of the bottom, all over the bottom
squared.

memory device
for the quotient rule

Some students find the following cute memory device helpful:

d

dx

( HI

HO

)
=

HOdHI −HI dHO

HOHO

(Note that ‘HI’ is ‘high up’ on the fraction.)
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EXAMPLE

using the
quotient rule

Problem: Differentiate f(x) = 2
x in two ways: using the simple power rule, and

using the quotient rule.

Solution: Using the simple power rule:

f(x) = 2x−1

f ′(x) = −2x−2 =
−2

x2

Using the quotient rule:

f ′(x) =
x(0)− 2(1)

x2
=
−2

x2

EXERCISE 5 Differentiate each of the following functions in two ways: using the quotient
rule, and NOT using the quotient rule. Compare your answers.

♣ 1. f(x) = x
2x−1

♣ 2. g(x) = 3
(1−x)4

return to the
Simple Power Rule;

proving that
d
dxx

n = nxn−1

for positive integers n

Now that the product rule is in hand, it is possible to give an easy proof of the
Simple Power Rule for Differentation in the case where n is a positive integer.
An extremely important technique, called proof by induction, is used. This
technique of proof by induction is discussed next.

Proof by Induction A standard approach to proving that a formula is true for all positive integers is
to use a proof by induction. The logic involved in this sort of proof is sometimes
called the domino principle:

• STEP 1: First, show that the formula is true when n = 1 .

• STEP 2: Next, show that whenever the formula is true for a positive integer
K, then it must also be true for the next positive integer K + 1 .

If both of these steps can be accomplished, then look what happens:

Since the formula is true for n = 1, it must also be true for n = 2 .

Since the formula is true for n = 2, it must also be true for n = 3 .

Since the formula is true for n = 3, it must also be true for n = 4 .

• STEP 3: Continuing this scheme, conclude that the formula must be true
for all positive integers!
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Proof that
d
dxx

n = nxn−1

for all
positive integers n

Problem: Prove that d
dxx

n = nxn−1 for all positive integers n .

Solution: Use a proof by induction.

• Step 1: Show that the formula d
dxx

n = nxn−1 is true when n = 1 .

Solution to Step 1: When n = 1, xn = x1 = x and nxn−1 = (1)x1−1 = 1 .
Since indeed d

dxx = 1, the formula is true when n = 1 .

• Step 2: Let K be any positive integer, and assume that the formula is true
when n = K . (This assumption is commonly referred to as the inductive
hypothesis.) Show that it must also be true when n = K + 1.

Solution to Step 2: Let K be a positive integer, and assume that d
dxx

K =

KxK−1. It is now necessary to show that the formula holds when n = K+1 .
Each of the lines below is numbered for easy reference:

(1)
d

dx
xK+1 =

d

dx
x · xK

(2) = x(KxK−1) + (1)xK

(3) = KxK + xK

(4) = (K + 1)xK

(5) = (K + 1)x(K+1)−1

lines (1)–(3) In line (1), xK+1 is viewed as the product x · xK so that the product rule can
be applied.

In line (2), the product rule is used to differentiate x · xK . Note that the
inductive hypothesis d

dxx
K = KxK−1 is used to differentiate xK .

In line (3), the expression is simplified, using the fact that x ·xK−1 = x1xK−1 =
x1+K−1 = xK .

lines (4) and (5) In line (4), xK is factored out of each term.

In line (5), one notes that K = (K + 1) − 1 . Equating line (1) to line (5), we
see that

d

dx
xK+1 = (K + 1)x(K+1)−1 ,

so that the formula
d

dx
xn = nxn−1

holds when n is replaced by K + 1. This completes Step (2).

• Step 3: Conclude that the result holds for all positive integers n .

Solution to Step 3: Therefore, d
dxx

n = nxn−1 for all positive integers n .
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EXERCISE 6 ♣ 1. Use a proof by induction to prove that the formula

1 + 2 + · · ·+ n =
n(n + 1)

2

holds for all positive integers n. Be sure to clearly indicate where the
inductive hypothesis is used.

Hint: To show that the formula holds for n = K + 1, you must show that:

1 + 2 + . . . + K + (K + 1) =
(K + 1)(K + 2)

2

♣ 2. Use the previous formula to find:

1 + 2 + 3 + . . . + 512

♣ 3. How could the formula be used to find

100 + 101 + . . . + 512 ?

More important differentiation tools have been added in this section. The list
is now complete, and is given below:

DIFFERENTIATION TOOLS

prime notation d
dx operator

if f(x) = k, then f ′(x) = 0 d
dx (k) = 0

(kf)′(x) = k · f ′(x) d
dx

(
kf(x)

)
= k · f ′(x)

(f + g)′(x) = f ′(x) + g′(x) d
dx

(
f(x) + g(x)

)
= f ′(x) + g′(x)

(f − g)′(x) = f ′(x)− g′(x) d
dx

(
f(x)− g(x)

)
= f ′(x)− g′(x)

if f(x) = xn, then f ′(x) = nxn−1 d
dx (xn) = nxn−1

if f(x) = (g(x))n, then f ′(x) = n(g(x))n−1 · g′(x) d
dx (g(x))n = n(g(x))n−1 · g′(x)

if f(x) = ex, then f ′(x) = ex d
dx (ex) = ex

if f(x) = eg(x), then f ′(x) = eg(x) · g′(x) d
dx (eg(x)) = eg(x) · g′(x)

if f(x) = lnx, then f ′(x) = 1
x

d
dx (lnx) = 1

x

if f(x) = ln(g(x)), then f ′(x) = 1
g(x) · g

′(x) d
dx

(
ln g(x)

)
= 1

g(x) · g
′(x)

(fg)′(x) = f(x)g′(x) + f ′(x)g(x) d
dx

(
f(x)g(x)

)
= f(x)g′(x) + f ′(x)g(x)

(abc)′ = a′bc + ab′c + abc′ d
dx (abcd) = a′bcd + ab′cd + abc′d + abcd′

(
f

g
)′(x) =

g(x)f ′(x)− f(x)g′(x)

(g(x))2
d

dx

(
f(x)

g(x)

)
=

g(x)f ′(x)− f(x)g′(x)

(g(x))2
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QUICK QUIZ

sample questions

1 Give a precise statement of the Product Rule for Differentiation.

2 Give a precise statement of the Quotient Rule for Differentiation.

3 Differentiate: f(x) = x(x + 1)5

4 Differentiate: f(x) = 2x+1
e2x

5 Differentiate: y = x(x + 1)(x2 + 1) Use any correct method.

KEYWORDS

for this section

The product rule for differentiation, proof of the product rule, ‘generalized’ prod-
uct rules, the quotient rule for differentiation, proof by induction.

END-OF-SECTION
EXERCISES

The purpose of these exercises is to give you additional practice with all the
differentiation formulas and notation.

♣ Differentiate the following functions. Use any appropriate formulas. Answer
all the additional questions. If an object does not exist, so state. Be sure to
write complete mathematical sentences.

1 y = x(2− x)3; find y(0), y(t2), y′(0), and y′(t)

2 y = e−x
√
x2 − 1; find y(1), y′(1), dy

dx |x=√2, and y(1) · y′(
√

2)

3 f(x) = ex lnx; find D(f), D(f ′), f ′(ex), and f ′(e2)

4 f(x) = ln(lnx); find D(f), D(f ′), f ′(ex), and f ′(f(e))

5 g(x) = e(e
x); find limx→0 g(x), limx→0 g

′(x), D(g), g(g′(g(0)))

6 g(x) = (x−1)(2x+1)(1−x)7; find limx→0 g(x), limt→0 g(t), limx→0 g
′(x),

and g′(0) . Is g′ continuous at 0? Why or why not?

7 h(x) = ln
(

ex

x+1

)
; find the equation of the tangent line to the graph of h

at x = 0

8 h(x) =
√

lnx3; find D(h) and the equation of the tangent line to the graph
of h at x = e

9 f(x) = e2x(2x + 1)7; find the equation of the tangent line to the graph of
f at x = 0

10 g(x) = (ax+ b)2(cx+ d)3(x+ 1)4. Assume that a, b, c and d are constants.

11 h(t) = e
(3t−1)4 ; find the equation of the tangent line to the graph of h at

t = 2
3

12 y = ln t√
t+2

; what is the instantaneous rate of change of y with respect to t

when t = 1?

13 Find all points on the graph of y = [(x − 3)(x + 1)(2x − 1)]2 where the
tangent line is horizontal. (Hint: There are 5 such points.)



4.7 Higher Order Derivatives

Introduction;

smooth functions

When a function f is differentiated, another function, f ′, is obtained. This new
function f ′ may itself be differentiable. Thus, in many cases, one may con-
tinually repeat the differentiation process, obtaining the so-called higher-order
derivatives. This section presents the notation for higher-order derivatives.

If the graph of a function f has a kink at x, then f is not differentiable at x.
Thus, if f is differentiable at every point in some interval, it must not have
any kinks in this interval. In this sense, a differentiable function is smooth.
Mathematicians use the word ‘smooth’ to describe the differentiability of a
function, but the usage is not entirely consistent: to some, ‘smooth’ means once-
differentiable; to others, ‘smooth’ means infinitely differentiable. In general, the
more times a function is differentiable, the ‘smoother’ it is.

higher-order
derivatives;

notation

f ′, f ′′, f ′′′,
f (4), . . . , f (n)

The following prime notation is used for the higher-order derivatives:

differentiate f to get f ′; f ′ is the (first) derivative of f

differentiate f ′ to get f ′ ′; f ′′ is the second derivative of f

differentiate f ′′ to get f ′′′ ; f ′′′ is the third derivative of f

differentiate f ′′′ to get f (4) ; f (4) is the fourth derivative of f

differentiate f (4) to get f (5) ; f (5) is the fifth derivative of f

...

differentiate f (n−1) to get f (n) ; f (n) is the nth derivative of f

The notation f ′′ can be read either as ‘f double prime’, or as ‘the second
derivative of f ’.

It gets unwieldy to count the number of prime marks, so it is conventional
to change to a numerical superscript, in parentheses, from about the fourth
derivative on. The notation f (4) is usually read as ‘the fourth derivative of f ’.
Observe that the name of the nth derivative is f (n); this function, evaluated at
x, is denoted by f (n)(x).

The functions f ′′, f ′′′, f (4), . . . are called the higher-order derivatives of f .

infinitely
differentiable

If a function f has the property that f (n) exists (and has the same domain as
f) for all positive integers n, then we say that f is infinitely differentible.

249
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EXERCISE 1 What is the prime notation for each of the following?

♣ 1. the second derivative of g

♣ 2. the second derivative of g, evaluated at x

♣ 3. the derivative of f ′′′

♣ 4. the second derivative of f (6), evaluated at 3

EXAMPLE Let P (x) = 2x5 − x4 + 2x− 1. Then:

P ′(x) = 10x4 − 4x3 + 2

P ′′(x) = 40x3 − 12x2

P ′′′(x) = 120x2 − 24x

P (4)(x) = 240x− 24

P (5)(x) = 240

P (n)(x) = 0 , for n ≥ 6

EXERCISE 2 ♣ Find all derivatives of:

P (x) = 2x7 − x3 + 4

Be sure to write complete mathematical sentences.

It’s a good exercise to differentiate an arbitrary polynomial

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0 ,

since this exercise offers an opportunity to introduce some important summation
and factorial notation. So this is our next project. First, summation notation
is introduced.
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summation
notation;
e∑

j=s

aj

the index of the sum
is a dummy variable

Summation notation gives a convenient way to display a sum, when the terms
share some common property.

For nonnegative integers s (‘start’) and e (‘end’) with s < e , one defines:

e∑
j=s

aj := as + a(s+1) + · · ·+ a(e−1) + ae

The symbol
∑e

j=s aj is read as: the sum, as j goes from s to e, of aj .

In particular, if s = 1 and e = n one gets:

n∑
j=1

aj = a1 + a2 + · · ·+ an−1 + an

The variable j in the above notation is called the index of the sum; observe that
once the sum is expanded, this index j no longer appears. In this sense, it is a
dummy variable, and we need not be restricted to use of the letter j for this role.
Traditionally, the letters i, j, k, m and n are used as indices for summation,
precisely because of the strong convention dictating that these letters denote
integer variables.

When summation notation appears in text (as opposed to in a display), it
usually looks like this:

∑n
j=1 aj . This way, it is not necessary to put extra

space between the lines to make room for the ‘j = 1’ and ‘n’.

EXAMPLE

using
summation notation

For example,
7∑

i=3

ai = a3 + a4 + a5 + a6 + a7

and:
5∑

k=2

(k − 3)k = (2− 3)2 + (3− 3)3 + (4− 3)4 + (5− 3)5

Also:
4∑

j=1

5 =

j=1︷︸︸︷
5 +

j=2︷︸︸︷
5 +

j=3︷︸︸︷
5 +

j=4︷︸︸︷
5 = 4 · 5 = 20

The sum
1 + 2 + . . . + 207

could be written as:

207∑
k=1

k or

207∑
n=1

n or

207∑
m=1

m

However, don’t write something like
∑207

i=1 k, unless you really want the expres-
sion below!

207∑
i=1

k =

207 times!︷ ︸︸ ︷
k + k + · · ·+ k = 207k
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EXERCISE 3

practice with
summation notation

♣ 1. Expand the following sums. (You need not simplify the resulting sums.)

6∑
j=1

bj ,

5∑
k=1

(k + 1)k ,

4∑
m=0

(m + 1) ,

n∑
i=1

2i

♣ 2. Write the sum
∑n

i=1 2i using a different index.

♣ 3. Let k be a constant. Prove that:

n∑
j=1

kaj = k

n∑
j=1

aj

(Thus, you can ‘slide’ constants out of a sum.) Be sure to write complete
mathematical sentences.

♣ 4. Write the following sums using summation notation:

1 + 2 + 3 + · · ·+ 100

34 + 35 + 36 + · · ·+ 79

2 + 4 + 6 + · · ·+ 78

52 + 63 + 74 + 85 + · · ·+ 2017

♣ 5. Prove the following statement:

d

dx

n∑
i=1

fi(x) =

n∑
i=1

f ′i(x)

You may assume that the functions fi are all differentiable at x. Be sure to
write complete mathematical sentences, and justify each step of your proof.
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polynomials are
infinitely
differentiable

Now, let P (x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be an arbitrary nth order
polynomial (so, an 6= 0). Using summation notation, one can write:

P (x) =

n∑
i=0

aix
i

(Recall that x0 = 1 .) Differentiating once (and using the fact that the derivative
of a sum is the sum of the derivatives) yields:

P ′(x) =

n∑
i=0

i · aixi−1

=

n∑
i=1

i · aixi−1

The index changed from a starting value of 0 to a starting value of 1 since when
i = 0 the term i · aixi−1 vanishes, and hence contributes nothing to the sum.
Continuing:

P ′′(x) =

n∑
i=2

i(i− 1)aix
i−2

P ′′′(x) =

n∑
i=3

i(i− 1)(i− 2)aix
i−3

...

P (j)(x) =

n∑
i=j

i(i− 1)(i− 2) · · · (i− (j − 1))aix
i−j for 1 ≤ j ≤ n

factorial
notation,
k!

The previous formula for P (j) can be cleaned up a bit by using factorial notation,
discussed next.

For a positive integer k, one defines:

k! := k(k − 1)(k − 2) · · · (1)

The expression ‘ k! ’ is read as ‘k factorial ’. By definition, 0! = 1 .

For example: 3! = 3 · 2 · 1 = 6 and 200! = 200 · 199 · 198 · . . . · 2 · 1
The product 20 · 19 · 18 · . . . · 5 can be written in factorial notation, if one first
multiplies by 1 in an appropriate form:

20 · 19 · 18 · . . . · 5 = 20 · 19 · 18 · . . . · 5 · 4 · 3 · 2 · 1
4 · 3 · 2 · 1

=
20 · 19 · 18 · . . . · 1

4 · 3 · 2 · 1

=
20!

4!

This technique is used below, in order to ‘clean up’ the expression for P (j).
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‘cleaning up’
the expression
for P (j)

Using the same ‘multiply by 1 in an appropriate form’ technique illustrated
above, one gets:

i(i− 1)(i− 2) · · · (i− (j − 1))

= i(i− 1)(i− 2) · · · (i− (j − 1)) · (i− j)(i− (j + 1)) · · · (1)

(i− j)(i− (j + 1)) · · · (1)

=
i!

(i− j)!
for i ≥ j

Thus, all the derivatives of an arbitrary nth order polynomial P can be expressed
as:

P (j)(x) =


n∑

i=j

i!

(i− j)!
aix

i−j for 1 ≤ j ≤ n

0 for j > n

Observe that although this notation is extremely compact, it can (especially
for a beginner) make an easy idea seem difficult. For experts, however, the
compactness of this notation can be extremely beneficial.

EXERCISE 4 Let P (x) =
∑3

i=0 aix
i.

♣ 1. Expand this sum. How many terms does P have?

♣ 2. Show that

P ′(x) =

3∑
i=1

i · aixi−1 ,

by expanding the sum, and verifying that it does indeed give a correct
formula for P ′.

♣ 3. Find formulas for P ′′ and P ′′′, in summation notation.

♣ 4. What is P (n), for n ≥ 4?

EXERCISE 5

practice with
factorial notation

♣ 1. Express the following numbers as products. It is not necessary to mul-
tiply out these products.

5! , 0! , 100!

♣ 2. Write the following products using factorial notation:

10 · 9 · 8 · . . . · 2 · 1
207 · 206 · 205 · . . . · 1

♣ 3. Write the following product using factorial notation:

105 · 104 · 103 · . . . · 50
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Leibniz notation
for higher-order
derivatives

Here is the Leibniz notation for higher-order derivatives. Let y be a function of
x. Then:

d

dx
(y) =

dy

dx
is the first derivative

d

dx
(
dy

dx
) =

d 2y

dx2
is the second derivative

d

dx
(
d2y

dx2
) =

d 3y

dx3
is the third derivative

...

d

dx
(
d n−1y

dxn−1 ) =
d ny

dxn
is the nth derivative

If one wishes to emphasize that the derivative dny
dxn is being evaluated at a specific

value of x, say x = c, then one can write either:

dny

dxn
(c) or

dny

dxn
|x=c

At first glance, the lack of symmetry in this notation is disturbing: for example,

why should we write d2y
dx2 , and not the more symmetric d2y

d2x?

However, it should be clear from the process illustrated above why this ‘un-
symmetry’ arises. At the nth step, one ‘sees’ n ‘factors’ of d upstairs, hence
dny. Also, at the nth step, one ‘sees’ n ‘factors’ of dx downstairs, hence (dx)n,
shortened to the simpler notation dxn. (After all, it is only notation, so we
want it to be as simple as possible, without sacrificing clarity.)

EXERCISE 6 What is the Leibniz notation for each of the following?

♣ 1. the second derivative of y (where y is a function of x)

♣ 2. the second derivative of y (where y is a function of t)

♣ 3. the second derivative of g (where g is a function of x)

♣ 4. the second derivative of g, evaluated at 2

♣ 5. the derivative of d3y
dx3

♣ 6. the second derivative of d3y
dx3 , evaluated at 3

EXERCISE 7 In problems (1) and (2), find the second derivative of the given function. Use
any appropriate notation.

♣ 1. y = x
ex

♣ 2. f(x) = 1
x−1 + 1

x−2
♣ 3. Find the equation of the tangent line to the graph of the first derivative

of f(x) = x
ex at x = 0 .
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QUICK QUIZ

sample questions

1. What is meant by the phrase, ‘the higher derivatives of a function f ’?

2. Write the second derivative of f , evaluated at x, using both prime notation
and Leibniz notation.

3. Expand the sum:
∑3

i=1 i
i+1

4. Write 10 · 9 · 8 · 7 · 6 using factorial notation.

5. State that ‘the derivative of a sum is the sum of the derivatives’, using
summation notation.

KEYWORDS

for this section

Smooth functions, higher-order derivatives, prime notation for higher-order
derivatives, infinitely differentiable, summation notation, factorial notation,
Leibniz notation for higher-order derivatives.

END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a SENTENCE (SEN).

♣ For any sentence, state whether it is TRUE, FALSE, or CONDITIONAL.

1. If f is differentiable at x, then the number f ′(x) gives the slope of the
tangent line to the graph of f at the point (x, f(x)).

2. If f is differentiable at x, then the limit limh→0
f(x+h)−f(x)

h exists, and gives
the slope of the tangent line to the graph of f at the point (x, f(x)).

3. f ′(x)

4. f ′(3)

5. f ′(x) = 2x

6. y′ = 3

7. If f and g are differentiable at x, then d
dx (f(x) + g(x)) = f ′(x) + g′(x).

8. If f is differentiable at c, then f ′(c) = df
dx (c).

9. ln ab

10. For a > 0 and b > 0, ln ab = ln a + ln b .

11. f ′(g(x)) · g′(x)

12. d
dxf(g(x)) = f ′(g(x)) · g′(x)

13. 10 · 9 · 8 · . . . · 1

14. 10! = 10 · 9 · 8 · . . . · 1

15.
∑3

i=0 i = 6

16.
∑n

j=1 aj

17. If f is differentiable at c, then f ′(c) = 2 .

18. f is differentiable at c if and only if f is continuous at c



4.8 Implicit Differentiation
(Optional)

Introduction;

y = f(x)
explicit representation

You are used to seeing equations of the form:

y = f(x)

Here, y is isolated on one side of the equation, and all the x’s appear on the
other side. In such a case, one says that y is given explicitly in terms of x. When
such a representation is possible, y is truly a function of x; once a choice for
x is made, substitution into the formula f(x) yields the corresponding unique
value of y.

implicit
representation

Often, it is inconvenient or impossible to solve for y in terms of x. In many
such instances, the inability to solve uniquely for y in terms of x stems from
the fact that y is not a function of x.

For example, the graph of 3(x2 + y2)2 = 100xy is shown below. Although y
is not a function of x, one can still talk about the slopes of tangent lines at
various points on the graph. However, since we are not dealing with a function,
to specify the location in the graph in which there is interest, it is necessary to
specify both an x and y value.

If a relationship between x and y is such that y is not solved explicitly in terms
of x, then one says that y is expressed implicitly in terms of x.

257
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y is locally
a function of x

The technique of implicit differentiation is used to get information about slopes
of tangent lines, in cases when y is given implicitly in terms of x. The key idea
is this: although y is not (globally) a function of x, if attention is restricted to
a local situation, then y CAN be viewed as a function of x (at most points).

Think about it this way: take a ‘mini’ coordinate system, and center the origin
at a point on a curve. If it is possible to draw a circle (no matter how small!)
around this coordinate system, within which one sees the graph of a function,
then, locally, y is a function of x.

The sketches below show several points at which y IS locally a function of x.

The sketches below show three points at which y is NOT locally a function of
x. No matter how small a circle is drawn around the point, there is no way to
enclose a piece of graph for which y is a function of x.

EXERCISE 1 ♣ On the graphs below, identify any points where y is NOT locally a function
of x.

the technique of
implicit differentiation

Implicit differentiation works like this: given a relationship between x and y,
differentiate both sides of the equation with respect to x, remembering that
(locally, at least!) y is a function of x.
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if y is a function of x,
then it must be
differentiated
accordingly

Suppose that y is a function of x, say y = y(x). Then, y must be differenti-
ated using the rules that are appropriate for differentiating functions of x. For
example:

d

dx
y3 =

d

dx
(y(x))3 = 3(y(x))2 · y′(x)

This is usually written more simply as:

d

dx
y3 = 3y2

dy

dx

Similarly:
d

dx
x ln y = x(

1

y
)
dy

dx
+ ln y

EXERCISE 2 Find the following derivatives, treating y as a function of x.

♣ 1. d
dx (y2)

♣ 2. d
dx (xy)

♣ 3. d
dx (x + y)3

♣ 4. d
dx (ln y)

when y is a
function of x,
the formula for dy

dx
is also
a function of x

Whenever y is a (global) function of x, then each point on the curve is uniquely
identified by its x-coordinate. In particular, if one wants to talk about the slope
of a tangent line at a point, it is only necessary to specify the x-coordinate to
locate the point. Therefore, whenever y is a function of x, dy

dx is also a function
of x.

However, if y is NOT a function of x, then to identify a point on the curve,
BOTH its x and y coordinates are needed. So, to talk about the slope of a
tangent line at a particular point, one also needs to specify both coordinates.
In such cases, then, the formula for dy

dx involves BOTH x AND y.
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EXAMPLE Consider the equation x2 + y2 = 1. The set of all points (x, y) that make this
equation true is the circle of radius 1, centered at the origin. (See the Algebra
Review on circles at the end of this section.)

Observe that y is not (globally) a function of x. However, at all points except
(1, 0) and (−1, 0), y is locally a function of x.

Differentiating both sides of x2 + y2 = 1 with respect to x, and remembering
that (at least locally) y is a function of x, yields:

2x + 2y
dy

dx
= 0

In this case, it is possible to solve for dy
dx :

dy

dx
=
−2x

2y
= −x

y

Observe that this formula for dy
dx depends on both x and y. This was expected,

since both an x and y coordinate are needed to uniquely identify the point where
the slope of the tangent line is desired.

The formula seems to yield reasonable results. For example, dy
dx |(0,1) = − 0

1 = 0 .
This information reflects the fact that the slope of the tangent line at the point
(0, 1) is horizontal.

Also, dy
dx |(0,−1) = − 0

−1 = 0 . Again, the tangent line at (0,−1) is horizontal.

Some additional examples are given below. Note in particular that the formula
for the derivative fails when y = 0; there are vertical tangent lines at these
points.
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same example,
different viewpoint

In the previous example, the equation x2 + y2 = 1 could have been solved for
y, to obtain:

y = ±
√

1− x2

Here, the ‘+’ sign yields the upper half of the circle, and the ‘−’ sign the lower
half of the circle. Differentiating y = +

√
1− x2 in the normal way yields the

slopes of the tangent lines to the upper half of the circle:

dy

dx
=

1

2
(1− x2)−1/2 · (−2x) = − x√

1− x2
= −x

y

Thus, the formula is compatible with that obtained by implicit differentiation.
However, differentiating implicitly was much easier than this latter approach.

EXERCISE 3 ♣ Differentiate y = −
√

1− x2 to get a formula for dy
dx that is valid for the lower

half of the circle. Show that the result is compatible with the formula obtained
by differentiating implicitly.

EXERCISE 4 ♣ 1. Graph the equation (y − 2)2 + x2 = 9 .

♣ 2. At what points on the graph is y NOT locally a function of x?

♣ 3. Find dy
dx by differentiating implicitly. At what point(s) does the formula

fail? Why?

further uses
for
implicit differentiation

There are two other common situations where implicit differentiation is ex-
tremely useful. These are discussed next.

differentiating
complicated
products & quotients

Recall that the log of a product is the sum of the logs; the log of a quotient
is the difference of the logs. Since differentiating sums and differences is much
easier than differentiating products and quotients, we can exploit the logarithm
as illustrated in the next example.
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EXAMPLE

logarithmic
differentiation

Problem: Differentiate y =
x2(x− 2)√

2x− 3
.

Solution: First, find the natural logarithm of y :

ln y = ln(x2(x− 2))− ln
√

2x− 3

= lnx2 + ln(x− 2)− ln(2x− 3)1/2

= 2 lnx + ln(x− 2)− 1

2
ln(2x− 3)

In the equation

ln y = 2 lnx + ln(x− 2)− 1

2
ln(2x− 3) ,

y is given implicitly as a function of x. Implicit differentiation yields:

1

y

dy

dx
=

2

x
+

1

x− 2
− 1

2
· 1

2x− 3
· 2

Since y truly is a function of x in this example, we expect to be able to get a
formula for the derivative as a function of x, and we certainly can:

dy

dx
= y ·

[
2

x
+

1

x− 2
− 1

2x− 3

]
=

x2(x− 2)√
2x− 3

[
2

x
+

1

x− 2
− 1

2x− 3

]
This process of differentiating a function y by first taking the logarithm and then
using implicit differentiation is often referred to as logarithmic differentiation.

EXERCISE 5 Use logarithmic differentiation to differentiate:

♣ 1. y = (
1

x
)(

1

2x− 1
)(

1

3x− 1
)

♣ 2. y =
x4 3
√
x− 1

5
√

2x + 1

differentiating
variable expressions
to variable powers;

logarithmic
differentiation

Another common use for implicit differentiation is in differentiating variable
expressions raised to variable powers, illustrated next.

Suppose that y = x2x. The extended power rule for differentiation does not
apply here, since the exponent is not a constant. Instead, find the natural
logarithm of y ,

ln y = lnx2x = 2x lnx

and then differentiate implicitly:

1

y

dy

dx
= 2x

1

x
+ (2)(lnx) = 2(1 + lnx)

Since y is truly a function of x, we expect to be able to express the derivative
as a function of x, and we can:

dy

dx
= y · 2(1 + lnx) = 2x2x(1 + lnx)
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EXERCISE 6 Use logarithmic differentiation to differentiate. In each case, write dy
dx as a

function of x.

♣ y = xx

♣ y = (2x)x

♣ y = (2x)3x

♣ y = (
√
x + 1)(x

2)

ALGEBRA REVIEW
circles

EXERCISE 7

the relationship
between the sentences
a = b and a2 = b2

Consider the equations a = b and a2 = b2.

♣ 1. Show that these equations are NOT equivalent. That is, find choices
for a and b for which the sentences a = b and a2 = b2 have different truth
values.

♣ 2. Now consider the sentence:

For a ≥ 0 and b ≥ 0, a = b ⇐⇒ a2 = b2 .

The phrase ‘For . . . ’ has been used to restrict the universal sets for a and
b to the nonnegative real numbers. This sentence asserts that, as long as
both a and b are nonnegative, then the equations a = b and a2 = b2 WILL
always have the same truth values. Convince yourself that this is true.

♣ 3. Conclude the following: if you are in a situation where it is known that
both a and b are nonnegative, then the sentence a = b can be replaced, if
convenient, by the equation a2 = b2.

distance between
two points

Recall first that the distance between points (x1, y1) and (x2, y2) is given by:√
(y2 − y1)2 + (x2 − x1)2

This formula is an immediate consequence of Pythagorean’s Theorem.
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circles Now, it is desired to find the equation of the circle with center (h, k) and radius
r. That is, we seek an equation that is true for all points (x, y) that lie on the
circle of radius r centered at the point (h, k).

This is easy to get: we want those points (x, y) whose distance from (h, k) is
equal to r. That is, we want points (x, y) satisfying:√

(y − k)2 + (x− h)2 = r

Since both sides of this equation are nonnegative (r is the radius of a circle, and
square roots are nonnegative), an equivalent equation is obtained by squaring
both sides (see Exercise #7):

(y − k)2 + (x− h)2 = r2

This is the equation of the circle centered at (h, k), with radius r.

EXAMPLE Problem: Graph x2 + y2 = 1 .

Solution: Rewrite:

x2 + y2 = 1 ⇐⇒ (x− 0)2 + (y − 0)2 = 12

This is the circle centered at (0, 0) with radius 1 .

Problem: Graph (3− y)2 + (x + 1)2 = 4 .

Solution: Rewrite:

(3− y)2 + (x + 1)2 = 4 ⇐⇒ (y − 3)2 + (x− (−1))2 = 22

This is the circle centered at (−1, 3) with radius 2 .

Problem: Graph x2 + y2 + 3y = 7
4 .

Solution: Rewrite, by completing the square:

x2 + y2 + 3y =
7

4
⇐⇒ x2 + (y2 + 3y + (

3

2
)2) =

7

4
+ (

3

2
)2

⇐⇒ x2 + (y +
3

2
)2 =

7

4
+

9

4

⇐⇒ x2 + (y − (−3

2
))2 = 22

This is the circle centered at (0,− 3
2 ) with radius 2 .
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QUICK QUIZ

sample questions

1. Let xy2 = 2 . Find dy
dx , by differentiating implicitly.

2. Let y = x2x. Find y′, by using logarithmic differentiation.

3. Graph x2 − 2x + y2 = 8 .

4. Write an equation where y is given explicitly in terms of x; where y is given
implicitly in terms of x.

5. On the sketch below, identify any point(s) where y is NOT locally a function
of x.

KEYWORDS

for this section

Explicit versus implicit representations, y is locally a function of x, implicit
differentiation, logarithmic differentiation, differentiating complicated products
and quotients, differentiating variable expressions to variable powers, equations
of circles.

END-OF-SECTION
EXERCISES

♣ Graph the equation (each is a circle).

♣ Identify any point where y is NOT locally a function of x.

♣ Find y′ by differentiating implicitly.

♣ Check that the given point(s) lie on the circle; write the equation of the
tangent line at these points.

1. x2 + 4x + y2 − 2y + 4 = 0; (−2, 2), (−1, 1)

2. x2 + 4x + y2 − 2y = −4; (−2, 0), (−3, 1)

3. 4x− 2y = −x2 − y2 − 1; (−1, 1 +
√

3)

4. 4x− 2y = −x2 − y2 − 1; (−1, 1−
√

3)



4.9 The Mean Value Theorem

Introduction The Mean Value Theorem is often referred to as the Fundamental Theorem
of Differential Calculus. Its importance cannot be overemphasized! Several
applications are given in the next section.

The Mean Value
Theorem

Suppose that f is differentiable on an open interval (a, b), and continuous on
the closed interval [a, b]. Then there is at least one number c in (a, b) for which:

f ′(c) =
f(b)− f(a)

b− a

motivation for
the name

The word ‘mean’ often has the same mathematical meaning as the word ‘aver-
age’, and such is the case here. It has been seen that the quotient

f(b)− f(a)

b− a

represents the average (mean) rate of change of the function f on [a, b]. Recall
that this quotient gives the slope of the line through the points (a, f(a)) and
(b, f(b)). The Mean Value Theorem states that there is at least one number
c ∈ (a, b) where the instantaneous rate of change f ′(c) is the same as the average
rate of change over the entire interval.

EXERCISE 1 Consider the function f : [a, b] → R, f(x) = x2. For each interval [a, b] listed
below, do the following:

• Sketch the graph of f on [a, b].

• Find c ∈ (a, b) for which f ′(c) = f(b)−f(a)
b−a .

• On your graph, show both the tangent line at (c, f(c)) and the line through
the endpoints of the interval.

♣ 1. [a, b] = [1, 2]

♣ 2. [a, b] = [−1, 1]

♣ 3. [a, b] = [−1, 2]

discussion of
the hypotheses
to the
Mean Value Theorem

The phrase ‘f is differentiable on the open interval (a, b)’ means that f is dif-
ferentiable at x, for every x ∈ (a, b).

Recall that if f is differentiable on (a, b), then it must also be continuous on
(a, b). (Differentiability is ‘stronger ’ than continuity!) Thus, by requiring that f
be differentiable on (a, b), one is also assured that f is continuous on (a, b). The
additional requirement that f be continuous on the closed interval [a, b] only
adds the assurance that f ‘behaves properly’ at the endpoints. The following
examples illustrate why this requirement is necessary.

266
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EXAMPLE

the conclusion of
the MVT fails;

there is no
‘c that works’

If the hypotheses of the Mean Value Theorem are not met, then its conclusion
is not guaranteed.

In the first example below, f is differentiable on (a, b), but not continuous on
[a, b].

In the second example, f is not differentible on (a, b).

In both cases, there is no ‘c that works’. That is, there is NO POINT (c, f(c))
for c ∈ (a, b) where the tangent line has the same slope as the line through the
endpoints of the interval.

there’s not
necessarily a
unique c
that works

The Mean Value Theorem is an existence theorem, NOT a uniqueness theorem.
Thus, it does not guarantee a unique value of c that works, as the sketches below
illustrate.

EXERCISE 2 Sketch the graph of a function f that meets each of the following requirements:

♣ 1. f is differentiable on (1, 3), continuous on [1, 3], f(3) = 10, f(1) = 0,
f(2) 6= 5, f ′(2) = 5, and f is not linear on [1, 3]

♣ 2. f is differentiable on (1, 3), continuous on [1, 3], f(3) = 10, f(1) = 0,
f(2) = 5, f ′(2) = 5, and f is not linear on [1, 3]

♣ 3. f is differentiable on (2, 5), f(2) = 1, f(5) = 3, and there is NO c ∈ (2, 5)
for which f ′(c) = 2

3

♣ 4. The average rate of change of f on [0, 2] is 4, and yet NOWHERE on
(0, 2) does f have an instantaneous rate of change of 4 .

uses of the
Mean Value Theorem

The Mean Value Theorem is the tool pulled out in most every situation where
derivative information is to be used to gain information about the function
itself. It is used extensively in analysis for approximate calculations and to
obtain error estimates. Some typical uses are presented below. Also, the Mean
Value Theorem is used in the next section to obtain some important results.
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EXAMPLE

getting bounds on
function values

Suppose that f is differentiable on R. Also, suppose it is known that |f ′(x)| ≤ 10
for all x ∈ R. This means that, at any instant, the function values f(x) never
change at a rate of magnitude greater than 10 units per unit change in x. So
if x changes by 1, what is the most that f(x) could change by? Well, it could
increase by 10 · 1. Or, it could decrease by 10 · 1.

If x changes by 2, what is the most that f(x) could change by? It could increase
by 10 · 2, or decrease by 10 · 2.

These ideas are made precise by using the Mean Value Theorem. That is,
derivative information is used to get a bound on how much the function f can
possibly change over any interval [a, b], as follows.

Let [a, b] be any interval. By the Mean Value Theorem, there exists c ∈ (a, b)
for which:

f ′(c) =
f(b)− f(a)

b− a
But, by hypothesis, |f ′(c)| ≤ 10. Thus:∣∣∣∣f(b)− f(a)

b− a

∣∣∣∣ ≤ 10

That is:
|f(b)− f(a)| ≤ 10|b− a|

For example, suppose that [a, b] is an interval of length 5, so that |b − a| = 5 .
Then, |f(b) − f(a)| ≤ 10 · 5 . That is, the distance from f(b) to f(a) must be
less than or equal to 50 . So, f(b) must lie in the interval

(
f(a)−50 , f(a)+50

)
.

Bounding techniques such as this are extremely important in analysis.

EXERCISE 3 Suppose f is differentiable on R, and |f ′(x)| ≤ 2 for all x ∈ R. Answer the
following questions.

♣ 1. Suppose f(1) = 5 . In what interval must f(2) lie?

♣ 2. Suppose f(1) = 5 . In what interval must f(3) lie?

♣ 3. How much can f(x) change by, whenever x changes by an amount ∆x?

consequences of the
Mean Value Theorem

All the results listed below are consequences of the Mean Value Theorem. Some
of these will be studied more thoroughly in future sections. Some use words
that have not yet been defined. These results are listed simply to give you an
appreciation for the kind of information that can be gleaned from the Mean
Value Theorem (MVT)!

For all these results, assume that f is continuous on [a, b] and differentiable on
(a, b).

• If f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b].

• If f ′(x) = g′(x) for all x ∈ (a, b), then f and g differ by at most a constant
on [a, b].

• If f ′(x) ≥ 0 for all x ∈ (a, b) and if x1 < x2 are in [a, b], then f(x1) ≤ f(x2).

• If f ′(x) > 0 for all x ∈ (a, b) and if x1 < x2 are in [a, b], then f(x1) < f(x2).

• If f ′(x) ≥ 0 for all x ∈ (a, a+ δ), then (a, f(a)) is a relative minimum point
of f .

• If f ′(x) ≥ 0 for all x ∈ (b− δ, b), then (b, f(b)) is a relative maximum point
of f .
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sample proof Here, the Mean Value Theorem is used to prove the first result in the previous
list:

Suppose f is continuous on [a, b] and differentiable on (a, b). If f ′(x) = 0 for all
x ∈ (a, b), then f is constant on [a, b].

Proof. Let K = f(a). It will be shown that f(x) = K for all x ∈ [a, b], so that
f is constant on [a, b].

Choose any point x ∈ (a, b]. Since f is differentiable on the subinterval (a, x)
(why?) and continuous on [a, x] (why?), there exists c ∈ (a, x) for which:

f ′(c) =
f(x)− f(a)

x− a
=
f(x)−K
x− a

Since f ′(c) = 0, it must be that

f(x)−K
x− a

= 0 ,

so that f(x)−K = 0, and thus f(x) = K. Thus, f is constant on [a, b].

FF

the proof of
the MVT

The proof of the Mean Value Theorem is nontrivial. It often goes like this:

• First, prove that if f is differentiable at x and f ′(x) > 0, then

f(x− h) < f(x) < f(x+ h)

for all positive h sufficiently small. Prove the similar result for f ′(x) < 0.

• Prove Rolle’s Theorem: Let f be differentiable on (a, b) and continuous on
[a, b]. If f(a) = f(b) = 0, then there exists at least one number c ∈ (a, b)
for which f ′(c) = 0 .

Rolle’s Theorem is a special case of the Mean Value Theorem.

• To prove the Mean Value Theorem, apply Rolle’s Theorem to the function:

g(x) = f(x)−
[
f(b)− f(a)

b− a
(x− a) + f(a)

]

the mathematical
phrase,
‘for all’

The remainder of this section deals with the mathematical phrase, ‘for all’.
Fortunately, the conventional English usage of this phrase agrees very nicely
with its mathematical meaning; for this reason, the author has been able to
avoid a careful discussion up to this point. It is time, however, to make things
precise.

S(x) denotes a
sentence involving
the variable x

Let S(x) denote a sentence involving the variable x. For example, S(x) might
represent the sentence ‘x = 3’, or it might represent the sentence ‘3x− 2 > 0’.
Let U denote the universal set for the variable x.

In order for the sentence

‘ For all x ∈ U , S(x) ’ (*)

to be true, S(x) must be true, no matter what choice of x is made from the
universal set. If there is at least one value of x ∈ U for which S(x) is false, then
sentence (*) is false.
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EXAMPLES The sentence
‘For all x ∈ R, x2 ≥ 0 ’

is true. No matter what real number x is chosen, the sentence ‘x2 ≥ 0’ is true.

The sentence
‘ For all x ∈ R, x2 > 0 ’

is false. Choosing x = 0, the sentence ‘02 > 0’ is false.

The sentence
‘ For all x ∈ R, x2 < 0 ’

is false. Here, no matter what value of x is chosen, the sentence ‘x2 < 0’ is false.

The sentence
‘ For all x > 0, |x| = x ’

is true. Whenever x is a positive number, the sentence ‘|x| = x’ is true.

The sentence
‘ For all sets A and B, A ⊂ A ∪B ’

is true. No matter what sets are chosen for A and B, A is always a subset of
A ∪B.

What does it
mean for (*) to
be false?

If a sentence of the form

‘ For all x ∈ U , S(x) ’

is false, then all that can be said (without additional information) is that there
is at least one x ∈ U for which S(x) is false.

EXERCISE 4 TRUE or FALSE:

♣ 1. For all x ∈ R, |x| ≥ 0

♣ 2. For all x ∈ R, |x| > 0

♣ 3. For all t < 0, |t| = −t
♣ 4. For all x ∈ (2, 3), x ≥ 0

♣ 5. For all sets A and B, A ∩B = {x | x ∈ A and x ∈ B}
♣ 6. For all functions f and g that are differentiable at x, (f + g)′(x) =

f ′(x) + g′(x)

the universal set
is sometimes omitted

Sometimes, mathematicians get a bit casual with their use of ‘for all’. For
example, the universal set is frequently omitted, if it is understood from context.

For example, in a course such as this, where the universal set is understood to
be R (unless otherwise stated), the (true) sentence

‘ For all x, |x| ≥ 0 ’

is understood to be an abbreviation for the more correct sentence:

‘ For all x ∈ R, |x| ≥ 0 ’
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the words
‘for all’
are sometimes
omitted

Even more annoying—the words ‘for all’ are often omitted, in certain types
of situations, if they are understood from context! For example, the (true)
sentence

‘ 2x+ 1 = 0 ⇐⇒ x = −1

2
’

is really an abbreviation for the more correct (true) sentence:

‘ For all x ∈ R, (2x+ 1 = 0 ⇐⇒ x = −1

2
) ’

The connective ‘⇐⇒ ’ is defined via the truth table given below:

Note that the sentence ‘A ⇐⇒ B’ is true precisely when A and B have the
same truth values (either they are both true, or both false). Thus, the sentence

‘ For all x ∈ R, (2x+ 1 = 0 ⇐⇒ x = −1

2
) ’

is true because, no matter what real number is chosen, the sentences ‘2x+1 = 0’
and ‘x = − 1

2 ’ always have the same truth values. Observe that this is in perfect
agreement with earlier discussions of mathematical equivalence.

EXERCISE 5 How might a mathematician abbreviate the following (true) sentences, if ap-
propriate information is understood from context?

♣ 1. For all x ∈ R and y ∈ R, x+ y = y + x

♣ 2. For all x ∈ R, x = 2 ⇐⇒ 3x = 6

♣ 3. For all sets A and B, A ⊂ A ∪B
♣ 4. For all statements P and Q,

(
(P ⇒ Q) ⇐⇒ (not Q⇒ not P )

)
(A statement is merely a sentence that is either true, or false, but not both.
For example, ‘1 = 2’ is a false statement; ‘2 = 1 + 1’ is a true statement;
and ‘x = 1’ is not a statement until a particular value of x is substituted
into the equation.)

QUICK QUIZ

sample questions

1. Give a precise statement of the Mean Value Theorem.

2. What does the word ‘mean’ in the Mean Value Theorem refer to?

3. Let f(x) = x3 and [a, b] = [1, 3]. Find the number c that is guaranteed by
the Mean Value Theorem. Make a sketch that illustrates your work.

4. Suppose that f is differentiable on (a, b), but there is no c ∈ (a, b) with

f ′(c) = f(b)−f(a)
b−a . What can be said about the function f ?

5. Suppose that f is continuous on [a, b], but there is no c ∈ (a, b) with f ′(c)
equal to the average rate of change of f over [a, b]. What (if anything) can
be said about the function f ?

KEYWORDS

for this section

The Mean Value Theorem (MVT), motivation for the name, using the MVT to
bound function values, some consequences of the MVT, the mathematical phrase
‘for all’, truth table for A ⇐⇒ B.



272 copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org

END-OF-SECTION
EXERCISES

These exercises review many of the ideas in Chapter 4.

1. What information does the limit lim
h→0

f(x+ h)− f(x)

h
give (when it ex-

ists)? Answer in English.

2. What information does the limit lim
y→x

f(y)− f(x)

y − x
give (when it exists)?

Answer in English.

3. Suppose that, for a given function f , it is known that f ′(2) = 4 . What
does this tell us about the function f ? Sketch the graphs of two different
functions satisfying this requirement.

4. Suppose that, for a given function f , it is known that f(2) = 1 and f ′(2) =
−1. Sketch the graphs of two different functions satisfying this requirement.

5. Use the definition of derivative to find f ′(x) if f(x) = −x2.

6. Use the definition of derivative to find f ′′(x) if f ′(x) = 3x.

7. Sketch the graph of a function f that is continuous at 3, but not differen-
tiable at 3 .

8. Is it possible to sketch the graph of a function that is differentiable at 3,
but not continuous at 3 ? Why or why not?

9. Differentiate f(x) = xe2x ln(2− x). Use any appropriate tools. Then, find:
D(f), D(f ′), the equation of the tangent line when x = 0 .

10. Let f(x) = x2 and g(x) = 1
x . Find d

dxf(g(x)) in two different ways (using
the Chain Rule, and NOT using the Chain Rule).



NAME (1 pt)
SAMPLE TEST, worth 100 points, Chapter 4

Show all work that leads to your answers. Good luck!

1.
(14 pts)

TRUE or FALSE. (Circle the correct response.)

T F If f is continuous at x, then f is differentiable at x.

T F R− (1, 2] = (−∞, 1] ∪ (2,∞)

T F The Chain Rule tells us how to differentiate composite functions.

T F Let K and n denote positive integers, and let P (n) denote some statement
about n. Suppose that P (1) is true. Also suppose that if P (K) is true, then
P (K + 1) must be true. Then P (1007) is true.

T F
∑3

i=1 i
2i = 1 + 24 + 36

T F 72 · 71 · . . . · 49 = 72!
48!

T F For all functions f and g, if f and g are differentiable at x, and g′(x) 6= 0, then
d
dx ( f(x)

g(x) ) = f ′(x)
g′(x) .

2.
(8 pts)

Use the DEFINITION of derivative to find f ′(x) if f(x) = x2−1. Be sure to write down
complete mathematical sentences. I’ll get you started:

f ′(x) = lim
h→0

3.
(5 pts)

Use Pascal’s triangle to expand (a + b)4.

273
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4.
(28 pts)

Differentiate the following functions. Use any appropriate tools. Be sure to write com-
plete and correct mathematical sentences.

(7 pts) f(x) =
√
2√
x

(7 pts) y = xe2x−1

(7 pts) g(t) = ln t
3√t2−1

(7 pts) y = (x + 1)11(ex)(x3) (A ‘generalized product rule’ may be helpful here.)

5.
(10 pts)

Sketch the graph of a function f satisfying each set of requirements:

(5 pts) f is continuous on [0, 2], f(0) = 1, f(2) = −1, f is not differentiable at x = 1

(5 pts) D(f) = [1, 2], f(1) = −1, the average rate of change of f on [1, 2] is 4, f is not
linear on [1, 2]
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6.
(10 pts)

(3 pts) Find the slope of the tangent line to the graph of f(x) = x3 at x = 1 .

(4 pts) Find the EQUATION of the tangent line to the graph of f(x) = x3 at x = 1 .

(3 pts) Find all points (x, y) on the graph of f(x) = x3 where the tangent line has
slope 12 .

7.
(4 pts)

(2 pts) Give the PRIME notation for each of the following:

• the second derivative of f

• the second derivative of f , evaluated at 2

(2 pts) Give the LEIBNITZ notation for each of the following. Assume that y is a
function of x.

• the first derivative of y

• the second derivative of y, evaluated at 0

8.
(5 pts)

Suppose that f , g and h are differentiable everywhere. Then:

d

dx
f(g(h(x))) =

9.
(8 pts)

Give a precise statement of the Mean Value Theorem, and make a sketch that illustrates
what this theorem is saying.

10.
(7 pts)

(Optional) Differentiate f(x) = x2x.
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CHAPTER 5

USING THE INFORMATION
GIVEN BY THE DERIVATIVE

In this chapter, the information that can be gleaned
from the first and second derivatives of a function is
studied. Such information is extremely useful in locat-
ing extreme values (maxima or minima) and in graph-
ing functions.
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5.1 Increasing and Decreasing Functions

increasing and
decreasing functions;

roughly

Roughly, a function f is increasing if its graph moves UP, traveling from left to
right; and is decreasing if its graph moves DOWN, traveling from left to right.

The precise definitions follow.

DEFINITION

increasing and
decreasing functions

A function f is increasing on an interval I if and only if:

for all x1, x2 ∈ I, x1 < x2 =⇒ f(x1) < f(x2)

A function f is decreasing on an interval I if and only if:

for all x1, x2 ∈ I, x1 < x2 =⇒ f(x1) > f(x2)

EXAMPLE Problem: Identify the open intervals on which the function graphed below is
increasing and decreasing.

Solution:

f increases on (−2, 0) ∪ (5, 6) ∪ (7, 8)

f decreases on (0, 3) ∪ (3, 5)

f is neither increasing nor decreasing on (6, 7) ∪ (8,∞)

EXERCISE 1 ♣ Identify the open intervals on which the function graphed below is increas-
ing and decreasing. Be sure to write complete mathematical sentences.
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EXERCISE 2 Sketch the graphs of functions satisfying the following properties:

♣ 1. f increases on (1, 3), and f(x) < 0 ∀ x ∈ (1, 3)

♣ 2. f increases on (1, 3), f(2) = 0, and f(x) < −5 ∀ x ∈ (1, 1.5)

♣ 3. f increases on (1, 3), and is not differentiable at x = 2

♣ 4. f increases on (1, 3), decreases on (3, 5), and is differentiable at x = 3
What do you suspect that the number f ′(3) must be?

♣ 5. f increases on (1, 3), decreases on (3, 5), and is not differentiable at
x = 3

EXERCISE 3

nonincreasing,
nondecreasing functions

Sometimes it is important to know where a function doesn’t decrease. A function
doesn’t decrease if it either increases or stays the same, and functions satisfying
this property are called nondecreasing functions. Here’s a precise definition:

A function f is nondecreasing on an interval I if and only if:

for all x1, x2 ∈ I, x1 < x2 =⇒ f(x1) ≤ f(x2)

When you see the word ‘nondecrease’, think to yourself: ‘does not decrease’.

♣ 1. How should you read aloud ‘x1 < x2 =⇒ f(x1) ≤ f(x2) ’? What is

the hypothesis of this implication? What is the conclusion?

♣ 2. Let x1 = 1, x2 = 3, f(x1) = −1 and f(x2) = −0.5 . For these choices:

a Is the hypothesis of x1 < x2 =⇒ f(x1) ≤ f(x2) true or false?

b Is the conclusion of x1 < x2 =⇒ f(x1) ≤ f(x2) true or false?

c Is the sentence x1 < x2 =⇒ f(x1) ≤ f(x2) true or false?

♣ 3. Now let x1 = 1, x2 = 3, f(x1) = −0.5 and f(x2) = −1 . Answer the

same questions as in (2).

♣ 4. Let I = (0, 4), x1 = 1, x2 = 2, x3 = 3, f(1) = 1, f(2) = 2, f(3) = 1 .
Based on this information alone, can the truth of the sentence

for all x1, x2 ∈ I, x1 < x2 =⇒ f(x1) ≤ f(x2)

be decided? If so, is it true or false?

♣ 5. Repeat (4) with I = (0, 4), x1 = 1, x2 = 2, x3 = 3, f(1) = 1, f(2) = 2,

f(3) = 3 .

♣ 6. Sketch the graph of a function that is nondecreasing on the interval

(1, 3), but not increasing on (1, 3).

♣ 7. Sketch the graph of a function f that is increasing on (0, 1) and nonde-

creasing on (1, 2). Is f nondecreasing on (0, 2)? Justify your answer.

♣ 8. True or False: Every function that is increasing on I is nondecreasing
on I.

True or False: Every function that is nondecreasing on I is increasing on I.

♣ 9. Based on your experience with nondecreasing functions, write down a

precise definition of a nonincreasing function on an interval I.
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getting increasing/
decreasing info
from the derivative

If f is differentiable on (a, b), then for any c ∈ (a, b), the number f ′(c) exists
and tells us how fast the function values f(x) are changing with respect to x
at the point (c, f(c)). It seems plausible that this derivative information could
be used to determine where f is increasing or decreasing: intuitively, where
the slopes of the tangent lines are positive, the graph should be travelling UP
(increasing), and where the slopes are negative, the graph should be travelling
DOWN (decreasing).

It is indeed the case that increasing/decreasing information can be obtained
from the sign of the derivative. The proof of this fact is a classic application
of the Mean Value Theorem: using information about f ′ to glean information
about f !

THEOREM

increasing,
decreasing info
from f ′

Suppose that f is differentiable on (a, b).

If f ′(x) > 0 for all x ∈ (a, b), then f is increasing on (a, b).

If f ′(x) < 0 for all x ∈ (a, b), then f is decreasing on (a, b).

At first glance, one might be concerned that the Mean Value Theorem does
not apply here, since the requirement about continuity at the endpoints of the
interval has not been met. Make sure you understand how this ‘problem’ is
circumvented in the following proof.
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PARTIAL
PROOF

Proof. Let f be differentiable on (a, b) and suppose that f ′(x) > 0 ∀ x ∈ (a, b).
Choose any x1, x2 in (a, b) with x1 < x2 (so that x2 − x1 > 0). Observe that
x1 cannot be a, since a /∈ (a, b). Similarly, x2 cannot be b.

Since f is differentiable at x1 and x2 (by hypothesis), f must also be continuous
at x1 and x2. (♣Why?) Thus, f is not only differentiable on the open interval
(x1, x2), but also continuous on the closed interval [x1, x2]. Thus, the Mean
Value Theorem guarantees existence of a number c in (x1, x2) for which:

f ′(c) =
f(x2)− f(x1)

x2 − x1

But since c ∈ (a, b) and f ′(x) > 0 ∀ x ∈ (a, b), we have f ′(c) > 0. Thus:

f(x2)− f(x1)

x2 − x1
> 0

Multiplying both sides of this inequality by the positive number x2 − x1 yields
the equivalent inequality

f(x2)− f(x1) > 0 ,

that is, f(x2) > f(x1). It has been shown that whenever x1, x2 ∈ I satisfy
x1 < x2, it is also true that f(x1) < f(x2). So, f is increasing on I.

The remaining case is left as an exercise.

EXERCISE 4

proof of
the remaining case

♣ Prove the following result:

If f is differentiable on (a, b) and f ′(x) < 0 for all x ∈ (a, b), then f is
decreasing on (a, b).

Use the previous proof as a guide, and make appropriate changes. Be sure
to write complete mathematical sentences.

shorter forms
of the proof

More advanced students of mathematics would condense the proof a bit. Here’s
what a shorter proof might look like:

Proof. Let f be differentiable on (a, b) with f ′(x) > 0 ∀ x ∈ (a, b). Choose any
x1, x2 ∈ (a, b) with x1 < x2. Since f is differentiable on (x1, x2) and continuous
on [x1, x2], the MVT guarantees existence of a number c ∈ (x1, x2) for which:

f ′(c) =
f(x2)− f(x1)

x2 − x1

But f ′(c) > 0 yields the desired conclusion that x1 < x2 =⇒ f(x1) < f(x2) .

EXERCISE 5

write a
shorter proof

♣ Prove that if f is differentiable on (a, b) and f ′(x) ≥ 0 for all x ∈ (a, b), then
f is nondecreasing on (a, b). Use the previous ‘shorter proof’ as a guide,
and make appropriate changes. Be sure to write complete mathematical
sentences.

shortest proof A real expert would merely say the following:

Proof. The proof is a direct consequence of the Mean Value Theorem.
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EXAMPLE Problem: Consider the function:

P (x) = 2x3 + 3x2 − 12x

Find the open intervals on which P increases; decreases.

First Solution: Differentiation yields:

P ′(x) = 6x2 + 6x− 12

= 6(x2 + x− 2)

= 6(x− 1)(x + 2)

Where is P ′(x) positive? Negative? Recall that a product ab of real numbers
is positive in two situations:

ab > 0 ⇐⇒ (a > 0 and b > 0) or (a < 0 and b < 0)

EXERCISE 6

investigating
ab > 0

♣ 1. What are the two situations for which ab is positive? Answer in English.

Remember that the symbol ‘⇐⇒ ’ in the sentence

ab > 0 ⇐⇒ (a > 0 and b > 0) or (a < 0 and b < 0)

tells us that the ‘smaller’ sentences being compared always have the same truth
values. If one is true, so is the other; if one is false, so is the other.

♣ 2. If a = 1 and b = 2, is the sentence ‘ab > 0’ true or false? How about

the sentence ‘(a > 0 and b > 0) or (a < 0 and b < 0) ’?

♣ 3. Repeat (2), taking a = 1 and b = −2 .

Returning to the example, we now investigate where P ′(x) is positive:

{x |P ′(x) > 0} = {x |x− 1 > 0 and x + 2 > 0} ∪ {x |x− 1 < 0 and x + 2 < 0}
= {x |x > 1 and x > −2} ∪ {x |x < 1 and x < −2}
= {x |x > 1} ∪ {x |x < −2}
= (1,∞) ∪ (−∞,−2)

Thus, P ′(x) is positive on (−∞,−2)∪ (1,∞), so P increases on these intervals.

EXERCISE 7 ♣ 1. What happened to the number 6 that appears in the formula for P ′(x)?

♣ 2. One line in the previous display used the fact that:

x > 1 and x > −2 ⇐⇒ x > 1

Where was this fact used? Convince yourself that it is indeed true.

EXERCISE 8 ♣ Now use the fact that

ab < 0 ⇐⇒ (a < 0 and b > 0) or (a > 0 and b < 0)

to find the open intervals on which P (x) = 2x3 + 3x2 − 12x decreases. Be
sure to write complete mathematical sentences.
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a better approach There is a much easier approach to the previous problem, that exploits the con-
tinuity of P ′. The places where a continuous function is positive and negative
can be easily determined, merely by finding out where the function is zero, and
then testing some points in between! This technique is discussed next.

a useful consequence
of the Intermediate
Value Theorem

If a function f is continuous on an interval and takes on both positive and
negative values on this interval, then it must also take on the value 0. This fact
is an immediate consequence of the Intermediate Value Theorem. (♣ Why?)

So suppose that f is continuous on I, and consider the implication:

IF f takes on both positive and negative values on I,
THEN f takes on the value 0 on I.

The contrapositive of this implication is:

IF f is nonzero on I,
THEN f is either positive or negative on I.

Since an implication is equivalent to its contrapositive, it has been shown that
if a function is continuous and nonzero on an interval, then it must be either
positive or negative on this interval.

EXERCISE 9 ♣ 1. Convince yourself that:

not(f takes on the value 0 on I) ⇐⇒ f is nonzero on I

♣ 2. Convince yourself that:

not(f takes on both positive and negative values on I)

⇐⇒ f is either positive or negative on I
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finding out
where an
arbitrary function
is positive
and negative;

the ‘number line’
approach

Now, to find out where an arbitrary (not necessarily continuous) function is
positive or negative, proceed as follows:

• Find all the discontinuities; mark these on a number line.

• Find all the places where the function is zero; mark these on the number

line.

• The function must be continuous and nonzero on every subinterval. So, it

must be either positive or negative on these subintervals!

• Choose a test point in each subinterval to determine the sign (+ or −) of

the function there.

For lack of a better name, this will be called the ‘number line’ approach.

The ‘number line’ approach is used next to find where the function P (x) =
20x2 + 8x− 1 is positive and negative.

EXAMPLE

using the
‘number line’
approach

Problem: Use the ‘number line approach’ to find where P (x) = 20x2 + 8x − 1
is positive and negative.

Solution: The function P is continuous everywhere. To determine where it is
zero, either use the quadratic formula, or factor:

P (x) = (10x− 1)(2x + 1)

Then:

P (x) = 0 ⇐⇒ (10x− 1)(2x + 1) = 0

⇐⇒ 10x− 1 = 0 or 2x + 1 = 0

⇐⇒ x =
1

10
or x = −1

2

Mark these zeroes on a number line. It is nice to label the number line as ‘SIGN
OF P (x)’.

There are three subintervals formed; on each, P is continuous and nonzero. A
test point must be chosen from each subinterval to determine the sign of P (x)
there. Choose the simplest test point to work with.

When x = −1 : P (−1) = (10(−1)− 1)(2(−1) + 1) = (−11)(−1) > 0

When x = 0 : P (0) = (10(0)− 1)(2(0) + 1) = (−1)(1) < 0

When x = 1 : P (1) = (10(1)− 1)(2(1) + 1) = (9)(3) > 0

Note that, in all three cases, it was not necessary to determine the exact function
values. Our only interest is the SIGN of the result.

In conclusion, P (x) is positive on (−∞,− 1
2 )∪( 1

10 ,∞) and negative on (− 1
2 ,

1
10 ).

using the ‘number line’
approach to determine
where
a function increases,
decreases.

To simplify the problem of determining where a function is increasing and
decreasing, just apply the ‘number line’ approach to the first derivative of the
function, as in the next example.
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EXAMPLE Problem: Consider the function from an earlier example:

P (x) = 2x3 + 3x2 − 12x

Find the open intervals on which P increases; decreases.

Solution: The earlier example showed that P has derivative:

P ′(x) = 6(x− 1)(x + 2)

This derivative P ′ is continuous everywhere; it is zero at x = 1 and x = −2.
Plot these points on a number line, as shown below. It is nice to label the
number line as ‘SIGN OF P ′(x)’.

There are three subintervals formed, and a test point must be chosen from each.

When x = −3 : P ′(−3) = 6(−3− 1)(−3 + 2) = 6(−4)(−1) > 0

When x = 0 : P ′(0) = 6(0− 1)(0 + 2) = 6(−1)(2) < 0

When x = 2 : P ′(2) = 6(2− 1)(2 + 2) = 6(1)(4) > 0

Thus, P ′(x) is positive on (−∞,−2) ∪ (1,∞) and negative on (−2, 1).

Thus, P increases on (−∞,−2) ∪ (1,∞) and decreases on (−2, 1). This is (of
course) in agreement with earlier results.

The graphs of P and P ′ are shown below.

The next problem is written in a very abbreviated form. Feel free to use this
form when working the End-Of-Section exercises.
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EXAMPLE

the ‘number line’
approach with a
discontinuous function;

abbreviated form
of solution

Problem: Find the open intervals on which the function f(x) = x2

x−1 increases
and decreases.

Solution:

f ′(x) =
(x− 1)(2x)− x2(1)

(x− 1)2
=

2x2 − 2x− x2

(x− 1)2
=

x2 − 2x

(x− 1)2
=

x(x− 2)

(x− 1)2

Discontinuity: at x = 1

Zeroes of f ′:

f ′(x) = 0 ⇐⇒ x(x− 2) = 0

⇐⇒ x = 0 or x = 2

Test Points:

−1 : (−1)(−1−2)
+ = (−)(−)

+ > 0

1
2 :

( 1
2 )(

1
2−2)
+ = (+)(−)

+ < 0

3
2 :

( 3
2 )(

3
2−2)
+ = (+)(−)

+ < 0

3 : 3(3−2)
+ = (+)(+)

+ > 0

Conclusion: f increases on (−∞, 0) ∪ (2,∞) and decreases on (0, 1) ∪ (1, 2).

The graphs of f and f ′ are shown below.

QUICK QUIZ
sample questions

♣ 1. Give a precise definition of what it means for a function f to increase
on an interval I.

♣ 2. Find the open interval(s) on which f(x) = x(x − 1) is positive and

negative. Use the ‘number line’ approach.

♣ 3. True or False: If f is nonzero and continuous on an interval I, then f is

either positive or negative on I.

♣ 4. True or False: If f ′(x) > 0 for all x in an interval I, then f increases on
I.

KEYWORDS

for this section

Increasing and decreasing functions—precise definitions, nonincreasing and non-
decreasing functions, getting inc/dec information from the derivative, using the
Intermediate Value Theorem to decide where a function is positive and negative.



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 285

END-OF-SECTION
EXERCISES

Find the open intervals on which the functions are positive and negative. Use
any appropriate method. In many cases, the ‘number line’ approach may be
easiest.

1. P (x) = x2 + x− 2 2. P (x) = x2 − x− 2

3. P (x) = 2x2 − 4x− 6 4. P (x) = 3x2 + 6x− 9

5. P (x) = 12x2 − 13x + 3 6. P (x) = 14x2 + 3x− 2

7. P (x) = x3 + 2x2 + x 8. P (x) = x3 − 2x2 + x

9 P (x) = x3 + 4x2 − x− 4 Hint: x = 1 is a zero of P

10 P (x) = x3 − 13x− 12 Hint: x = −1 is a zero of P

11. f(x) = x2ex − x2 12. f(x) = exx2 − ex

13 f(x) = ln(2x − 1) Hint: D(f) = ( 1
2 ,∞), so the ‘number line’ approach is

applied to a ‘partial’ number line. Also: ln(2x− 1) = 0 ⇐⇒ 2x− 1 = 1

14 f(x) = ln(1 − 2x) Hint: D(f) = (−∞, 1
2 ), and ln(1 − 2x) = 0 ⇐⇒

1− 2x = 1

Find the open intervals on which the functions increase and decrease. Use any
appropriate method. In many cases, the ‘number line’ approach applied to the
first derivative may be easiest.

15. f(x) = 2x3 + 3x2 − 12x + 1 16. f(x) = x3 − 3x2 − 9x + 4

17. f(x) = xex 18. f(x) = x2ex

19. f(x) = x lnx 20. f(x) = x2 lnx

21 (formula for finding 1 + 2 + · · · + n) The picture below gives a geometric
proof that:

1 + 2 + · · ·+ n =
n(n + 1)

2

a. Explain how the formula ‘comes from’ the picture.

b. Find: 1 + 2 + · · ·+ 67

c. Find: S := 64 + 65 + · · · + 108 Hint: S = (1 + 2 + · · · + 108) − (1 +
2 + · · ·+ 63)

22 (refer to (21)) It was seen in the previous problem that the function

S : {1, 2, 3, . . . } → R defined by S(n) = n(n+1)
2 gives as its outputs the sum

of the first n positive integers.

As n increases, so does S(n). (♣ Why?) To check this, first define a

function f : R → R by f(x) = x(x+1)
2 , (the ‘analogue’ of S that is defined

for all real numbers, not only the positive integers).

a. If it can be shown that f increases on an interval that contains the
positive integers, then S must also be increasing. Convince yourself
that this is true.

b. Show that f increases on (− 1
2 ,∞). Conclude that S is an increasing

function.
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END-OF-SECTION
EXERCISES

(continued)

23 For all real numbers x except 1, and for all positive integers n :

1 + x + x2 + · · ·+ xn =
xn+1 − 1

x− 1

Here is how the formula is derived:

a. Define: S := 1 + x + · · ·+ xn

Find: x · S
b. Show that: xS − S = xn+1 − 1

Conclude that the formula for S has the desired form.

c. Use the formula for S to find 1+2+22+23+24. Verify that your result
is correct, by performing the indicated additions and exponentiations.

d. Use the formula for S to find 26 + 27 + 28 + 29 + 210. Again, verify
that your result is correct.

24 (refer to (23)) As in the previous example, define:

S(x) = 1 + x + x2 + · · ·+ xn

a. For a fixed value of n and for positive x, one would suspect that as x
increases, so does S(x). Comment on why this is true.

b. Let n = 2 in the formula for S(x). Determine where S increases and
decreases. Think about your result.

c. Let n = 3 in the formula for S(x). Determine where S increases and
decreases. Think about your result.

25 (Probability). This problem shows a situation in probability that gives rise
to sums of the form 1 + x + · · ·+ xn.

On a fair dice (6 sides), the probability of getting at least one ‘2’ in the
first n throws is given by:

P (n) =
1

6
[1 +

5

6
+ (

5

6
)2 + · · ·+ (

5

6
)n−1]

To get a feeling for where this formula comes from, let’s check a couple cases:
a. Let n = 1. Discuss why the probability of getting a ‘2’ on one throw

is 1
6 . Verify that the formula is correct in this case.

b. Let n = 2. How can we get at least one ‘2’ in two throws? We
could get a 2 on the first throw; the probability of this is 1

6 . Or, we
could get a number other than ‘2’ on the first throw, and a ‘2’ on the
second throw; the probability of this is (5

6 )( 1
6 ). The total probability

is 1
6 + ( 5

6 )( 1
6 ). Verify that the formula is correct in this case.

c. Conjecture that as n increases, so should P (n). Why? Find P (1),
P (2) and P (3). Are these results in agreement with your conjecture?

d. Prove that, for all positive integers n, P (n) < P (n + 1). Thus, P
is indeed an increasing function. Hint: Compare the formulas for
P (n) and P (n + 1). What do they differ by? Is the difference always
positive?



5.2 Local Maxima And Minima
Critical Points

Introduction Often, one is interested in maximizing or minimizing functions; say, maximizing
profits or minimizing costs. In the section on the Max-Min Theorem, maximum
and minimum values of a function on an interval were discussed. Now, this idea
is extended so that we can talk about local maximum and minimum values for
a function.

local maximum;
local minimum;

informal discussion

A number f(c) is called a local maximum for a function f , if, locally, it’s the
highest value. That is, for all x sufficiently close to c, it must be that f(x) ≤
f(c). The sketches below illustrate some of the ways that this can happen.

Analogously, a number f(c) is called a local minimum for a function f , if, locally,
it’s the lowest value.

EXERCISE 1 ♣ Make four sketches that illustrate different ways a function f may have a
local minimum.

Here are the precise definitions of local maximum and local minimum:

DEFINITION

local maximum,
local minimum,
local extreme values

Let f be a function and let c ∈ D(f).

The number f(c) is a local maximum for f if and only if there exists δ > 0 such
that whenever |x− c| < δ and x ∈ D(f), then f(x) ≤ f(c).

The number f(c) is a local minimum for f if and only if there exists δ > 0 such
that whenever |x− c| < δ and x ∈ D(f), then f(x) ≥ f(c).

When such maximum or minimum values occur, they are called local extreme
values of f .

a slight
abuse of notation

Strictly speaking, the number f(c) is the local extreme value for f . However, one
often abuses notation and speaks of, say, the local maximum (point) (c, f(c)).
This is because one is not only interested in the local maximum value f(c), but
also the place c where it occurs.

EXERCISE 2 Sketch the graph of a function satisfying:

♣ 1. f has a local maximum at x = 2, f(2) = 4, f is not differentiable at
x = 2

♣ 2. D(f) = [1, 2], f has a local minimum at x = 1, f(2) < f(1), the
maximum value of f on [1, 2] is 5

♣ 3. f has a local maximum at x = 1, f(1) = 2, {x | f(x) ∈ (2, 3)} = ∅, f
has a local minimum at x = 2

EXERCISE 3 ♣ Suppose a function f has the following property: f(2) = 3, and arbitrarily
close to x = 2 there are inputs whose function values are greater than 3. Can f
have a local maximum at x = 2? Why or why not? How about a local minimum
at x = 2?

287
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a function may have
many local extrema

The plural of maximum is maxima. The plural of minimum is minima. The
singular of extrema is extremum.

Observe that a function may have many local extrema, as illustrated below.

local versus
global extrema

Occasionally, one is interested in the highest value that a function f attains on
some specified set (like the highest value f attains on an interval; or the highest
value f attains over its entire domain). Such a highest value (if it exists) is
called a global maximum.

Similarly, one can speak of a global minimum.

Right now, we won’t concern ourselves with global extrema. However, later on
we’ll return to this idea. For the moment, just be aware that the adjective local
is used to distinguish the discussion from the global case.

finding local
maxima and minima

It appears, from the examples put forth thus far, that local maxima and minima
seem to occur at certain types of places:

(a) places where f ′(c) = 0

(b) endpoints of a domain

(c) places where the derivative does not exist

Indeed, these are the ONLY types of places where local extreme values can occur.
This fact is proven in the next few paragraphs. Refer to the flow chart at left
as you read through the following argument.
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proof that
local extreme values
can only occur
at certain types
of places

Let c be in the domain of f .

Either c is an endpoint of the domain of f , or not. If it is, then there may be
a local extreme value at c, as in situation (b) above.

Now suppose that c is not an endpoint. Either f is differentiable at c or not.
If not, then there may be a local extreme value at c, as in case (c) above.

Now suppose f is differentiable at c. Then either f ′(c) 6= 0, or f ′(c) = 0. If
f ′(c) = 0, then there may be a local extreme value at c, as in case (a) above.

IF:
c ∈ D(f),
c is not an endpoint,
f is differentiable at c,
f ′(c) 6= 0;
then f(c) is NOT
a local extreme value
for f

All that is needed to complete the proof is to show the following:

IF:

• c ∈ D(f),

• c is not an endpoint of the domain of f ,

• f is differentiable at c, and

• f ′(c) 6= 0,

THEN the number f(c) is not a local extreme value for f .

So assume all these things are true. Since f ′(c) 6= 0, it must be that either
f ′(c) < 0 or f ′(c) > 0. Suppose for the moment that f ′(c) > 0. (You’ll
investigate the case f ′(c) < 0 in the exercises.) That is:

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
> 0

This means that we can get the values f(c+h)−f(c)
h as close to the number f ′(c)

as desired, merely by restricting ourselves to values of h sufficiently close to 0.

So choose δ so small that whenever |h− 0| < δ, one has:

f(c+ h)− f(c)

h
> 0 (*)

By hypothesis, c is not an endpoint of the domain of f , so the function is defined
both to the right and left of c. Now, whenever h > 0 and |h| < δ, multiplying
both sides of (*) by the positive number h yields the equivalent inequality

f(c+ h)− f(c) > 0 ,

so that f(c + h) > f(c). That is, arbitrarily close to (c, f(c)), on the right, is
another point (c + h, f(c + h)) with a greater function value, f(c + h) > f(c).
Thus, f(c) is NOT a local maximum.

Similarly, whenever h < 0 and |h| < δ, multiplying both sides of (*) by the
negative number h yields the equivalent inequality

f(c+ h)− f(c) < 0 ,

so that f(c + h) < f(c). That is, arbitrarily close to (c, f(c)), on the left, is
another point (c+ h, f(c+ h)) with a lesser function value. Thus, f(c) is NOT
a local minimum, either.

Thus, f does not have a local extreme value at x = c .
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EXERCISE 4 ♣ Prove the following:

If c ∈ D(f), c is not an endpoint of the domain of f , f is differentiable at c,
and f ′(c) < 0, then the number f(c) is NOT a local extreme value for f .

What has
been learned?

CRITICAL POINTS;

candidates for places
where local extrema
occur

Summarizing:

IF a function f has a local extremum at the point (c, f(c)), THEN

• c is an endpoint of the domain of f ; or

• f is not differentiable at c; or

• f ′(c) = 0

Any point that satisfies at least one of these three conditions is called a CRITI-
CAL POINT. The critical points are the CANDIDATES for places where local
extrema can occur.

EXERCISE 5

more practice
with implications

The sentences P ⇒ Q and Q⇒ P are not equivalent, as the truth table below
shows.

♣ 1. What truth values of P and Q make P ⇒ Q true, but Q⇒ P false?

♣ 2. What truth values of P and Q make Q⇒ P true, but P ⇒ Q false?

♣ 3. What truth values of P and Q make both P ⇒ Q and Q⇒ P true?
In particular, even if it is known that P ⇒ Q is true, it is NOT possible to
conclude that Q⇒ P must also be true.

♣ 4. Argue that the implication x = 2 =⇒ x2 = 4 is true. That is, show
that for all values of x, the sentence is true.

♣ 5. Argue that the implication x2 = 4 =⇒ x = 2 is false. That is, show
that there is at least one value of x for which the sentence is false.

CAUTION:

a critical point
MAY or MAY NOT
be a place where a
local extreme value
occurs

It has been proven that the following sentence is always true:

IF f has a local extreme value at the point (c, f(c)),
THEN the point (c, f(c)) is a critical point.

The previous exercise points out that this knowledge DOES NOT determine
the truth of the sentence:

IF the point (c, f(c)) is a critical point,
THEN f has a local extreme value at (c, f(c)).

Indeed, the sketches below indicate that there are critical points that do not
correspond to local extreme values.
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EXAMPLE Problem: Determine if the following sentences are TRUE or FALSE. If false,
make a sketch showing that it is false.

• If f has a local minimum at x = 2, then the point (2, f(2)) is a critical
point for f .

Solution: True! Any local extrema MUST OCCUR at a critical point.

• If f ′(c) = 0, then f must have a local maximum or minimum at c.

Solution: False! The function f(x) = x3 satisfies f ′(0) = 0. However, f does
not have a local extremum at x = 0 .

EXERCISE 6 Determine if the following sentences are TRUE or FALSE. If false, make a
sketch showing that it is false.

♣ 1. If f has a local maximum at x = 4, then the point (4, f(4)) must be a
critical point for f .

♣ 2. If f has a local maximum at x = 4, then it must be that f ′(4) = 0 .

♣ 3. If D(f ′) = R and f has a local maximum at x = 4, then it must be that
f ′(4) = 0 .

♣ 4. If f ′(1) = 0, then (1, f(1)) is a local extreme point for f .

strategy for
finding
local extrema

Given a function f , here is a strategy for finding all the local extrema of f :

First, find all places in D(f) where the derivative is zero, where the derivative
doesn’t exist, and all the endpoints of the domain of f . That is, find all the
critical points for f .

Then, investigate each of these critical points to see if it is or is not a local
extremum for f .
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EXAMPLE Problem: Find all local extreme values for the function f : [0, 5] → R, f(x) =
(x− 2)2.

Solution:

• Note that D(f) = [0, 5]. All critical points must come from the domain of
f .

• The endpoints of D(f) are critical points. Calculate the function values at
the endpoints:

f(0) = (0− 2)2 = 4

f(5) = (5− 2)2 = 9

Thus, (0, 4) and (5, 9) are critical points.

• Find f ′.
f ′(x) = 2(x− 2)(1) = 2(x− 2) .

• Find all places where f ′(x) = 0. Be sure to write a complete mathematical
sentence!

f ′(x) = 0 ⇐⇒ 2(x− 2) = 0

⇐⇒ x = 2

Note that f(2) = (2− 2)2 = 0. So, (2, 0) is a critical point.

• There are no places where f ′(c) does not exist.

It is convenient to summarize all this information by constructing a table:

Now, IF f has any local extrema, they must occur at these three points.

Indeed, a quick sketch of the graph of f is easy to get in this case: take the
graph of y = x2, and shift it two units to the right. Thus, we see that there are
local maxima at (0, 4) and (5, 9), and a local minimum at (2, 0).
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EXAMPLE Problem: Find all local extreme values for the function f : [1,∞) → R given
by:

f(x) =

{
x− 1 for x ∈ [1, 2]

− 1
8 (x2 − 6x) for x > 2

Observe that f is continuous at the point (2, 1). This is because

lim
x→2−

f(x) = lim
x→2−

x− 1 = 2− 1 = 1

and:

lim
x→2+

f(x) = lim
x→2+

−1

8
(x2 − 6x) = −1

8
(22 − 6 · 2) = 1

Clearly, f is differentiable everywhere, except possibly at the ‘patching point’
(2, 1), and:

f ′(x) =

{
1 for x ∈ [1, 2)

− 1
4 (x− 3) for x > 2

Is f differentiable at (2, 1)? It is possible, in this case, to answer without
computing a difference quotient. We need only look at the formulas for f ′, and
think.

What is the ‘direction’ at (2, 1), coming in from the left? Here, the graph is a
line with slope 1, so the ‘direction’ coming in from the left is 1.

What is the ‘direction’ at (2, 1), coming in from the right? Arbitrarily close
to (2, 1), on the right, the tangent lines are given by the function − 1

4 (x − 3).

And as x approaches 2, this function approaches − 1
4 (2 − 3) = 1

4 . Thus, the

‘direction’ coming in from the right is 1
4 .

Since 1 6= 1
4 , f is not differentiable at the point (2, 1).

FF The precise justification for the argument above is really quite subtle. It uses the
continuity of f at and near c, the continuity of f ′ near c, and an interchange
of limit operations. However, it should be intuitive to students that this is
possible.

Finally:

f ′(x) = 0 ⇐⇒ −1

4
(x− 3) = 0

⇐⇒ x = 3

Note that f(3) = − 1
8 (32 − 6 · 3) = 9

8 . Since the graph of any function of the

form f(x) = ax2 + bx + c (for a 6= 0) is known to be a parabola, it is now
possible to make a quick sketch of the function.

If f has any local extrema, they must occur at the places listed below:

From the sketch, it is easy to see that (1, 0) is a local minimum, (2, 1) is not a
local extremum, and (3, 98 ) is a local maximum.
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EXERCISE 7 Find all local extrema of the following functions, by finding and checking all
the critical points. In each case, sketch the graph of the function.

♣ 1. f : [1,∞)→ R, f(x) = (x− 4)3

♣ 2. f : [−1, 4]→ R given by:

f(x) =

{ −x2 + 1 for x ∈ [−1, 1]

x− 1 for x ∈ (1, 4]

♣ 3. f : [−1, 4]→ R given by:

f(x) =

{ −x2 + 1 for x ∈ [−1, 1]

−x+ 1 for x ∈ (1, 4]

using information
from f ′ to help
determine
local extreme behavior

Given a critical point, it may be difficult to determine if it corresponds to a
local maximum, a local minimum, or neither, particularly when the graph of
the function is not easily available. In many cases, the information that f ′ gives
can be used to help investigate local extreme behavior at critical points.

To see this, let (c, f(c)) be a critical point. Suppose that f is continuous at c
and differentiable near c. If f increases to the left of c, and decreases to the
right of c, then f(c) must be a local maximum. That is, if f ′(x) > 0 to the left
of c, and f ′(x) < 0 to the right of c, then f(c) is a local maximum.

If f decreases to the left of c (f ′(x) < 0), and increases to the right of c
(f ′(x) > 0), then f(c) must be a local minimum.

If f increases both to the left and right of c, or if f decreases both to the left
and right of c, then f(c) is not a local extreme value.

These observations are the content of a test that is commonly called the First-
Derivative Test. It is stated precisely below.
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FIRST
DERIVATIVE
TEST

for examining
behavior at
critical points

Suppose that (c, f(c)) is a critical point for f , so that f may have a local
maximum or minimum at c.

Suppose that f is continuous at c. Also suppose that f is differentiable on
(c− δ1, c) ∪ (c, c+ δ2) for some positive numbers δ1 and δ2; that is, f is differ-
entiable on intervals immediately to the left and right of c.

• If f ′(x) > 0 on (c − δ1, c) and f ′(x) < 0 on (c, c + δ2), then (c, f(c)) is a
local maximum for f .

• If f ′(x) < 0 on (c − δ1, c) and f ′(x) > 0 on (c, c + δ2), then (c, f(c)) is a
local minimum for f .

• If f ′(x) has the same sign on both intervals (c− δ1, c) and (c, c+ δ2), then
(c, f(c)) is neither a local maximum or minimum for f .

f must be
continuous at c!

Note that if one takes away the hypothesis that f is continuous at c, then one
is no longer guaranteed the conclusion of the theorem. To see this, consider the
functions f sketched below. In both cases, f decreases to the left of c, and f
increases to the right of c. However, the point (c, f(c)) is NOT a local minimum
for the function f in either case.

EXERCISE 8 ♣ 1. Sketch a function f satisfying: f increases to the left of c, decreases to
the right of c, but (c, f(c)) is NOT a local maximum.

♣ 2. Sketch a function f satisfying: f increases to the left of c, decreases to
the right of c, f is not continuous at c, and (c, f(c)) IS a local maximum.

‘First-Derivative Tests’
at endpoints

Similar results can be stated for endpoints. For example, suppose c is an end-
point of the domain of f , f is continuous at c, and f ′(x) > 0 on some interval
to the right of c. Then, (c, f(c)) must be a local minimum for f .

EXERCISE 9 ♣ Precisely state a ‘First-Derivative Test’ that applies to each of the three
sketches shown below.
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EXAMPLE Problem: Reconsider an earlier example: Find all local extreme values for the
function f : [0, 5]→ R, f(x) = (x− 2)2

There are three critical points, and first-derivative tests can be used to investi-
gate each of these.

Since f ′(x) < 0 to the right of x = 0, (0, 4) is a local maximum.

Since f ′(x) > 0 to the left of x = 5, (5, 9) is a local maximum.

Since f ′(x) < 0 to the left of x = 2, and f ′(x) > 0 to the right of x = 2, (2, 0)
is a local minimum.

EXERCISE 10 ♣ Use first-derivative tests to investigate the critical points of an earlier exam-
ple: the function f : [1,∞)→ R given by

f(x) =

{
x− 1 for x ∈ [1, 2]

− 1
8 (x2 − 6x) for x > 2

EXAMPLE Problem: Find all local extreme values for the function f : [0, 1) ∪ (1, 9] → R
given by f(x) =

√
x

x−1 .

Solution:

• Note that D(f) = [0, 1) ∪ (1, 9]. All critical points must come from the
domain of f .

• The points (0, f(0)) = (0, 0) and (9, f(9)) = (9, 38 ) are critical points, be-
cause they are endpoints of the domain of f .

• Find f ′ :

f ′(x) =
(x− 1)( 1

2x
−1/2)−

√
x(1)

(x− 1)2

= . . . (simplify)

=
−(x+ 1)

2
√
x(x− 1)2

The function f is defined at x = 0, but f ′ is not defined at 0, because this
would produce division by 0. (Indeed, there is a vertical tangent line at
(0, 0).)

• Find all places where f ′(x) = 0 :

f ′(x) = 0 ⇐⇒ −(x+ 1) = 0

⇐⇒ x = −1

However, x = −1 is not in the domain of f .
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This information is summarized below:

To use first-derivative tests to investigate each critical point, the sign of f ′(x)
must be determined. To do this, locate all places where f ′(x) is zero and
discontinuous, and then use test points in each subinterval.

Conclude that (0, 0) is a local maximum, and (9, 38 ) is a local minimum.

Observe that it was NOT necessary to have the graph of f to determine all
local maxima and minima. Later on, we will see a graph of this function.

EXERCISE 11 ♣ 1. Find all local extreme values for the function f : [0, 1)∪ (1, 4)→ R given

by: f(x) =
ex

x− 1

♣ 2. Find all local extreme values for the function f : [0, 8] → R given by:
f(x) = 3

√
x+ x3

QUICK QUIZ

sample questions

1. Suppose that a function f has a local extremum at the point (c, f(c)). What
(if anything) can be said about the behavior of f at this point?

2. Suppose that (c, f(c)) is a critical point for f . Must this point be a local
maximum or a local minimum?

3. What is a ‘critical point’?

4. Suppose it is known that ‘A =⇒ B’ is true. Does this information alone
determine the truth of ‘B =⇒ A’?

5. Suppose that a function f : [a, b]→ R is differentiable. The sign of f ′(x) is
summarized below. Find all local extrema for f on [a, b].

KEYWORDS

for this section

Local maxima and minima, local extreme values, local versus global extrema,
critical points, strategy for finding local extrema, First Derivative Tests.
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END-OF-SECTION
EXERCISES

1. Find at least three sentences in this section that are implicit ‘for all’ sen-
tences. That is, the words ‘for all’ do not appear, but are assumed to be
there.

The problems below review concepts from sections 5.1 and 5.2.

♣ Classify each entry as an expression or a sentence.

♣ For any sentence, state whether it is TRUE or FALSE.

♣ All the implications are (either implicitly or explicitly) ‘for all’ sentences.
If an implication is FALSE, give a COUNTEREXAMPLE. That is, provide a
specific example where the hypothesis is TRUE, but the conclusion is FALSE.

2. If f increases on an interval I, then for all a, b ∈ I with a < b, f(a) < f(b)

3. If f decreases on an interval I, then for all a, b ∈ I with a > b, f(a) < f(b)

4. If g increases on an interval I, then for all x, y ∈ I, g(x) ≤ g(y)

5. If g decreases on an interval I, then for all x, y ∈ I with x < y, g(y) ≤ g(x)

6. If f(x) ≤ f(y) for all numbers x and y in an interval I with x < y, then f
is nondecreasing on I.

7. If g(a) ≥ g(b) for all numbers a and b in an interval I with a < b, then g is
nonincreasing on I.

8. If f if differentiable on (a, b) and f ′(x) > 0 for all x ∈ (a, b), then f is
increasing on (a, b).

9. For all functions f , if f is increasing on an interval (a, b), then f ′(x) > 0
on (a, b).

10. For all real numbers c and d :

cd > 0 ⇐⇒ (c > 0 and d > 0) or (c < 0) and d < 0)

11. For all real numbers c and d :

cd < 0 ⇐⇒ (c > 0 and d < 0) or (c < 0 and d > 0)

12. If f is continuous and nonzero on an interval I, then f is either positive or
negative on I.

13. If f is continuous, and takes on both positive and negative values on an
interval I, then f must also take on the value 0 on I.

14. If f has a local maximum at (1, f(1)), then the point (1, f(1)) is a critical
point.

15. If f has a local minimum at (2, f(2)), then f ′(2) = 0.

16. If (c, f(c)) is a critical point for f , then f has a local maximum or minimum
at (c, f(c)).

17. If D(f) = D(f ′) = R and (c, f(c)) is a critical point for f , then f ′(c) = 0.

18. If P ⇒ Q is true, then Q⇒ P is true.

19. If f is continuous at c, f ′(x) > 0 to the right of c, and f ′(x) < 0 to the left
of c, then the point (c, f(c)) is a local minimum for f .

20. If f : [1,∞)→ R is continuous, and has the property that f ′(x) < 0 for all
x ∈ (1, 98 ), then f has a local maximum at x = 1 .



5.3 The Second Derivative;
Inflection Points

the second derivative
function, f ′′

If a function f is sufficiently smooth, then we can differentiate once to get f ′,
and again to get f ′′. The function f ′′ is called the second derivative of f , and
is by far the most important higher-order derivative.

Recall that at x = c :

g′(c) gives the instantaneous rate of change of g(x) with respect to x

Taking g = f ′ :

(f ′)′(c) = f ′′(c) gives the instantaneous rate of change of f ′(x) with respect to x

Since the numbers f ′(x) give the slopes of the tangent lines to the graph of f ,
the function f ′′ tells how fast the slopes of the tangent lines to the graph of f
are changing.

concave up For example, if the slopes of the tangent lines are increasing, then the scenario
is the following:

Thus, when f ′′(x) > 0, the shape illustrated above (‘holding water’) is gener-
ated. Such a graph is said to be concave up. Observe that the more positive
f ′′(x) is, the more quickly the slopes of the tangent lines increase, and hence
the more rapidly the graph turns.

concave down Similarly, if the slopes of the tangent lines are decreasing, then the scenario is
the following:

Thus, when f ′′(x) < 0, the shape illustrated above (‘shedding water’) is gen-
erated. Such a graph is said to be concave down. Again note that the more
negative f ′′(x) is, the more quickly the slopes of the tangent lines decrease, and
hence the more rapidly the graph turns.

EXERCISE 1 Sketch graphs satisfying the following properties:

♣ 1. f(1) = f(3) = 2, f(2) = 3; the slopes of the tangent lines increase on
the interval (1, 2) and decrease on (2, 3); f is continuous at x = 2

♣ 2. f(x) < 0 on [1, 3]; the slopes of the tangent lines decrease on the interval
(1, 2) and increase on (2, 3)

The precise definitions of concave up and concave down on an interval follow.

299
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DEFINITION

concave up on I
concave down on I

Let I be an interval of real numbers.

If f ′′(x) > 0 for all x in I, then f is concave up on I.

If f ′′(x) < 0 for all x in I, then f is concave down on I.

a common convention
concerning
DEFINITIONS

Every definition is, either implicitly or explicitly, a statement of equivalence. For
this reason, there is a convention regarding definitions: they may be stated as
‘If . . . then . . . ’ sentences, when in actuality they are ‘if and only if’ sentences.

Without this convention, the previous definition would have to be written some-
thing like this:

DEFINITION

concave up on I
concave down on I

Let I be an interval of real numbers.

f is concave up on I if and only if, for all x ∈ I, f ′′(x) > 0.

f is concave down on I if and only if, for all x ∈ I, f ′′(x) < 0.

EXAMPLE

concavity of a line

Consider the linear function f(x) = ax+ b. As one moves from point to point,
the slopes of the tangent lines do not change at all. This information is reflected
in the second derivative:

f(x) = ax+ b =⇒ f ′(x) = a

=⇒ f ′′(x) = 0

Conversely, suppose a function g has the property that g′′(x) = 0. Then it must
be that g′(x) = a for some real number a. (♣ Why?) But then, g must be a
line with slope a, so that g(x) = ax+ b for some real number b .

The process of going from information about derivatives back to information
about the original function is called integration or antidifferentiation, and is
discussed in more detail in later sections.

NOTE about
the word:
‘Conversely’

Recall that the sentence A ⇒ B is called an implication. The new sentence
B ⇒ A is called the converse of the sentence A⇒ B.

It has been seen that the truth of A ⇒ B in no way influences the truth
of B ⇒ A. Each sentence must be investigated separately. If you have just
investigated the sentence A ⇒ B, and now want to investigate its converse,
B ⇒ A, it is common to say: Conversely, . . . . This prepares the reader for
the fact that you are about to investigate the converse.

EXERCISE 2 Sketch graphs satisfying the following properties:

♣ 1. f(1) = 1, f ′(3) = 1
2 , and f ′′(x) = 0 ∀ x ∈ [1, 5]. What must f(5) be?

♣ 2. f(3) = 4, f ′(3) = 2, f ′′(x) = 0 on (1, 5), f is continuous at x = 5, f is
defined but not continuous at x = 1

EXERCISE 3 Write down the converse of each of the following implications, using any correct
notation. Is the original implication true? What about its converse?

♣ 1. If x = 2, then x2 = 4

♣ 2. 1 = 2⇒ 1 + 1 = 2

♣ 3. If 1 = 2, then 2 = 3

♣ 4. Now, let A⇒ B be an implication. What is the converse of the converse?
What is the contrapositive of the converse? What is the converse of the
contrapositive?
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EXAMPLE

concavity of
the squaring function

Consider the function f(x) = x2. Here, f ′(x) = 2x and f ′′(x) = 2 . The second
derivative is constantly 2. The curve always ‘turns’ at exactly the same rate.
Thus, at every point on the graph of f , the slopes of the tangent lines are
changing twice as fast as the x value of the point is changing. Thus, when x
changes by 1, one should find that the slope of the tangent line changes by 2 .

For example, consider the point (0, f(0)) = (0, 0) on the graph of f . Here, the
tangent line has slope f ′(0) = 2 ·0 = 0 . Move one unit to the right, to the point
(1, f(1)) = (1, 1). Here, the tangent line has slope f ′(1) = 2 · 1 = 2 . When x
increased by 1, the slope of the tangent line increased by 2 !

Let’s investigate this fact in more generality. Let (x, f(x)) be any point on the
graph of f . Then, (x+1, f(x+1)) is the point with x value increased by 1 . The
slope of the tangent line at (x, f(x)) is f ′(x) = 2x. The slope of the tangent
line at (x+ 1, f(x+ 1)) is:

f ′(x+ 1) = 2(x+ 1)

= 2x+ 2

= f ′(x) + 2

Thus, when x increases by 1, the slope of the tangent line increases by 2. That
is, when ∆x = 1, we have:

∆f ′ = f ′(x+ 1)− f ′(x)

= (f ′(x) + 2)− f ′(x)

= 2

EXERCISE 4 Consider the function f(x) = 2x2.

♣ 1. When x changes by an amount ∆x, how much do you expect the slopes
of the tangent lines to change by?

♣ 2. Find the slope of the tangent line at the point (x+ ∆x, f(x+ ∆x) and
compare it to the slope of the tangent line at (x, f(x)).

♣ 3. What is ∆f ′ ?
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EXAMPLE

concavity of
the cubing function

Now consider the function f(x) = x3. Here, f ′(x) = 3x2 and f ′′(x) = 6x. In
this case, the rate of change of the slopes of the tangent lines depends on what
point we are at. The larger the magnitude of x, the more rapidly the curve
‘turns’.

For example, when x = 1, we have f ′′(1) = 6 · 1 = 6 . Thus, when x changes
by some small amount, we expect the slope of the tangent line to change by
approximately six times this amount. Look at the chart below:

Observe that the change in f ′ is approximately six times the change in x, but
not exactly. Why? The answer is quite simple: f ′′(1) gives us an instantaneous
rate of change. However, as soon as we move away from the point (1, 1), the
rate of change is no longer exactly 6 . Indeed, over the interval [1, 1.1], f ′′ is
actually greater than 6 ; f ′′ increases from 6 (at x = 1) to 6.6 (at x = 1.1).
This is precisely why our calculation was a bit high.

EXERCISE 5 Consider the function f(x) = x3.

♣ 1. At the point (2, 8), how fast are the slopes of the tangent lines changing?

♣ 2. How much do you estimate the slopes will change by, in moving from
the point (2, 8) to the point (2.1, (2.1)3) ?

♣ 3. Find the slopes of the tangent lines at both x = 2 and x = 2.1 . What
is ∆f ′ ?

♣ 4. Was your estimate high or low? Why?

EXERCISE 6 Let f(x) = −(x− 4)4 + 20 .

♣ 1. Sketch the graph of f .

♣ 2. Plot the point when x = 2 .

♣ 3. How fast are the slopes of the the tangent lines changing when x = 2 ?

♣ 4. If we move to the point (2.1, f(2.1)), how much do you estimate the
slopes will change by?

♣ 5. Find f ′(2) and f ′(2.1). How much did the slopes change by?

places where
the concavity
changes

Points on the graph of a function f where the concavity changes—from concave
up to concave down, or from concave down to concave up—are particularly in-
teresting. Thus, such points are given a special name—they are called inflection
points. The precise definition appears next.
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DEFINITION

inflection point

An inflection point is a point where the concavity of a function changes (from
up to down, or down to up).

More precisely, the point (c, f(c)) is an inflection point for a function f if there
is an interval (c− δ1, c+ δ2) about c, such that the concavity of f on (c− δ1, c)
differs from the concavity on (c, c+ δ2). Here, δ1 and δ2 are positive numbers.

Note that an inflection point cannot occur at an endpoint of the domain, because
one has to be able to look on both sides to see if the concavity is different.

places where
f ′′(c) = 0 or
f ′′(c) does not exist
are the only
CANDIDATES
for inflection points

The sketches below illustrate two ways in which an inflection point can occur.
It is possible to have an inflection point (c, f(c)) where f ′′(c) = 0. Also, it is
possible to have an inflection point where f ′′(c) does not exist. Indeed, a logical
argument similar to that used in the previous section shows that these are the
only types of places where inflection points can occur. Thus, the places where
f ′′(c) = 0 and where f ′′(c) does not exist give the candidates for places where
inflection points occur.

Caution! If f ′′(c) = 0, this does not mean that there must be an inflection point at
(c, f(c)). Similarly, if f ′′(c) does not exist, this does not mean that there must
be an inflection point at (c, f(c)). The sketches below illustrate this fact.

Recall that the critical points of a function give the candidates for places where
local maxima and minima occur. Similarly, the places where f ′′(c) = 0 or
f ′′(c) does not exist merely give the candidates for the places where there are
inflection points. Each of these points must be checked to see if it is, or is not,
an inflection point.

strategy for
finding the
inflection points
of a function

Suppose it is desired to find all the inflection points of a function f . Proceed
as follows.

• Find the domain of f .

• Find f ′, and then f ′′. Find all c ∈ D(f) where f ′′(c) = 0 or f ′′(c) does not
exist. Remember that an inflection point cannot occur at an endpoint of
the domain. These are the candidates for inflection points.

• Find the sign of f ′′ everywhere. Use this information to check each candi-
date.
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EXAMPLE

finding inflection
points

Problem: Find all inflection points for the function:

P (x) = x4 + 4x3 − 18x2 − 6x+ 1

• The domain of f is R .

• Find P ′′:

P ′(x) = 4x3 + 12x2 − 36x− 6

P ′′(x) = 12x2 + 24x− 36

= 12(x2 + 2x− 3)

= 12(x+ 3)(x− 1)

Observe that D(P ′′) = R, and:

P ′′(x) = 0 ⇐⇒ x = −3 or x = 1

When x = 1, P (1) = (1)4 +4(1)3−18(1)2−6(1)+1 = −18 . Thus, (1,−18)
is a candidate for an inflection point.

Similarly, (−3,−170) is a candidate for an inflection point.

• Determine the sign of P ′′ everywhere:

To the left of x = −3, the graph is concave up; to the right, concave down.
Thus, the concavity changes as one passes through the point (−3,−170),
so it is an inflection point. Similarly, (1,−18) is an inflection point.

EXERCISE 7 Find all inflection points for each of the following functions:

♣ 1. P (x) = x4 − 4x3 − 7x+ 1

♣ 2. f(x) =
√
x+ x2
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EXERCISE 8 Refer to the graph shown below to answer the following questions. Approximate
where necessary.

♣ 1. On what open interval(s) is the function positive? Negative?

♣ 2. On what open interval(s) is the function increasing? Decreasing?

♣ 3. On what open interval(s) is the function concave up? Concave down?

a test for
local extreme values
that uses the
second derivative

If (c, f(c)) is a critical point for f , and f is continuous at c, then one way to
check if there is a local maximum or minimum at c is to investigate the sign of
the first derivative near c. This is the content of the First Derivative Test.

In some cases, there is an easier test. Consider the sketches below. In each
case, the point (c, f(c)) is a critical point because f ′(c) = 0; that is, there is a
horizontal tangent line at (c, f(c)).
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In the first sketch, f ′′(c) > 0, so that the slopes of tangent lines are increasing
as one passes through the point (c, f(c)). Since f ′(c) = 0, it must be that the
slopes are negative to the left of c, and positive to the right of c. That is, the
function must decrease to the left of c, and increase to the right of c. Thus,
(c, f(c)) must be a local minimum. That is, if f ′′(c) > 0, then the graph is
concave up at c, and the point is a local minimum.

In the second sketch, f ′′(c) < 0. In this case, the graph is concave down at c,
and the point is a local maximum.

If f ′′(c) = 0, anything is possible: no conclusion can be reached without fur-
ther investigation. These observations lead to what is commonly known as the
Second Derivative Test, stated and proved below.

The Second
Derivative Test

for local
maxima and minima

Suppose that f ′(c) = 0, so that there is a horizontal tangent line at the point
(c, f(c)).

If f ′′(c) > 0, then the point (c, f(c)) is a local minimum.

If f ′′(c) < 0, then the point (c, f(c)) is a local maximum.

If f ′′(c) = 0, no general conclusion is possible.

What does
‘f ′′(c) > 0’ mean?

The proof is given for the case f ′′(c) > . The remaining case is left as an
exercise.

One comment before we begin. When a mathematician says

f ′(c) = 0 ,

this really means two things:

• f is differentiable at c, so that the number f ′(c) exists; and

• f ′(c) = 0 .

For the sake of brevity, the first sentence is usually omitted.

Similarly, when a mathematician says

f ′′(c) > 0 ,

this means that

• f is twice differentiable at c, so that the number f ′′(c) exists; and

• f ′′(c) > 0 .
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PARTIAL
PROOF

of the
Second Derivative Test

Proof. Suppose that f ′(c) = 0 and f ′′(c) > 0 . Assume, for simplicity, that f
is defined on both sides of c .

Recall that f ′′ = (f ′)′. Thus, f ′′(c) > 0 means that the limit

lim
h→0

f ′(c+ h)− f ′(c)
h

= lim
h→0

f ′(c+ h)− 0

h

exists, and is positive. Call the value of this limit P (for ‘positive’). Thus, it is

possible to get the values f ′(c+h)
h as close to P as desired, merely by requiring

that h be sufficiently close to 0. Remember that when h is close to 0, c + h is
close to c . In particular, when h < 0, c+ h is to the left of c; and when h > 0,
c+ h is to the right of c .

Refer to the sketch. Choose ε so that every number in the interval I := (P −
ε, P + ε) is positive. Then, find δ so that whenever h is within δ of 0, the

numbers f ′(c+h)
h end up in I.

If h < 0, and within δ of 0, then multiplying both sides of the inequality

f ′(c+ h)

h
> 0

by the negative number h yields

f ′(c+ h) < 0 ,

so the function is decreasing to the left of the point (c, f(c)).

Similarly, if h > 0 and within δ of 0, then we get

f ′(c+ h) > 0 ,

so the function is increasing to the right of the point (c, f(c)).

By the First Derivative Test, the point (c, f(c)) is a local minimum.

EXERCISE 9 ♣ 1. Prove the Second Derivative Test, in the case when f ′′(c) < 0 .

♣ 2. Use the Second Derivative Test to find all local extreme values for
P (x) = 3x4 + 4x3 − 12x2 + 1 . To do this, proceed as follows:

First, find all places where P ′(x) = 0 .

Next, check the sign of the second derivative at each value of c for which
P ′(c) = 0 .

QUICK QUIZ

sample questions

1. What kind of information does the second derivative of a function give us?

2. Give a precise definition of what it means for a function f to be concave
up on an interval I.

3. State the converse of this implication:

If x = 1, then x2 = 1

Is the converse true or false?

4. Suppose that f ′(c) = 0 and f ′′(c) < 0 . What, if anything, can be said
about the point (c, f(c))?

5. Let f(x) = (x− 1)3. Find f ′′(1).
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KEYWORDS

for this section

Concave up and down, the word ‘conversely’, inflection points, candidates for
inflection points, strategy for finding inflection points, the Second Derivative
Test.

END-OF-SECTION
EXERCISES

♣ Use BOTH the First and Second Derivative Tests to find all local extrema
for the functions given below. Be sure that the results of both tests agree!

1. P (x) = x4 − 2x3 + x2 + 10

2. P (x) = 9x4 + 16x3 + 6x2 + 1

♣ All the remaining questions refer to the graph given below. Approximate
where necessary. Assume that the patterns exhibited at the graph boundaries
continue. If an object does not exist, so state.

♣ Read all the following information off the graph. Be sure to answer using
complete mathematical sentences.

3. On what interval(s) is f(x) positive? Negative?

4. On what interval(s) is f increasing? Decreasing?

5. On what interval(s) is f concave up? Concave down?

6. What is D(f)?

7. What is D(f ′)?

8. Find: {x | f ′(x) = 0}
9. Find: {x | f(x) > 10}
10. Find: {x | f ′(x) > 0}
11. Find: {x | f ′′(x) < 0}
12. Find: limx→0 f(x)

13. Find: limt→−2 f(t)

14. Find: limy→−4 f(y)

15. List all the critical points for this function.

16. Find: f(0), f ′(0), f(1000), f ′(1000)

17. Find: {x ∈ D(f) | f is not differentiable at x}
18. Find all inflection points.

19. Find: lim
h→0

f(0 + h)− f(0)

h

20. Find: lim
x→−3.5

f ′(x)



5.4 Graphing Functions

Some Basic Techniques

graphing a function
of one variable

Given an arbitrary function of one variable, call it f , the graph of f is a ‘picture’
of the points {(x, f(x)) |x ∈ D(f)}. Although the entire graph can rarely be
shown (due to the fact that, say, D(f) is an infinite interval), one certainly wants
to see everything interesting. These ‘interesting’ aspects usually include: local
maxima and minima, global maxima and minima, inflection points, discontinu-
ities, ‘kinks’, x and y-axis intercepts, asymptotes, and behavior at infinity.

Global maxima and minima are discussed in this section. Asymptotes and
behavior at infinity are discussed in section 5.6.

Most of the tools necessary to take a systematic approach to graphing a function
are now available. Some general guidelines are outlined below.

Graphing a
function f

a systematic
approach

Let f be a function of one variable. If the first two derivatives of f are reasonably
easy to obtain, then the following strategy is suggested to obtain the graph of
f :

• Find D(f), the domain of f . Sketch appropriate axes. Plot a few easy
points. In particular, plot any endpoints of the domain of f .

• Note if the function is symmetric about the y axis or the origin. (See the
Algebra Review in this section.) If so, the function only needs to be graphed
for, say, nonnegative x, and the rest filled in from symmetry.

• Find f ′(x).

Find all c ∈ D(f) where f ′(c) = 0 or f ′(c) does not exist.

Plot these points (c, f(c)) with the symbol ‘× ’ (if f ′(c) does not exist), or
with the symbol ‘ ×−−− ’ (if f ′(c) = 0).

These points, together with the endpoints of D(f), are the critical points.
They are the candidates for local maxima and minima.

• Find f ′′(x).

Find all c ∈ D(f) where f ′′(c) = 0 or f ′′(c) does not exist.

Plot these points (c, f(c)) with the symbol ‘×× ’.

These are the candidates for inflection points.

• Find the intervals where f ′′(x) > 0 (f is concave up) and f ′′(x) < 0 (f is
concave down), using the now-familiar procedure:

Draw a number line labeled Sign of f ′′(x). On it, indicate all the places
where f ′′ is not continuous, and all the places where f ′′(x) = 0 .

Choose a test point T in each interval, and see if f ′′(T ) is positive or
negative.

Use this information to sketch the graph.

• Fill in any necessary details, such as x-axis intercept(s), y-axis intercept,
asymptote information, and behavior at ±∞ .

309
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global maximum;

global minimum

Thus far in this text, we have discussed:

• maximum and minimum values on an interval

• local maximum and minimum values

Sometimes, it is of interest to know if a function attains a maximum or minimum
value, as the inputs are allowed to vary over the entire domain of f . If such an
extreme value exists, it is called a global extreme value.

The precise definition follows.

DEFINITION

global maximum;
global minimum

Let f be a function with domain D(f).

If there exists c1 ∈ D(f) such that f(c1) ≤ f(x) ∀ x ∈ D(f), then the number
f(c1) is the global minimum for f .

If there exists c2 ∈ D(f) such that f(c2) ≥ f(x) ∀ x ∈ D(f), then the number
f(c2) is the global maximum for f .

values (numbers)
versus
points

Note that if a global minimum or maximum value exists, then it must be unique.
However, this value may be taken on by more than one input, as the examples
below illustrate. As usual, one is often interested in knowing the input(s) that
give rise to global extreme values. Thus, one frequently speaks of, say, a global
maximum point.

EXERCISE 1 ♣ Decide if the graphs shown below have a global maximum value; global
minimum value. If so, list all global maximum point(s); all global minimum
point(s). Assume that the domain of each function is R.



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 311

EXERCISE 2 If the following sentences are false, make a sketch which illustrates how they
can fail.

♣ 1. True or False: If (c, f(c)) is a local maximum point for f , then it is a
global maximum point for f .

♣ 2. True or False: If (c, f(c)) is a global maximum point for f , then it is a
local maximum point for f .

♣ 3. True or False: If the number M is a global maximum value for f , then
it is unique.

♣ 4. True or False: If the point (c,M) is a global maximum point for f , then
it is unique.

Now, lots of graphing examples!!

EXAMPLE

graphing
a polynomial

Problem: Completely graph:

P (x) = x3 − 3x + 2

• D(f) = R. Plot a few simple points:

• Find the first derivative:

P ′(x) = 3x2 − 3 = 3(x2 − 1) = 3(x− 1)(x + 1)

Observe that D(f ′) = R, so the only critical points come from places where
f ′(x) = 0 . Be sure to write down complete mathematical sentences.

P ′(x) = 0 ⇐⇒ 3(x− 1)(x + 1) = 0

⇐⇒ x = 1 or x = −1

So, (1, f(1)) = (1, 0) and (−1, f(−1)) = (−1, 4) are critical points. Plot
these with an × to emphasize that they correspond to places where there
is a horizontal tangent line.

• Find the second derivative:

P ′′(x) = 6x

Again, D(f ′′) = R, so the only candidates for inflection points occur when
f ′′(x) = 0 .

P ′′(x) = 0 ⇐⇒ 6x = 0

⇐⇒ x = 0

Thus, (0, f(0)) = (0, 2) is the only candidate for an inflection point. Plot
this point with an ×× to emphasize that there may be an inflection point
here.
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• Investigate the sign of the second derivative:

P ′′ is continuous everywhere, and is zero only at x = 0. Make a number
line, indicating the point x = 0. This yields two subintervals, (−∞, 0) and
(0,∞).

Choose a ‘test point’ from each of these intervals.

Thus, P ′′ is positive on (0,∞) and negative on (−∞, 0), so P is concave
up on (0,∞) and concave down on (0,−∞). Use this information to fill in
the majority of the graph.

• Fill in any missing details. Here, it would be nice to know the second x-
axis intercept. We can always ‘zero in’ on it, using the Intermediate Value
Theorem. However, in this case, we can do even better. Since x = 1 is a
root of P , x− 1 must be a factor of P . Do a long division:

Thus, P (x) = (x− 1)(x2 + x− 2) = (x− 1)2(x + 2). The remaining x-axis
intercept occurs at x = −2 .

• Once the graph of P is complete, read off all this important information:

(−1, 4) is a local maximum

(1, 0) is a local minimum

no global maximum, no global minimum

(0, 2) is an inflection point

concave down on (−∞, 0)

concave up on (0,∞)

increasing on (−∞,−1) ∪ (1,∞)

decreasing on (−1, 1)

Note that it was not necessary to investigate the sign of P ′ to find out
where P increases and decreases.

A graph of P is shown.

EXERCISE 3 Reconsider the previous example. It was found that P is concave up on (0,∞).
Why couldn’t the graph look like the two situations shown below? Comment.
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checking behavior
at infinity

In the last step of the previous example, one final check could have been made:
the graph shows that as x→∞, f(x)→∞; and as x→ −∞, f(x)→ −∞. It
would be prudent to verify that the function f really behaves this way.

approximating
polynomials
by their
highest order term

To this end, an important property of polynomials is needed. Informally:

When x is large (positive or negative), then a polynomial P is well approximated
by its highest order term.

Another way to state this is:

For large x, the highest order term of a polynomial dominates.

The highest order term of a polynomial in x is the term with the greatest
exponent on x.

x� 0 means
x is large and positive

x� 0 means
x is large and negative

The phrase ‘x is large’ is sometimes used to mean that x is a number that is
very, very far from zero on the number line. That is, either x is positive and |x|
is much greater than zero; or x is negative and |x| is much greater than zero.
Thus, one might say that both 107 and −236 are ‘large’ numbers.

If x is large, then P (x) = x3 − 3x + 2 is well approximated by the simpler

polynomial P̃ (x) = x3. That is, for large x :

x3 − 3x + 2 ≈ x3

(The symbol ‘≈’ is read as is approximately equal to.)

When x is large and positive, so is x3. Thus, so must be x3 − 3x + 2 .

When x is large and negative, so is x3. Thus, so must be x3 − 3x + 2 .

The sentence ‘x � 0’ is read as ‘x is much greater than zero’. So instead of
saying ‘x is large and positive’, one can equivalently say ‘x� 0’.

The sentence ‘x� 0’ is read as ‘x is much less than zero’. So instead of saying
‘x is large and negative’, one can equivalently say ‘x� 0’.

more precisely:
investigate a limit!

This idea of ‘approximation by the highest order term’ can be made precise.
Consider an arbitrary polynomial

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0 , (*)

where an 6= 0. The highest order term is anx
n.

It is possible to get P (x) as close to anx
n as desired, by making x sufficiently

large. To see that this is true, divide both sides of (*) by xn, obtaining:

P (x)

xn
= an +

an−1
x

+ · · ·+ a1
xn−1 +

a0
xn

For large (enough) values of x, all the terms on the right-hand side, except an,

will be close to zero. That is, as x approaches +∞ or −∞, P (x)
xn approaches

an. And when P (x)
xn is close to an, then P (x) is close to anx

n. This idea will be
made yet more precise in the final section of this chapter.

EXAMPLE Problem: Completely graph:

f(t) = (t− 1)1/3
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• D(f) = R. Plot a few points:

• f ′(t) = 1
3 (t− 1)−2/3

D(f ′) = {x |x 6= 1}. Observe that f is defined at 1, but f ′ is not defined
at 1. Thus, (1, f(1)) = (1, 0) is a critical point. As x approaches 1 (from
either side), f ′(x) → ∞, so there is a vertical tangent line at the point
(1, 0). Indicate this on the graph using the symbol × .

f ′ is never equal to 0, so there are no other critical points.

• f ′′(t) = − 2
9 (t− 1)−5/3

Again, D(f ′′) = {x |x 6= 1}. So f ′′ is not defined at x = 1, but f is. Thus,
(1, 0) is also a candidate for an inflection point. Put a ×× over this point,
to remind us of this fact.

f ′′ is never equal to 0, so there are no other candidates for inflection points.

• f ′′ is continuous everywhere except at 1, and is never 0. Thus, one need
only check the sign of f ′′ (plus or minus) on the intervals below.

• Details: check behavior at infinity.

For large values of t:
(t− 1)1/3 ≈ t1/3 =

3
√
t

So, as t→∞, f(t)→∞ . And, as t→ −∞, f(t)→ −∞ .

• Read off all important information:

no local maxima or minima

no global maximum or minimum

(1, 0) is an inflection point

x-axis intercept: (1, 0)

y-axis intercept: (0,−1)

concave up on (−∞, 1)

concave down on (1,∞)

increasing on (−∞,∞)

A graph of f is shown at right.
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EXAMPLE Problem: Completely graph:

g(x) =
|x|

x2 + 1

• D(g) = R, since x2 + 1 is never zero. Note that g is an even function, since:

g(−x) =
| − x|

(−x)2 + 1
=
|x|

x2 + 1
= g(x)

Thus, g only needs to be graphed on (0,∞); the rest is filled in from sym-
metry.

• For x > 0, |x| = x, so that g(x) = x
x2+1 and:

g′(x) =
(x2 + 1)(1)− (x)(2x)

(x2 + 1)2

=
1− x2

(x2 + 1)2

=
(1− x)(1 + x)

(x2 + 1)2

Remember that this formula only holds for x > 0. When x = 1, there is a
horizontal tangent line. So, (1, g(1)) = (1, 1

2 ) is a critical point.

Is there a tangent line at x = 0? Note that:

lim
x→0+

g′(x) = lim
x→0+

(1− x)(1 + x)

(x2 + 1)2
=

(1)(1)

(1)2
= 1

So, as x approaches zero from the right, the tangent lines have slopes that
approach 1. Sketch in a dashed line with slope 1 to the right of zero, as shown.

By symmetry, as zero is approached from the left, the tangent lines have slopes
that approach −1. Thus, there is a ‘kink’ at zero. That is, g′(0) does not exist.
So, (0, g(0)) = (0, 0) is also a critical point.

Observe that it has been shown that g′ is not continuous at 0. Indeed, g′ has a
nonremovable discontinuity at x = 0.

• Since g′ is not continuous at 0, g′ is not differentiable at 0. (♣Why?) That
is, g′′(0) does not exist, and is a candidate for an inflection point.

For x > 0 :

g′′(x) =
(x2 + 1)2(−2x)− (1− x2)2(x2 + 1)(2x)

(x2 + 1)4

=
−2x(x2 + 1)[(x2 + 1) + 2(1− x2)]

(x2 + 1)4

=
−2x(3− x2)

(x2 + 1)3

=
−2x(

√
3− x)(

√
3 + x)

(x2 + 1)3

When x =
√

3 ≈ 1.7, g′′(x) is zero. Thus, (1.7, g(1.7)) = (1.7, 0.4) is an
(approximate) candidate for an inflection point.
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• Investigate the sign of g′′ on (0,
√

3) and (
√

3,∞):

Thus, g is concave down on (0,
√

3) and concave up on (
√

3,∞).

• Details: check behavior at infinity.

For x� 0 :
x

x2 + 1
≈ x

x2
=

1

x

Thus, as x→∞, f(x)→ 0 .

• Read off all important information:

(0, 0) is a local and global minimum

(1, 0.5) and (−1, 0.5) are local and global maxima

(
√

3,
√
3
4 ) and (−

√
3,
√
3
4 ) are inflection points

concave up on (−∞,−
√

3) ∪ (
√

3,∞)

concave down on (−
√

3, 0) ∪ (0,
√

3)

increasing on (−∞,−1) ∪ (0, 1)

decreasing on (−1, 0) ∪ (1,∞)

A graph of g is shown at left.

EXAMPLE Problem: Completely graph:
f(x) = xex

• D(f) = R. Plot a few points:

• f ′(x) = xex + (1)ex = ex(x + 1)

D(f ′) = R

f ′(x) = 0 ⇐⇒ ex(x + 1) = 0

⇐⇒ x + 1 = 0

⇐⇒ x = −1

Thus, (−1, f(−1)) = (−1,−e−1) = (−1,− 1
e ) ≈ (−1,−0.4) is the only

critical point.

• f ′′(x) = ex(1) + ex(x + 1) = ex(x + 2)

D(f ′′) = R

f ′′(x) = 0 ⇐⇒ x = −2 ,

so (−2,−2e−2) ≈ (−2,−0.3) is the only candidate for an inflection point.
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• Investigate the sign of the second derivative:

• Details: Note that

f(x) = 0 ⇐⇒ xex = 0 ⇐⇒ x = 0 ,

so the only x-axis intercept is at 0 .

As x→∞, f(x)→∞ .

As x → −∞, we run into a ‘(−∞)(0)’ situation, which requires further
investigation. In this case, plotting some additional points, and using the
fact that f cannot cross the x-axis again, we conclude that as x → −∞,
f(x)→ 0 .

• (−1,− 1
e ) is a local and global minimum

(−2,− 2
e2 ) is an inflection point

concave up on (−2,∞)
concave down on (−∞,−2)
increasing on (−1,∞)
decreasing on (−∞,−1)

A graph of f is shown below.

EXERCISE 4 Completely graph the following functions:

♣ 1. P (x) = 3x4 + 4x3 − 12x2 + 1

♣ 2. f(t) = (t + 2)1/5

♣ 3. g(x) = |x|
x2−1

♣ 4. f(x) = xe−x

Read off all this information from your graphs:

local maxima and minima
global maxima and minima
inflection points
x and y-axis intercepts (approximate, if necessary)
open intervals on which the graph is concave up and down
open intervals on which the graph is increasing and decreasing
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ALGEBRA REVIEW
even and odd functions

DEFINITION

symmetry about
the y-axis

If a graph has the property that whenever (a, b) is on the graph, so is (−a, b),
then the graph is symmetric about the y-axis.

Observe that if such a graph is folded the graph along the y-axis, the part of
the graph to the right of the y-axis coincides with the part to the left. Why is
this? Answer: By folding along the y-axis, one is identifying points that have
the same magnitude x-values. For example, after folding, x = 2 ends up on
top of x = −2 . And, x = 5 ends up on top of x = −5 . For a graph that is
symmetric about the y-axis, such points have exactly the same y-values, so the
points coincide.

There is an equivalent characterization of symmetry about the y-axis, if one
happens to be working with a function:

DEFINITION

even functions

If a function f satisfies the property that

f(−x) = f(x) ∀ x ∈ D(f) ,

then f is an even function, and its graph is symmetric about the y-axis.

For example, f(x) = x4 is an even function. To see this, one need only verify
that:

f(−x) = (−x)4 = x4 = f(x)

♣ Is f(x) = x6 + 2x2 an even function? How about g(x) = 1
x2+1?

DEFINITION

symmetry about
the origin

If a graph satisfies the property that whenever (a, b) is on the graph, so is
(−a,−b), then the graph is symmetric about the origin.
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Note that if such a graph is folded twice—once along the x-axis, and once along
the y-axis—then the parts of the graph coincide.

♣ Think about why this ‘coinciding’ takes place.

There is an equivalent characterization of symmetry about the origin, if one
happens to be working with a function:

DEFINITION

odd functions

If a function f satisfies the property that

f(−x) = −f(x) ∀ x ∈ D(f) ,

then f is an odd function, and its graph is symmetric about the origin.

So if f is an odd function, then whenever (x, f(x)) is on the graph, so is
(−x,−f(x)).

♣ Show that f(x) = x3 is an odd function; graph it.

♣ Is f(x) =
1

x3 − x
an odd function? How about g(x) =

x

x3 − x
?

QUICK QUIZ

sample questions

1. Sketch the graph of a function that has a global maximum value of 10;
there should be 3 global maximum points.

2. When x� 0, what does the graph of P (x) = 127−3x+x4−6x7 look like?
How about when x� 0 ?

3. Is f(x) = x5 − x an even function? An odd function? Be sure to support
your answers.

4. Completely graph f(x) = 6x2 − 7x − 3, using the systematic approach
discussed in this section.

KEYWORDS

for this section

A systematic approach to graphing a function, symmetry about the y-axis, even
functions, symmetry about the origin, odd functions, global maximum and min-
imum values, global maximum and minimum points, checking behavior at infin-
ity, approximating polynomials by their highest order term.

END-OF-SECTION
EXERCISES

♣ Re-do each of the graphing examples from this section, without looking at
the text. If you get stuck, then study the example, and try it on your own again.



5.5 More Graphing Techniques

graphing
polynomials

Since polynomials are infinitely differentiable, the only critical points and can-
didates for inflection points arise from places where P ′ and P ′′ are equal to
zero. If P ′ and P ′′ can be factored, then their zeroes are easy to find; if not,
the zeroes can be approximated using the Intermediate Value Theorem.

In this section, some techniques concerned with factoring polynomials are re-
viewed. Most of these techniques should be familiar to you from algebra, and
are merely gathered here for your convenience. We begin by studying quadratic
polynomials.

factorable
over the integers

Let P (x) = ax2 + bx + c, a 6= 0, be a quadratic polynomial. The polynomial
P is ‘factorable over the integers’ if

P (x) = (K1x + K2)(K3x + K4) ,

where the Ki are all integers.

Thus, P (x) = 2x2 + 5x − 3 = (2x − 1)(x + 3) is factorable over the integers,

but P (x) = x2 − 2 = (x +
√

2)(x−
√

2) is not factorable over the integers.

factoring
x2 + bx + c,
b and c integers

If P (x) = x2 + bx+ c, where the coefficient of the x2 term is 1, then one usually
takes the approach illustrated below to try and factor P :

Problem: Factor P (x) = x2 + x− 6 .

Solution: A factorization of P must be of the form:

x2 + x− 6 = (x + A)(x + B) = x2 + (

must = 1︷ ︸︸ ︷
A + B )x +

must =−6︷︸︸︷
AB

Thus, one seeks integers A and B that multiply together to give −6 (the con-
stant term), and that add together to give 1 (the coefficient of the x term). In
this case, taking A = 3 and B = −2 work, so that:

x2 + x− 6 = (x + 3)(x− 2)

When a 6= 1, a similar approach can be taken, and is discussed next.

factoring ax2 + bx + c,
integer coefficients

Suppose that P (x) = ax2 + bx + c, a 6= 0, has integer coefficients, and is
factorable over the integers. That is, suppose there exist integers K1, K2, K3

and K4 for which:

ax2 + bx + c = (K1x + K2)(K3x + K4)

=

a︷ ︸︸ ︷
K1K3 x

2 + (

b︷ ︸︸ ︷
K2K3︸ ︷︷ ︸
:=A

+K1K4︸ ︷︷ ︸
:=B

)x +

c︷ ︸︸ ︷
K2K4 (multiplying out)

320



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 321

Defining A := K2K3 and B := K1K4, we see that

AB = (K2K3)(K1K4) = (K1K3)(K2K4) = ac

and:
A + B = K2K3 + K1K4 = b

What is all this saying? It says that:

Whenever a polynomial ax2 + bx+ c is factorable over the integers, we can find
integers A and B, where AB = ac and A + B = b, that (we’ll see) can be used
to factor the polynomial for us!

The technique is illustrated in the next example.

EXAMPLE

factoring a
quadratic, a 6= 1

Problem: Factor 8x2 − 10x− 3 .

Solution: We seek integers A and B satisfying

AB = (coefficient of x2 term) · (constant term)

and:
A + B = coefficient of x term

Thus, we want:

AB = (8)(−3) = −24 and A + B = −10

Choosing A = −12 and B = 2 works. Then:

8x2 − 10x− 3 = 8x2 + (2x− 12x)− 3 (rewrite middle term)

= (8x2 + 2x) + (−12x− 3) (regroup)

= 2x(4x + 1)− 3(4x + 1) (factor each group)

= (2x− 3)(4x + 1) (factor out (4x + 1))

Note that when the middle term is rewritten as a sum, the order does not
matter :

8x2 − 10x− 3 = 8x2 + (−12x + 2x)− 3 (rewrite middle term)

= (8x2 − 12x) + (2x− 3) (regroup)

= 4x(2x− 3) + (2x− 3) (factor each group)

= (4x + 1)(2x− 3) (factor out (2x− 3))

EXERCISE 1 Use the technique described above to factor the following quadratics.

♣ 1. 3x2 + 2x− 1

♣ 2. 10x2 − 13x− 3

♣ 3. 14x2 + 19x− 3
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F

When is ax2 + bx + c,
with integer
coefficients,
factorable
over the integers?

Here’s a precise statement of the factoring result discussed above:

THEOREM. Let P (x) = ax2 + bx + c have integer coefficients, a 6= 0 . Then,
P is factorable over the integers if and only if there exist integers A and B with
AB = ac and A + B = b .

Idea of Proof. It has already been shown that if P is factorable over the
integers, then integers A and B with the desired property exist.

The other direction uses the fact that a polynomial with integer coefficients
is factorable over Z iff it is factorable over Q (see, e.g., John B. Fraleigh,
A First Course in Abstract Algebra, third edition, page 280). Suppose integers
A and B exist with AB = ac and A+B = b . If c = 0, then ax2+bx = x(ax+b)
is factorable over Z . Suppose c 6= 0 . Then, since a 6= 0, and AB = ac, both A
and B are nonzero. Further, AB = ac =⇒ A

a = c
B . Then:

ax2 + bx + c = ax2 + (A + B)x + c

= (ax2 + Ax) + (Bx + c)

= ax(x +
A

a
) + B(x +

c

B
)

= (ax + B)(x +
c

B
)

Thus, P is factorable over Q, and hence over Z .

a technique that
always works;

using the
quadratic formula

The quadratic formula can always be used to factor any quadratic polynomial,
whether or not it is factorable over the integers. Recall that the quadratic
formula says that the equation ax2 + bx + c = 0, a 6= 0, has solutions x1 and
x2 given by:

x1,2 =
−b±

√
b2 − 4ac

2a

The ‘+’ sign gives one solution; the ‘−’ sign gives the second solution.

These zeroes provide the factors of the polynomial:

ax2 + bx + c = a(x− x1)(x− x2)

Note that you must supply the constant factor a yourself.

EXAMPLE

factoring a
quadratic by using
the quadratic formula

Problem: Factor 8x2 + 5x− 3, using the quadratic formula.

Solution: First, find the roots of this quadratic. That is, solve:

8x2 + 5x− 3 = 0

By the quadratic formula:

x1,2 =
−5±

√
52 − 4(8)(−3)

2(8)

= −1 ,
3

8
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Since −1 is a root, x− (−1) = x + 1 is a factor.

Since 3
8 is a root, x− 3

8 is a factor.

Only the constant factor need be supplied:

8x2 + 5x− 3 = 8(x + 1)(x− 3

8
)

= (x + 1)8(x− 3

8
)

= (x + 1)(8x− 3)

♣ Use the technique discussed earlier to factor 8x2 + 5x− 3 .

EXERCISE 2 ♣ Use the quadratic formula to factor each polynomial from Exercise 1.

EXAMPLE

graphing a
more complicated
polynomial

Problem: Completely graph f(x) = (x− 1)2(2x + 3)x .

• Plot a few points:

• Find the first derivative. Use the ‘generalized product rule’: d
dx (ABC) =

A′BC + AB′C + ABC ′

f ′(x) = 2(x− 1)(2x + 3)x + (x− 1)2(2)x + (x− 1)2(2x + 3)(1)

= (x− 1)
[
2x(2x + 3) + 2x(x− 1) + (x− 1)(2x + 3)

]
= (x− 1)(8x2 + 5x− 3)

= (x− 1)(x + 1)(8x− 3)

Thus, f ′(x) = 0 when x = 1, −1, 3
8 . Find the corresponding function

values, and add these points to the table of points started above. Plot the
points with a × .

• Find the second derivative:

f ′′(x) = (1)(x + 1)(8x− 3) + (x− 1)(1)(8x− 3) + (x− 1)(x + 1)(8)

= 24x2 − 6x− 8

= 2(12x2 − 3x− 4)

Using the quadratic formula, the solutions of 12x2 − 3x− 4 = 0 are:

x1 =
3 +
√

201

24
≈ 0.72 and x2 =

3−
√

201

24
≈ −0.47

Find the corresponding function values, and plot these points with a ×× .
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• Sign of f ′′:

Use this concavity information to fill in the graph.

• Behavior at infinity: As x→ ±∞, f(x) ≈ 2x4 →∞, which agrees with the
graph.

some final results The remainder of this section is a collection of useful results and techniques
concerning polynomials. These may be familiar to you from algebra. They are
merely gathered here for your convenience.

RATIONAL ROOT
THEOREM

Let P (x) = anx
n+· · ·+a2x

2+a1x+a0 be a polynomial with integer coefficients.
Suppose that an 6= 0 and a0 6= 0 .

If P has a rational zero p
q (in lowest terms), then p is a factor of a0 and q is a

factor of an .

What if a0 = 0? Observe that if a0 = 0 and a1 6= 0, then:

P (x) = x(

P̃ (x)︷ ︸︸ ︷
anx

n−1 + · · ·+ a2x + a1)

Apply the Rational Root Theorem to P̃ (x).

F
PROOF

of the
Rational Root
Theorem

Proof. The notation a|b (read as ‘a divides b’) means that a is a factor of b .
Suppose p

q is a rational root in lowest terms, so:

an(
p

q
)n + an−1(

p

q
)n−1 + · · ·+ a1(

p

q
) + a0 = 0

Multiplication by qn yields:

anp
n + an−1p

n−1q + · · ·+ a1pq
n−1 + a0q

n = 0 (*)

Observe that all terms except the last have a factor of p . Then:

p(anp
n−1 + · · ·+ a1q

n−1) = −a0qn

Since p divides the left-hand side, it must divide the right-hand side. But p 6 | q,
so p 6 | qn, so it must be that p|a0 .

For the remaining result, observe that every term in (*) except the first has a
factor of q. Repeat the argument, with obvious changes.

negating
‘A and B’

The Rational Root Theorem is an implication (with some additional hypothe-
ses):

IF P has a rational zero p
q (in lowest terms),

THEN (p is a factor of a0) and (q is a factor of an).

The conclusion of this implication is a sentence of the form ‘A and B’. Thus,
to find the contrapositive of this implication, one must negate ‘A and B’. How
is this done?
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Use your intuition: ‘A and B’ is true only when both A and B are true. So
when is ‘A and B’ false? When A is false, or B is false. Precisely,

not(A and B) ⇐⇒ (notA) or (notB) ,

as the truth table below confirms:

logical symbols:

∧ for ‘and’
∨ for ‘or’
¬ for ‘not’

DeMorgan’s laws

The sentence ‘A and B’ can be written as A ∧B. The symbol ∧ is a synonym
for the mathematical word ‘and’.

The sentence ‘A or B’ can be written as A ∨ B. The symbol ∨ is a synonym
for the mathematical word ‘or’.

The sentence ‘notA’ can be written as ¬A . The symbol ¬ is a synonym for the
mathematical word ‘not’.

With this notation, the previous logical equivalence can be more simply written
as:

¬(A ∧B) ⇐⇒ (¬A) ∨ (¬B)

In the next exercise, you are asked to prove that:

¬(A ∨B) ⇐⇒ (¬A) ∧ (¬B)

These two logical equivalences are commonly known as DeMorgan’s Laws.

EXERCISE 3 ♣ Prove that:
¬(A ∨B) ⇐⇒ (¬A) ∧ (¬B)

That is, make a truth table which shows that ¬(A∨B) and (¬A)∧(¬B) always
have the same truth values.

Now, the contrapositive of the sentence:

IF P has a rational zero p
q (in lowest terms),

THEN (p is a factor of a0) and (q is a factor of an)

is:

IF (p is not a factor of a0) or (q is not a factor of an),
THEN p

q is not a zero of P

This latter sentence tells us that the only candidates for rational roots of P are
numbers of the form p

q , where p is a factor of the constant term, and q is a factor

of the leading coefficient. The next example illustrates how this information is
used.

EXAMPLE

using the
Rational Root Theorem

Problem: Find all rational roots of P (x) = 14x4−x3− 17x2 +x+ 3 . Use these
roots to factor P as completely as possible.

Solution: The leading coefficient is 14, with factors: ±1, ±2, ±7, ±14

The constant term is 3, with factors: ±1 and ±3
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Thus, if p
q is a root of P , it must be that:

p ∈ {±1, ±3} and q ∈ {±1, ±2, ±7, ±14}

That is:
p

q
∈ {±1, ±1

2
, ±1

7
, ± 1

14
, ±3, ±3

2
, ±3

7
, ± 3

14
}

Each candidate is checked:

P (1) = 14(1)4 − 13 − 17(1)2 + 1 + 3 = 0 (root 1, factor x− 1)

P (−1) = 14(−1)4 − (−1)3 − 17(−1)2 + (−1) + 3 = 0 (root −1, factor x + 1)

P (
1

2
) = · · · = 0 (root

1

2
, factor x− 1

2
)

P (−1

2
) = · · · 6= 0 (−1

2
is not a root)

...

Continuing, it is found that P (1) = P (−1) = P (− 3
7 ) = P ( 1

2 ) = 0. This
information is used to factor P :

P (x) = 14(x− 1

2
)(x +

3

7
)(x− 1)(x + 1)

= 2(x− 1

2
)7(x +

3

7
)(x− 1)(x + 1)

= (2x− 1)(7x + 3)(x− 1)(x + 1)

Note that we had to supply the constant factor of 14 ourselves.

EXAMPLE

using the
Rational Root Theorem

Problem: Find all rational roots of P (x) = x4 − 2x2 − 3x− 2 . Use these roots
to factor P as completely as possible.

Solution: If p
q is a rational root, then:

p ∈ {±1, ±2} and q ∈ {±1}

Thus:
p

q
∈ {±1, ±2}

Indeed:

P (1) = 1− 2− 3− 2 6= 0

P (−1) = 1− 2 + 3− 2 = 0

P (2) = 16− 8− 6− 2 = 0

P (−2) = 16− 8 + 6− 2 6= 0
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Thus, −1 and 2 are roots, so:

P (x) = (x + 1)(x− 2)(????) = (x2 − x− 2)(????)

Use long division to find the remaining factor:

Thus:
P (x) = (x + 1)(x− 2)(x2 + x + 1)

An application of the quadratic formula shows that the roots of x2 + x + 1
are not real numbers. Thus, P cannot be factored any further, using only real
numbers.

EXERCISE 4 ♣ 1. Refer to the previous example. Find two more polynomials, different
from P , that have precisely the same candidates for rational roots. (Hint:
Only the leading coefficient and the constant term are used to find the
candidates.)

♣ Use the rational root theorem to find all rational roots of the following
polynomials. Use this information to factor the polynomial as completely as
possible.

♣ 2. 5x3 − 3x2 − 12x− 4

♣ 3. 4x4 + 5x3 − 2x2 + 5x− 6

♣ 4. 3x4 − x3 + 12x2 − 4x (Hint: First factor out an x. Then, apply the
Rational Root Theorem to the remaining polynomial.)

SYNTHETIC
DIVISION

Finding P (x)
x−c via long division involves a lot of redundancy. Synthetic division

suppresses all this redundancy and results in a useful tool for factoring. The
process is illustrated below.

Here’s how synthetic division is used to compute
P (x)

x− c
:
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• Make sure P is written with decreasing powers of x.

• Write down the coefficients of P . Be sure to include 0 for any missing
terms.

• To divide by x−c, put the number ‘c’ in a box to the left of the coefficients.

For example, to divide by x− 2, put a ‘2’ in the box. To divide by x+ 3 =
x− (−3), put a ‘−3’ in the box.

• Bring down the first coefficient.

• Multiply by c, and add to the next coefficient of P , as shown.

• Repeat as necessary. You have now computed

P (x)

x− c
= Q(x) +

R

x− c
⇐⇒ P (x) = (x− c)Q(x) + R ;

you need only read off the coefficients of Q and the remainder R.

The last number computed is the remainder R. The preceding numbers are
the coefficients of Q. Observe that the degree of Q is always one less than
the degree of R.

REMAINDER
THEOREM

If P is a polynomial and P (x) = (x− r)Q(x) + R, then P (r) = R .

The proof is trivial! P (r) = (r − r)Q(r) + R = 0 ·Q(r) + R = R .

Usually, to evaluate a polynomial at a number r, we substitute r into the formula
for P and crunch away. This theorem gives an alternate approach! It says that,
to evaluate P at r, one can instead divide P (x) by x − r; the remainder is
precisely P (r) .

The Remainder Theorem, together with synthetic division, gives an efficient
way to evaluate polynomials, as illustrated next.

EXAMPLE

using synthetic
division and
the Remainder Theorem
to evaluate polynomials

Problem: Evaluate P (x) = 14x4 − x3 − 17x2 + x + 3 at x = 1 and x = −2 .

Solution: To find P (1), use synthetic division to divide by x− 1 :

The remainder is 0, so P (1) = 0 . Checking:

P (1) = 14− 1− 17 + 1 + 3 = 0

To find P (−2), use synthetic division to divide by x + 2 :

The remainder is 165 . Thus, P (−2) = 165 . This was considerably easier than
computing:

P (−2) = 14(−2)4 − (−2)3 − 17(−2)2 + (−2) + 3
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EXERCISE 5 Use synthetic division and the Remainder Theorem to evaluate the following
polynomial at the specified values of x.

♣ P (x) = x4 − 2x2 − 3x− 2; x = 1, −1, 2, −2

Two additional tools for gaining information about the zeroes of polynomials
are Descartes’ Rule of Signs and the Upper and Lower Bound Theorem. Check
your algebra book for more information.

QUICK QUIZ

sample questions

1. Factor 3x2−2x−8, by first finding numbers A and B that satisfy AB = ???
and A + B = ???

2. Factor 3x2 − 2x− 8, by using the Quadratic Formula.

3. What are the candidates for the rational roots of P (x) = x7 − 2x5 + 2 ?

4. Negate: A and B

5. Use the Remainder Theorem to find P (1) if P (x) = x5 − 3x2 + 2x− 1 .

KEYWORDS

for this section

Factorable over the integers, techniques for factoring ax2 + bx + c, using the
quadratic formula to factor ax2+bx+c, the Rational Root Theorem, the symbols
∧, ∨, ¬, negating A ∧ B and A ∨ B, DeMorgan’s Laws, synthetic division, the
Remainder Theorem.

END-OF-SECTION
EXERCISES

♣ Use all available techniques to factor the following polynomials as completely
as possible over R .

1. P (x) = 2x3 − 3x2 − 3x− 5

2. P (x) = 2x6 − 4x5 + 3x4 − 2x3 + x2

3. P (x) = x4 − 5x2 + 6

4. P (x) = x3 + x2 − x



5.6 Asymptotes;
Checking Behavior at Infinity

checking behavior
at infinity

In this section, the notion of checking behavior at infinity is made precise, by
discussing both asymptotes and limits involving infinity.

DEFINITION

asymptote

An asymptote is a curve (usually a line) that a graph gets arbitrarily close to
as x approaches ±∞, or as x approaches some finite number.

vertical asymptotes An asymptote that is a vertical line is called a vertical asymptote.

That is, if the numbers f(x) approach ±∞ as x approaches c from the right or
left (or both), then the line x = c is a vertical asymptote for f .

How do
vertical asymptotes
arise?

Vertical asymptotes arise most naturally when dealing with rational functions
(ratios of polynomials):

f(x) =
N(x)

D(x)

Any value of x for which the denominator is zero (and the numerator is non-
zero) gives rise to a vertical asymptote.

A function can have an unlimited number of vertical asymptotes.

330
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DEFINITION

lim
x→c+

f(x) =∞
The limit statement

lim
x→c+

f(x) =∞

means that f(x) can be made as large and positive as desired, by requiring that
x be sufficiently close to c (and greater than c).

Precisely:

lim
x→c+

f(x) =∞ ⇐⇒ ∀ M > 0, ∃ δ > 0 such that if
x ∈ (c, c+ δ), then f(x) > M

The sentence limx→c+ f(x) =∞ can also be written:

As x→ c+, f(x)→∞

The sentence ‘ lim
x→c+

f(x) =∞’ is read as:

the limit of f(x),
as x approaches c from the right-hand side,

is infinity

EXERCISE 1 ♣ Give a precise definition of:

lim
x→c−

f(x) =∞

Make a sketch that illustrates this limit statement. In English, what is this
definition saying?

EXERCISE 2 ♣ Give a precise definition of:

lim
x→c+

f(x) = −∞

Make a sketch that illustrates this limit statement. In English, what is this
definition saying?

horizontal asymptotes An asymptote that is a horizontal line is called a horizontal asymptote.

That is, if the line y = L is a horizontal asymptote for f , then the function
values f(x) approach the finite number L as x approaches +∞ or −∞ (or both).

A function can have at most two horizontal asymptotes. (♣ Why?)
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How do
horizontal asymptotes
arise?

Horizontal asymptotes also arise most naturally when dealing with rational
functions,

f(x) =
P (x)

D(x)
,

when the degrees of the numerator and denominator are the same.

For example, consider:

f(x) =
3x2 − 1

x2 − 2x+ 2

To investigate the behavior of f for large values of x, first multiply by 1 in an
appropriate form (the highest power of x that appears, over itself):

f(x) =
3x2 − 1

x2 − 2x+ 2
·

1
x2

1
x2

=
3− 1

x2

1− 2
x + 2

x2

In this form, it is easy to see that when x is large (positive or negative), f(x)
is close to 3. Precisely, recall that the limit of a quotient is the quotient of the
limits, provided that each individual limit exists. Since both ‘numerator’ and
‘denominator’ limits exist:

lim
x→±∞

(3− 1

x2
) = 3 and lim

x→±∞
(1− 2

x
+

2

x2
) = 1 ,

it is correct to say that:

lim
x→±∞

3− 1
x2

1− 2
x + 2

x2

=
limx→±∞(3− 1

x2 )

limx→±∞(1− 2
x + 2

x2 )
=

3

1
= 3

Thus, the line y = 3 is a horizontal asymptote for the graph of f .

abbreviated form Instead of writing out all the steps indicated above, the author usually summa-
rizes things as follows:

Problem: Investigate the behavior of f(x) = 3x2−1
x2−2x+2 for large values of x.

Solution: Think of approximating both the numerator and denominator poly-
nomials by their highest order terms, and simply write:

For large x, f(x) ≈ 3x2

x2
= 3

Thus, y = 3 is a horizontal asymptote for f .

This abbreviated analysis is fine, provided that you understand why it is justified,
and can fill in the details if pressed to do so.
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A MATLAB graph of f is shown below. Observe that there are no real numbers
x for which the denominator x2 − 2x + 2 equals zero, so f has no vertical
asymptotes.

EXERCISE 3 ♣ Investigate

f(x) =
5x3

2x(x− 1)(x+ 1)

for horizontal asymptote behavior.

Write both a precise solution, and an abbreviated solution.

DEFINITION

lim
x→∞

f(x) = L

The limit statement
lim
x→∞

f(x) = L

means that the numbers f(x) can be made as close to L as desired, by requiring
that x be sufficiently large and positive.

Precisely:

lim
x→∞

f(x) = L ⇐⇒ ∀ ε > 0, ∃ M > 0 such that if x > M,
then |f(x)− L| < ε

The sentence limx→∞ f(x) = L can also be written:

As x→∞, f(x)→ L
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EXERCISE 4 ♣ Give a precise definition of:

lim
x→−∞

f(x) = L

Make a sketch that illustrates this limit statement. In English, what is this
definition saying?

oblique asymptotes An asymptote that is a line, but not a vertical or horizontal line, is called an
oblique asymptote.

For example, consider the function:

f(x) =
3x2 + 2x+ 10

x
= 3x+ 2 +

10

x

For large values of x (positive or negative), the number 10
x is close to zero.

Thus, for large values of x,
f(x) ≈ 3x+ 2 ,

and the line y = 3x+ 2 is an oblique asymptote for f . The graph of f is shown
below, along with the line y = 3x+ 2 .

Caution! Do not ‘abuse’ the abbreviated solution technique! It is fine to say: for large

values of x, f(x) ≈ 3x2

x = 3x, and from this gain the information that when x
is large, so is f(x). However, it is not correct to infer that y = 3x is an oblique
asymptote! Observe that the ‘multiply by 1 in an appropriate form’ technique
breaks down for this example:

lim
x→±∞

3x2 + 2x+ 10

x
= lim

x→±∞

3x2 + 2x+ 10

x
·

1
x2

1
x2

= lim
x→±∞

3 + 2
x + 10

x2

1
x

,

but the limit of the quotient cannot be written as the quotient of the limits,
since the denominator tends to 0.

When the degree of the numerator is greater than the degree of the denominator,
the correct technique is to rewrite the rational function as a sum, by doing a
long division. This is illustrated in the next example.
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EXAMPLE Problem: Find the oblique asymptote for f(x) = 2x3+3x2+x−2
x2−1 .

Solution: As x gets large, so does f(x). Do a long division:

Remember to stop when the degree of the remainder is strictly less than the
degree of the divisor. Thus:

f(x) = 2x+ 3 +
3x+ 1

x2 − 1

As x→ ±∞, 3x+1
x2−1 → 0 . Thus, when x is large,

f(x) ≈ 2x+ 3 ,

and the line y = 2x+ 3 is an oblique asymptote for f .

EXAMPLE

graphing a
rational function

Problem: Completely graph f(x) = x
x−1 .

Solution:

• D(f) = {x |x 6= 1}
Plot a few points:

Check behavior near x = 1 :

As x→ 1+, f(x)→ +∞. A convenient way to check this and write it down is:

f(1+) ≈ (+)

(small +)
→ +∞

The notation f(1+) connotes that f is being investigated on numbers that are
a little bit greater than 1; say, 1.01 and 1.001 .

The notation (+)
(small +) connotes a positive number divided by a small positive

number, which yields a large positive number. For example: 1.01
(1.01−1) = 1.01

0.01 =

101

Also:

f(1−) ≈ (+)

(small −)
→ −∞

That is, as x→ 1−, f(x)→ −∞.

For example: 0.99
0.99−1 = 0.99

−0.01 = −99

Thus, x = 1 is a vertical asymptote.
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• Compute the first derivative: f ′(x) = (x−1)(1)−x(1)
(x−1)2 = −1

(x−1)2

D(f ′) = D(f), and f ′(x) never equals 0. There are no critical points.

• Compute the second derivative: f ′′(x) = 2
(x−1)3

D(f ′′) = D(f), and f ′′(x) never equals 0. There are no candidates for
inflection points.

• Sign of the second derivative:

• Filling in some details:

As x→ ±∞, f(x) ≈ x
x = 1, so y = 1 is a horizontal asymptote.

A MATLAB graph of f(x) = x
x−1 is shown below.

EXAMPLE

graphing a
rational function

Problem: Completely graph f(x) = x
(x+1)2 .

Solution:

• D(f) = {x |x 6= −1}
Plot a few points:

Check behavior near x = −1 :

First, coming in to −1 from the right-hand side:

f(−1+) ≈ (−)

(small +)
→ −∞

Thus, as x→ −1+, f(x)→ −∞.

Next, coming in to −1 from the left-hand side:

f(−1−) ≈ (−)

(small +)
→ −∞

So, as x→ −1−, f(x)→ −∞.

The line x = −1 is a vertical asymptote.
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• Compute the first derivative:

f ′(x) =
(x+ 1)2(1)− x · 2(x+ 1)

(x+ 1)4

=
(x+ 1)(x+ 1− 2x)

(x+ 1)4

=
1− x

(x+ 1)3

D(f ′) = D(f); f ′(x) = 0 when x = 1, so (1, f(1)) = (1, 14 ) is a critical
point. Plot this point with a × .

• Compute the second derivative:

f ′′(x) =
(x+ 1)3(−1)− (1− x)3(1 + x)2

(x+ 1)6

=
(x+ 1)2[−(x+ 1)− 3(1− x)]

(1 + x)6

=
2x− 4

(1 + x)4

D(f ′′) = D(f); f ′′(x) = 0 when x = 2 . Thus, (2, f(2)) = (2, 29 ) is a possible
inflection point. Plot this point with a ×× .

• Sign of f ′′ :

A MATLAB graph of f(x) = x
(x+1)2 appears below.

• Fill in some details:

As x → ±∞, f(x) ≈ x
x2 = 1

x → 0, so the line y = 0 is a horizontal
asymptote.
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• Read off important information:

(1, 14 ) is a local maximum

(2, 29 ) is an inflection point

The line y = 0 is a horizontal asymptote.

The line x = −1 is a vertical asymptote.

The graph is increasing on (−1, 1) and decreasing on (−∞,−1) ∪ (1,∞).

The graph is concave down on (−∞,−1)∪(−1, 2) and concave up on (2,∞).

EXERCISE 5 Completely graph each of the following functions. Be sure to check for horizon-
tal, vertical, and oblique asymptotes.

♣ 1. f(x) =
2x3 − x2 + 1

x2

♣ 2. g(x) =
x2 − 3

x2 − 1

♣ 3. y =
1− 4x2

x2 + 1

EXERCISE 6 ♣ Completely graph: f(x) =
x3 + 2x2 − x− 2

x2 − 1
(Be careful!)

QUICK QUIZ

sample questions

1. What is an asymptote?

2. Write down a precise definition for the limit statement: lim
x→c−

f(x) = −∞

3. Find all asymptotes (horizontal, vertical, oblique) for: f(x) =
3x− 1

x+ 2

4. Under what condition(s) is the limit of a quotient equal to the quotient of
the limit?

KEYWORDS

for this section

Asymptotes, vertical, horizontal and oblique asymptotes, precise definitions of
limits involving infinity.

END-OF-SECTION
EXERCISES

♣ Re-do each of the graphing examples in this section, without looking at the
text. Be sure to write complete mathematical sentences. If you get stuck, then
study the text example, close the book, and try it yourself again.



NAME (1 pt)
SAMPLE TEST, worth 100 points, Chapter 5

Show all work that leads to your answers. Good luck!

15 pts Using the information that the first and second derivatives give, completely graph the
function P (x) = x3 − 3x + 2 in the space provided below. Clearly label any critical
points, inflection points, x and y-axis intercept(s).

12 pts TRUE or FALSE. Circle the correct response. (3 points each)

T F If (c, f(c)) is a critical point for f , then it is a local max or min.

T F If f ′(c) = 0 and f ′′(c) > 0, then the point (c, f(c)) is a local min.

T F The second derivative of a function f tells us about the concavity of f .

T F Suppose that (c, f(c)) is a critical point for f . If f ′(x) > 0 to the left of c, and
f ′(x) < 0 to the right of c, then (c, f(c)) is a local maximum for f .

339
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18 pts (4 pts) True or False: If a function f is continuous and nonzero on an interval I, then
it must be either positive or negative on this interval.

(6 pts) Find where the function f(x) = x(x−2)
x+3 is positive and negative. (Hint: Draw

a number line labeled ‘Sign of f(x)’.)

(8 pts) Find the open intervals on which f increases and decreases.

15 pts Give a precise definition of lim
x→∞

f(x) = L. Make a sketch that illustrates the definition.
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20 pts The graph of a function f is shown below. Read the following information off the graph.
Approximate where necessary. If a particular item does not exist, so state.

(1 ea) f(−2.5) f ′(−2.5) f ′(1) lim
x→−1

f(x)

(2 pts) open interval(s) where f increases:

(2 pts) open interval(s) where f ′ is negative:

(2 pts) open interval(s) where f is concave down:

(2 pts) open interval(s) where f ′′ is positive:

(2 pts) all local maximum point(s) for f :

(2 pts) all inflection point(s) for f :

(2 pts) all global maximum point(s) for f :

(2 pts) List all the critical points for f :

20 pts
Completely graph f(x) =

x + 1

x− 1
in the space provided below. Clearly label all asymp-

totes.
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CHAPTER 6

ANTIDIFFERENTIATION

In the previous two chapters, the focus has been on
differentiating a given function; i.e., given f , find f ′.

Our attention now shifts to a new idea: given a func-
tion f , we seek another function F whose derivative is
f . That is, given f , we seek F such that F ′ = f . So,
in a sense, we are undoing differentiation, and hence
the new function F is called an antiderivative of f .

The current chapter focuses on techniques for finding
the antiderivatives of a function. It will be seen that if
one has an antiderivative for a function f , then it can
be used to find the area bounded between the graph of
f and the x-axis.
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6.1 Antiderivatives

undoing
differentiation

In the previous sections, the focus has been on differentiating a given function:
given f , find f ′.

The question for the current chapter is this: given a function f , find another
function F whose derivative is f . That is, given f , we seek F such that F ′ = f .
So, in a sense, we are undoing differentiation.

a preliminary
example

Let f(x) = 3 . We want another function whose derivative is f . That is, we
seek a function F satisfying F ′(x) = f(x) = 3 .

Clearly, F (x) = 3x works, since in this case F ′(x) = 3 .

Also, F (x) = 3x + 1 works, since again F ′(x) = 3 .

Indeed, for any real number C, F (x) = 3x + C is a function whose derivative
is 3 .

the equation
F (x) = 3x + C
describes an
ENTIRE CLASS
of functions

Observe that the equation F (x) = 3x+C describes an entire class of functions
which have the same shape, but are translated up and down in the xy-plane.
There is one function for each choice of the number C.

What does
ANY function
with derivative 3
look like?

an application
of the
Mean Value Theorem

Are there any functions other than those of the form F (x) = 3x + C whose
derivative is 3? We will see momentarily that the answer is ‘No’.

Here’s the way mathematicians address such a question: they suppose there is
a function with derivative 3, and then proceed to show that it must actually be
of the form 3x + C.

Whenever derivative information is to be used to glean information about the
function itself, you should not be surprised to see the Mean Value Theorem.
Make sure you see how the Mean Value Theorem plays a crucial role in the next
argument.

Suppose G is
ANY function with
derivative 3 ...

Let F (x) = 3x+C, where C is any real number. Suppose that G is any function
with derivative 3. Observe that we are not assuming that G must be of the
form G(x) = 3x + C.

Then, we have both
F ′(x) = 3 and G′(x) = 3 ,

so that:
G′(x)− F ′(x) = 0

342
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Since the sum of the derivatives is the derivative of the sum, we can alternately
write:

(G− F )′(x) = 0

Now recall a result from the end of Chapter 4 . There, we learned that if the
derivative of a function is zero, then the function must be constant: this was
an application of the Mean Value Theorem. Thus, we must have

(G− F )(x) = K

for some constant K. That is,

G(x)− F (x) = K ,

or:
G(x) = F (x) + K = (3x + C) + K

... then, G must
be of the form
3x + C

Thus, we see that G must actually be of the form 3x + (some constant). It has
therefore been established that every function with derivative 3 must look like
3x + C for some constant C.

the derivative
of a function
completely
determines
its shape

The preceding argument is now generalized slightly. Suppose that functions f
and g are both differentiable (say on an open interval (a, b)), and suppose that:

f ′(x) = g′(x) ∀ x ∈ (a, b)

Then,
(f − g)′(x) = f ′(x)− g′(x) = 0 ,

so that (f − g)(x) = C for some constant C. That is,

f(x)− g(x) = C ,

and hence:
f(x) = g(x) + C

Thus, if two functions f and g have the same derivative, then they differ by at
most a constant. That is, functions that have the same derivative must have
the same shape. The functions f and g might not be the same function, but
the graph of one can be obtained from the graph of the other by a vertical
translation.

In other words, specifying the derivative of a function completely determines its
shape.

EXERCISE 1 ♣ Let f(x) = −1. Find all functions F for which F ′ = f . How many are there?
Sketch a few such functions F .
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EXERCISE 2 Consider the function f with graph shown below. Note that D(f) = R− {c}.
Sketch the graph of a function F satisfying each of the following properties:

♣ 1. F is continuous on R, and F ′(x) = f(x) for all x ∈ D(f)

♣ 2. Sketch another, different, function F satisfying the requirements above.

♣ 3. D(F ) = D(f), F ′(x) = f(x) for all x ∈ D(f), and F has a removable
discontinuity at c

♣ 4. D(F ) = D(f), F ′(x) = f(x) for all x ∈ D(f), and F has a nonremovable
discontinuity at c

EXERCISE 3 ♣ Consider the function f shown below. On the same graph, sketch two different
functions that have the same derivative as f .

DEFINITION

antiderivative;

arbitrary constant

A function F is called an antiderivative of a function f if

F ′(x) = f(x)

for every x in the domain of f .

Thus, an antiderivative of f is a function whose derivative is f .

If you are able to find a single antiderivative of f , call it F , then there are an
infinite number of antiderivatives, each of the form:

F (x) + C

Here, C represents any real number, and is called an arbitrary constant.

NOTATION
for antiderivatives:

indefinite integrals;

antidifferentiation;

integral sign;

integrand

The symbol ∫
f(x) dx

is called the indefinite integral of f , and represents all the antiderivatives of f .

The process of finding
∫
f(x) dx is called antidifferentiation (“undoing” differ-

entiation!)

The symbol
∫

is called the integral sign.

The function f that is being integrated is called the integrand.
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and dx are

an instruction pair
It may be helpful to view the integral sign

∫
and the symbol dx as an inseparable

instruction pair. The function of x (call it f) whose antiderivatives are desired
is placed between the symbols

∫
and dx. The instruction is then to find all

functions, whose derivatives with respect to x, equal f .

more notation:

integrals;

integration

Later on, we will study the definite integral of f on [a, b], to be denoted by the

symbol
∫ b

a
f(x) dx .

Both
∫
f(x) dx (the indefinite integral) and

∫ b

a
f(x) dx (the definite integral)

are called integrals.

The process of finding either
∫
f(x) dx or

∫ b

a
f(x) dx is called integration.

EXAMPLE

the constant C is
often called the
‘constant of integration’

Problem: Evaluate
∫

3 dx .

Solution: We are asked to find all the antiderivatives of the function f(x) = 3 .
That is, we are asked to find all functions of x, whose derivative with respect
to x is 3 . The solution is written concisely and correctly as:∫

3 dx = 3x + C

It is conventional that the letters C or K be used in this context to represent
an arbitrary constant (i.e., any real number). This arbitrary constant is also
referred to as the constant of integration.

It is important that you include the constant of integration. If you mistakenly
write ∫

3 dx = 3x ,

then you are claiming that the ONLY function whose derivative is 3 is the
function 3x. Not so! This is only one of an infinite class of functions that has
derivative 3 !

checking your
answers
by differentiating

If
∫
f(x) dx = F (x) + C, then F (x) + C is an antiderivative of f(x), so that:

d

dx

(
F (x) + C

)
= F ′(x) + 0 = f(x)

Thus, answers can always be checked by differentiating.
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Since the derivative of a constant is always zero, it is not necessary to include
‘C’ in the checking process. More simply, check that:

d

dx
F (x) = F ′(x) = f(x)

For example, to check that ∫
3 dx = 3x + C ,

one verifies that:
d

dx
(3x) = 3

practice with notation Observe what happens when the element dx is changed:∫
3 dx = 3x + C∫
3 dy = 3y + C∫
3 dω = 3ω + C

In the first case, d
dx (3x) = 3 .

In the second case, d
dy (3y) = 3 .

In the third case, d
dω (3ω) = 3 .

EXAMPLE Problem: Evaluate
∫

2x dx .

Solution: It is necessary to find any antiderivative of 2x; that is, a function with
derivative 2x. Then, all other antiderivatives will differ by at most a constant.

Observe that F (x) = x2 works, since F ′(x) = 2x.

Once we have a single antiderivative, we actually know them all. That is, any
other function with the same derivative must have precisely the same shape.
So: ∫

2x dx = x2 + C

CAUTION! Be careful not to write something like this:∫
2t dx = t2 + C

Taken literally, this says that

d

dx
t2 = 2t ,

which doesn’t make any sense: if we’re differentiating with respect to x, and
are not told otherwise, then we would have to assume that t is constant with
respect to x. Thus, d

dx t
2 = 0 . The MORAL: make sure the letter x in the

element ‘dx’ agrees with the variable of the function that you’re integrating!
(Unless, of course, you’re doing something unusual.)
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EXERCISE 4 Evaluate the following indefinite integrals. Be sure to write complete sentences.
Don’t forget to include the constant of integration.

♣ 1.
∫

3x2 dx

♣ 2.
∫

2y dy

♣ 3.
∫
et dt

♣ 4.
∫

2e2x dx

♣ 5.
∫

1
x dx Here, just find an antiderivative of 1

x on the interval (0,∞).

EXERCISE 5 For this exercise, assume that x > 0, so that lnx is defined.

Recall that F (x) = lnx has derivative F ′(x) = 1
x . Thus, lnx is an antiderivative

of 1
x , and hence: ∫

1

x
dx = lnx + C (*)

Also, G(x) = ln 2x has derivative G′(x) = 1
2x (2) = 1

x . Thus, ln 2x is an

antiderivative of 1
x , and hence:∫

1

x
dx = ln 2x + K (**)

Equation (*) tells us that every antiderivative of 1
x must be of the form lnx+C

for some constant C.

Equation (**) tells us that every antiderivative of 1
x must be of the form ln 2x+

K for some constant K.

♣ Reconcile these two statements. That is, how can they both be true?

linearity of
differentiation

If f and g are both differentiable functions of x, then

d

dx
(f(x) + g(x)) = f ′(x) + g′(x)

and:
d

dx
k · f(x) = k · f ′(x)

That is, the derivative of a sum is the sum of the derivatives, and constants can
be ‘slid out’ of the differentiation process.

These two properties together are referred to as the linearity of differentiation.
Alternately, one often says ‘differentiation is a linear process’.

We see next that the process of antidifferentiation obeys the same two prop-
erties: the integral of a sum is the sum of the integrals, and constants can be
‘slid out’ of the integral.
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EXERCISE 6 ♣ 1. What is meant by the phrase ‘linearity of differentiation’?

♣ 2. Identify all the places where the linearity of differentiation is used in the
following sentence:

d

dx
(x2 + 3

√
x) =

d

dx
(x2 + 3x1/2)

=
d

dx
x2 +

d

dx
3x1/2

= 2x + 3
d

dx
x1/2

= 2x + 3(
1

2
x−1/2)

= 2x +
3

2
√
x

linearity of
integration

Integration is a linear process, as is differentiation.

That is, the integral of a sum is the sum of the integrals:∫
f(x) + g(x) dx =

∫
f(x) dx +

∫
g(x) dx

Also, constants can be slid out of the integration process:∫
k f(x) dx = k

∫
f(x) dx

Together, these two properties are referred to as the linearity of the integral or
the linearity of integration.

partial proof
of the linearity
of integration

The fact that antidifferentiation is a linear process is a direct consequence of
the linearity of differentiation, as the following discussion illustrates.

Problem: Show that:∫ (
f(x) + g(x)

)
dx =

∫
f(x) dx +

∫
g(x) dx (†)

Solution: To begin, let F be an antiderivative of f (so that F ′ = f) and let G
be an antiderivative of g (so that G′ = g).

Then, ∫
f(x) dx = F (x) + C1

and ∫
g(x) dx = G(x) + C2 ,

where C1 and C2 are arbitrary constants.
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Then, the right-hand side of (†) becomes:∫
f(x) dx +

∫
g(x) dx = (F (x) + C1) + (G(x) + C2)

= F (x) + G(x) + (C1 + C2)

= F (x) + G(x) + C (1)

Here, the two arbitrary constants have been lumped together into a single
arbitrary constant.

Next, investigate the left-hand side of (†). What is
∫ (

f(x) + g(x)
)
dx ? We

need a function with derivative f(x)+g(x). But F (x)+G(x) is such a function:

d

dx
(F (x) + G(x)) = F ′(x) + G′(x) = f(x) + g(x)

Thus, the left-hand side of (†) becomes:∫ (
f(x) + g(x)

)
dx = F (x) + G(x) + C (2)

Compare (1) and (2)—they are identical. Thus, it has been shown that∫ (
f(x) + g(x)

)
dx =

∫
f(x) dx +

∫
g(x) dx ,

establishing that the integral of a sum is the sum of the integrals.

EXERCISE 7 ♣ 1. Similar to the preceding argument, prove that:∫
kf(x) dx = k

∫
f(x) dx

That is, constants can be ‘slid out’ of the integral.

♣ 2. Is
∫
x2 dx = x

∫
x dx? That is, can an ‘x’ be slid out of the integral?

Comment.

EXAMPLE

using the
linearity of
integration

The linearity of the integral can be used to solve a wide variety of integration
problems. For example:∫

(2x− 3) dx =

∫
2x dx +

∫
(−3) dx

=

∫
2x dx−

∫
3 dx

= (x2 + C1)− (3x + C2)

= x2 − 3x + (C1 − C2)

= x2 − 3x + C
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All arbitrary constants are always lumped into a single arbitrary constant. The
previous problem is never written out in all the detail shown above. It is more
simply written as: ∫

(2x− 3) dx = x2 − 3x + C

That is: find an antiderivative of 2x, subtract an antiderivative of 3, and add
on an arbitrary constant.

EXERCISE 8 ♣ Supply a reason for each line in this mathematical sentence:∫
(2x− 3) dx =

∫
2x dx +

∫
(−3) dx

=

∫
2x dx−

∫
3 dx

= (x2 + C1)− (3x + C2)

= x2 − 3x + (C1 − C2)

= x2 − 3x + C

EXAMPLE Often, it is necessary to rewrite the integrand before integrating:∫
ex − 1

ex
dx =

∫
ex

ex
− 1

ex
dx

=

∫
1− e−x dx

= x + e−x + C

Check:

d

dx
(x + e−x) = 1− e−x

=
ex

ex
(1− e−x)

=
ex − 1

ex

EXAMPLE As a second example: ∫
2

3x− 7
dx = 2

∫
1

3(x− 7
3 )

dx

=
2

3

∫
1

x− 7
3

dx

=
2

3
ln(x− 7

3
) + C

♣ Do you see where two arbitrary constants were combined in this argument?
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Check:

d

dx

2

3
(ln(x− 7

3
) =

2

3
(

1

x− 7
3

)

=
2

3x− 7

♣ Do you see where the linearity of differentiation was used in this check?

In the next few sections, additional tools are developed to help in the integration
process.

EXERCISE 9 Evaluate the following integrals. Be sure to write complete mathematical sen-
tences. Don’t forget to include the constant of integration.

♣ 1.

∫
(
1

x
+ ex − 1) dx

♣ 2.

∫
3− t

t
dt

♣ 3.

∫
1

x− 2
dx

♣ 4.

∫
1

3x− 5
dx

♣ 5.

∫
(x + 1)2 dx

a preview of
coming attractions

We will soon learn a very surprising fact: if f is a continuous nonnegative
function, and if we can find an antiderivative F of f , then we can use this
antiderivative to find the area trapped between the graph of f and the x-axis
over an interval [a, b] !

All we have to do is this: evaluate the antiderivative F at b to get F (b). Evaluate
F at a, to get F (a). Then:

desired area = F (b)− F (a)

This result is properly discussed in the next chapter. For now, just keep in
mind that the antiderivatives of a function have a very practical use! To close
this section, we look at a simple example of this surprising connection between
antiderivatives and area.
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EXAMPLE

finding area
using an
antiderivative

Problem: Find the area trapped beneath the graph of f(x) = 2x on the interval
[a, b], where 0 < a < b .

Solution: The desired area is a trapezoid, and calculus is certainly not needed,
in this case, to find it:

desired area =
1

2
(altitude)(sum of bases)

=
1

2
(b− a)(2a + 2b)

=
1

2
(b− a)2(a + b)

= (b− a)(b + a)

Now, let’s use calculus to get the same answer. This time, we first find an
antiderivative of f :

F (x) = x2 has derivative F ′(x) = 2x = f(x)

Then:
F (b)− F (a) = b2 − a2 = (b− a)(b + a)

Note that precisely the same result is obtained!

EXERCISE 10 ♣ 1. Graph f(x) = x.

♣ 2. On your graph, show the area trapped beneath the graph of f and the
x-axis on an interval [a, b], where 0 < a < b .

♣ 3. Compute this area, using the formula for the area of a trapezoid.

♣ 4. Next, observe that F (x) = x2

2 is an antiderivative of f , since F ′(x) =
1
2 (2x) = x = f(x). Use calculus to find the area being investigated. Com-
pare your answers.

QUICK QUIZ

sample questions

1. Suppose a function f(x) has derivative 2 everywhere. What does the graph
of f look like?

2. Fill in the Blank: specifying the derivative of a function completely deter-
mines its .

3. Find
∫

2 dt .

4. Name one use for the antiderivatives of a function.

5. What is meant by the phrase, ‘the linearity of differentiation’?

KEYWORDS

for this section

‘Undoing’ differentiation, the derivative of a function completely determines its
shape, antiderivative, arbitrary constant, indefinite integrals, antidifferentia-
tion, integral sign, integrand, integrals, integration, constant of integration, lin-
earity of differentiation, linearity of integration, connection between antideriva-
tives and area.
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END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression or a sentence.

♣ For any sentence, state whether it is TRUE, FALSE, or CONDITIONAL.

(Feel free to assume that all functions appearing below are infinitely differen-
tiable.)

1. F ′(x)

2. F ′(x) = 2

3.
∫
f(x) dx

4.
∫
f(t) dt

5.
∫
f(x) dx = F (x) + C

6.
∫

2 dx = 2x + C

7.
∫

2 dt = 2t + C

8.
∫

(f(x) + g(x)) dx =
∫
f(x) dx +

∫
g(x) dx

9.
∫
kf(x) dx = k

∫
f(x) dx

10.
∫
f ′(x) dx = f(x) + C

11. (Deriving the formula for the area of a trapezoid) A trapezoid is any
quadilateral with two parallel sides. The distance between the two parallel
sides is called the altitude of the trapezoid. The two parallel sides are called
the bases of the trapezoid.

The area of any trapezoid can be found as the sum of a rectangle and a
triangle, as illustrated below:

♣ Sum the areas of the rectangle and triangle, and conclude that:

area of a trapezoid =
1

2
(altitude)(sum of bases)



6.2 Some Basic Antidifferentiation Formulas

every differentiation
formula has a
‘counterpart’
antidifferentiation
formula

Every differentiation formula has a ‘counterpart’ antidifferentiation formula.
For example:

d

dx
(x) = 1 has ‘counterpart’

∫
(1) dx = x+ C

Why? The statement d
dx (x) = 1 tells us that x is an antiderivative of 1 .

That is, x is a function which, when differentiated, yields 1 . Then, all other
antiderivatives must have precisely the same shape; they can differ by at most
a constant.

Similarly:

d

dx
(x2) = 2x has ‘counterpart’

∫
2x dx = x2 + C

In this latter case, it would be more useful to have a formula for
∫
x dx, instead

of
∫

2x dx . Using the linearity of the integral, this is easy to get:

∫
2x dx = x2 + C ⇐⇒ 2

∫
x dx = x2 + C (linearity)

⇐⇒
∫
x dx =

(x2 + C)

2
(divide by 2)

⇐⇒
∫
x dx =

x2

2
+K (rewrite constant)

Since C is an arbitrary constant, so is C
2 . There is no sense in giving an arbitrary

constant a complicated name like C
2 ; so change the name to, say, K.

Thus, we have learned that: ∫
x dx =

x2

2
+ C

using the formula∫
x dx = x2

2 + C

With the formula ∫
x dx =

x2

2
+ C

in hand, and linearity of the integral, a number of integration problems can be
easily solved.

354
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EXAMPLE Problem: Evaluate
∫

3x dx .

Solution: First, the solution is written in strictly correct, painstaking detail.
Then, it is shown how the solution is commonly abbreviated.∫

3x dx = 3

∫
x dx (linearity)

= 3(
x2

2
+ C) (use formula for integrating x)

=
3x2

2
+ 3C (multiply)

=
3x2

2
+K (rewrite constant)

In practice, one recognizes that the final result will always have an added arbi-
trary constant. So: simply apply the formulas without the arbitrary constant,
and in the final step, remember to include it. This yields the common solution
appearance: ∫

3x dx = 3

∫
x dx = 3(

x2

2
) + C =

3x2

2
+ C

Similarly, one writes ∫
(πt− 4) dt = π

t2

2
− 4t+ C

and: ∫
2− t

7
dt =

1

7
(2t− t2

2
) + C =

4t− t2

14
+ C

EXERCISE 1 ♣ 1. What is the antidifferentiation ‘counterpart’ to the differentiation for-
mula

d

dx
(x3) = 3x2 ?

♣ 2. Use your ‘counterpart’ to obtain a formula for
∫
x2 dx .

♣ 3. Use your formula for integrating x2 to evaluate
∫

5x2 dx .

The next integration formula derives from the Simple Power Rule for Differen-
tiation:

d

dx
xn = nxn−1

It is thus appropriately named the ‘Simple Power Rule for Integration’.

Simple Power Rule
for Integration

Let n be any number except −1. Then:∫
xn dx =

xn+1

n+ 1
+ C

This formula is referred to as the Simple Power Rule for Integration.
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To verify this result, one need only check that:

d

dx

( xn+1

n+ 1

)
=

1

n+ 1

d

dx
(xn+1) =

1

n+ 1
(n+ 1)x(n+1)−1 = xn

Together with algebraic manipulation and linearity of the integral, this formula
allows us to solve a wide variety of antidifferentiation problems, as the following
examples illustrate.

EXAMPLE Problem: Evaluate
∫
x−3 dx .

Solution: ∫
x−3 dx =

x−3+1

−3 + 1
+ C =

x−2

−2
+ C = − 1

2x2
+ C

Check: d
dx

(
− 1

2x2

)
= d

dx (− 1
2x
−2) = − 1

2 (−2)x−3 = x−3

EXAMPLE Sometimes it is necessary to rewrite the integrand before integrating:

Problem: Evaluate
∫

1
x2 dx .

Solution: ∫
1

x2
dx =

∫
x−2 dx =

x−1

−1
+ C = − 1

x
+ C

Check: d
dx (− 1

x ) = d
dx (−x−1) = −(−1)x−1−1 = x−2 = 1

x2

Here, it was necessary to get the integrand into a form that could be handled
by the Simple Power Rule for Integration.

EXAMPLE Problem: Evaluate
∫
t(t2 + 1) dt .

Solution: ∫
t(t2 + 1) dt =

∫
(t3 + t) dt =

t4

4
+
t2

2
+ C

Check!

♣ Where was linearity of the integral used here?

EXAMPLE Problem: Evaluate
∫

(
4
√
x3 + 1) dx .

Solution:∫
(

4
√
x3 + 1) dx =

∫
(x3/4 + 1) dx (rewrite)

=
x

3
4+1

3
4 + 1

+ x+ C (use formulas and linearity)

=
4

7
x7/4 + x+ C (

3

4
+ 1 =

3

4
+

4

4
=

7

4
)

=
4

7
(x7)

1
4 + x+ C ((xa)b = xab)

=
4

7

4
√
x7 + x+ C

It’s a good rule of thumb to get your final answer in a form that matches, as
closely as possible, the original form of the problem. Since the original problem
was given in radical form (not fractional exponent form), the final answer was
also given in radical form.
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EXAMPLE Problem: Evaluate
∫

x2+1
x2 dx .

Solution: ∫
x2 + 1

x2
dx =

∫
1 +

1

x2
dx

=

∫
1 + x−2 dx

= x+
x−1

−1
+ C

= x− 1

x
+ C

=
x2 − 1

x
+ C

EXAMPLE Problem: Evaluate
∫

(3y2 − 1)2 dy .

Solution: ∫
(3y2 − 1)2 dy =

∫
(9y4 − 6y2 + 1) dy

= 9(
y5

5
)− 6(

y3

3
) + y + C

=
9

5
y5 − 2y3 + y + C

EXERCISE 2 Evaluate the following integrals. Be sure to write complete mathematical sen-
tences. Don’t forget to include the arbitrary constant. Check your answers.

♣ 1.

∫
(ax2 + bx+ c) dx, where a, b and c are constants

♣ 2.

∫
2
√
t− 1

t2
dt

♣ 3.

∫
(1 + 3

√
x)2 dx

♣ 4.

∫ √
3π

y4
− ey dy

♣ 5.

∫ (√
x− 1

x

)2

dx
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finding a particular
solution

An integration problem like∫
2(x− 1) dx = 2(

x2

2
− x) + C = x2 − 2x+ C

yields a whole class of functions, each of which has derivative 2(x − 1). Some
members of this class are shown below:

Occasionally, it is desired to go into this class, and choose a particular member;
one that passes through a specified point. For example, if we want a function
f satisfying the two properties

• f ′(x) = 2(x− 1), and

• (3, 2) lies on the graph of f

then we must find the constant C corresponding to the function shown below:

When will the function f(x) = x2 − 2x + C pass through the point (3, 2)?
Precisely when f(3) = 2 :

f(3) = 2 ⇐⇒ 32 − 2(3) + C = 2

⇐⇒ 3 + C = 2

⇐⇒ C = −1

Thus, the desired function is f(x) = x2 − 2x − 1. Problems such as this are
called ‘Finding a particular solution’.
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EXAMPLE Problem: Find a function y satisfying:

• dy
dx = x2 + 2, and

• the point (1, 5) lies on the graph of y

First, find all functions y with derivative x2 + 2 :

y =

∫
(x2 + 2) dx =

x3

3
+ 2x+ C

Since the desired curve is to contain the point (1, 5), C must be chosen to satisfy
the property that y = 5 when x = 1 :

(1, 5) on curve ⇐⇒ 5 =
13

3
+ 2(1) + C

⇐⇒ C = 3− 1

3
=

8

3

Thus, y = x3

3 + 2x+ 8
3 is the desired curve.

EXERCISE 3

finding
particular
solutions

♣ 1. Find a function y with derivative 2x− 3, that passes through the point
(0, 4) .

♣ 2. Find a function f satisfying the following properties:

a) f ′(x) =
√
x, and

b) f(1) = −2

EXERCISE 4 ♣ 1. Find a function f satisfying all the following properties:

a) f ′(x) = 2 for x > 1

b) f ′(x) = 3x2 for x < 1

c) f(1) = 0

d) f is continuous at x = 1

♣ 2. Find another function f satisfying all the properties above except the
last: this time, f should have a nonremovable discontinuity at x = 1 .

integrating ekx The antidifferentiation ‘counterpart’ of the differentiation formula d
dx (ekx) =

kekx is: ∫
kekx dx = ekx +K ⇐⇒

∫
ekx dx =

1

k
ekx + C

Summarizing:

integrating ekx ∫
ekx dx =

1

k
ekx + C

EXAMPLE Problem: Evaluate
∫
e3x dx .

Solution: ∫
e3x dx =

1

3
e3x + C
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EXAMPLE Problem: Evaluate
∫
e2t−1 dt .

Solution: ∫
e2t−1 dt =

∫
e2te−1 dt

= e−1
∫
e2t dt

= e−1(
1

2
e2t) + C

=
1

2
e2t−1 + C

Check: d
dt (

1
2e

2t−1) = 1
2 (e2t−1)(2) = e2t−1

integrating x−1 = 1
x Note that when n = −1, the Simple Power Rule for Integration does not apply,

because the formula xn+1

n+1 is not defined. Therefore, this rule cannot be used to

tell us how to integrate
∫
x−1 dx =

∫
1
x dx.

However, we do know a function whose derivative is 1
x :

d

dx
lnx =

1

x

Thus: ∫
1

x
dx = lnx+ C

However, there’s something undesirable about this formula. The function 1
x is

defined for all x except 0; however the antiderivatives lnx+C are only defined
for positive x. This problem can be remedied, and is the next topic of discussion.

investigating d
dx ln |x| The function y = ln |x| has the graph shown below. Note that:

ln |x| =
{

lnx for x > 0

ln(−x) for x < 0

The domain of ln |x| is precisely the same as the domain of 1
x : all nonzero x.

Now, is ln |x| an antiderivative of 1
x? That is, does d

dx ln |x| = 1
x for all x 6= 0?

It is shown next that the answer is ‘Yes’ !
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Each ‘piece’ of the function is differentiated separately.

For x > 0 : d
dx lnx = 1

x

For x < 0 : d
dx ln(−x) = 1

−x (−1) = 1
x

In either case the same formula is obtained, so that for all x 6= 0 :

d

dx
ln |x| = 1

x

The antiderivative ln |x| should always be used when integrating 1
x .

integrating 1
x ∫

1

x
dx = ln |x|+ C

EXAMPLE Problem: Find all the antiderivatives of 1
3x .

Solution: ∫
1

3x
dx =

1

3

∫
1

x
dx

=
1

3
ln |x|+ C

EXERCISE 5 Find all the antiderivatives of the following functions. Be sure to write your
answers using complete mathematical sentences.

♣ 1. f(x) = 1−
√
x

x

♣ 2. y =
(
t+1
t

)2
♣ 3. g(x) = 1

7x + e−x + 1

QUICK QUIZ

sample questions

1. What is the antidifferentiation ‘counterpart’ to the differentiation formula
d
dxe

kx = kekx ?

2. Find:
∫ √

x dx

3. Find:
∫

1
2t dt

4. Find a function f satisfying: f ′(x) = x and f(0) = 3

KEYWORDS

for this section

Differentiation ‘counterparts’, Simple Power Rule for Integration, finding par-
ticular solutions, integrating ekx, integrating 1

x .

END-OF-SECTION
EXERCISES

♣ Write three antidifferentiation problems, that can be solved with the tools
available to you.

The first problem should involve a radical; the second a binomial squared, and
the third a rational function.

Solve the three antidifferentiation problems, and then check, by differentiating.



6.3 Analyzing a Falling Object
(Optional)

Introduction In this section the motion of a falling object that is acted upon only by gravity
is studied; this is a beautiful application of antidifferentiation to a real-life
problem. Such an object travels in a (vertical) line, and it is thus first necessary
to understand motion along a line. This is the next topic of discussion.

a particle
traveling along
a line

Suppose the function d tells the position of a particle along a line at time t.
For convenience, distance along the line is measured in units of feet; time is
measured in seconds.

For example, the function d(t) = t describes a particle that is:

at position d(0) = 0 at t = 0

at position d(1) = 1 at t = 1

at position d(2) = 2 at t = 2

at position d(T ) = T at t = T

The particle travels to the right at a constant speed of 1 foot per second.

The function d(t) = t2 describes a particle that is:

at position d(0) = 0 at t = 0

at position d(1) = 1 at t = 1

at position d(2) = 4 at t = 2

at position d(T ) = T 2 at t = T

The particle travels to the right, and continually picks up speed as it travels.

362
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The function d(t) = −2t + 3 describes a particle that is:

at position d(0) = 3 at t = 0

at position d(1) = 1 at t = 1

at position d(2) = −1 at t = 2

at position d(3) = −3 at t = 3

at position d(T ) = −2T + 3 at t = T

This particle starts at position 3, and travels to the left at a uniform speed of
2 feet per second.

The function d(t) = |t− 2| describes a particle that is:

at d(0) = 2 at t = 0

at d(1) = 1 at t = 1

at d(2) = 0 at t = 2

at d(3) = 1 at t = 3

at d(4) = 2 at t = 4

at d(T ) = T − 2 at T > 2

This particle starts at 2, moves backward to zero, then turns around and travels
to the right. Except when it turns, the particle moves at a constant speed of
one unit per second.

EXERCISE 1 A particle traveling along a line is at position d(t) feet at t seconds. Describe
the resulting motion, if:

♣ 1. d(t) = 3t

♣ 2. d(t) = −3t

♣ 3. d(t) = −t2

♣ 4. d(t) = 2|t− 1|

instantaneous
velocity,
v(t) := d′(t)

Recall the instantaneous rate of change interpretation of the derivative: f ′(c)
gives the instantaneous rate of change of the numbers f(x) with respect to x,
at the point (c, f(c)).
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Specializing to the current setting, let d(t) represent the position of a particle
at time t. Then, d′(T ) gives the instantaneous rate of change of the numbers
d(t) with respect to time t, at the point (T, d(T )). That is, d′(T ) gives a
change in distance per change in time. This type of information is commonly
called velocity. Thus, d′(t) gives the (instantaneous) velocity at time t, and is
commonly denoted by v(t). That is:

v(t) := d′(t) = instantaneous velocity at time t

Remember that ‘:=’ means ‘equals, by definition’. Here, the name v(t) (‘v’, for
velocity) is being assigned to the derivative d′(t). If distance along the line is
measured in units of feet, and time is measured in seconds, then:

units of v(t) =
units of position

units of time
=

feet

second

EXAMPLE

finding v(t)

Consider the earlier examples.

When d(t) = t, then v(t) := d′(t) = 1 . At every time t, the instantaneous
velocity is 1 foot per second. No matter where the particle is currently sitting
on the line, it travels to the right at one foot per second.

EXAMPLE When d(t) = t2, then v(t) := d′(t) = 2t . In this case, the velocity of the particle
depends on the time at which we are investigating the particle.

At t = 0, the particle is at position d(0) = 02 = 0 ft, and has instantaneous
velocity d′(0) = 2 · 0 = 0 ft/sec .

At t = 1, the particle is at position d(1) = 12 = 1 ft, and has instantaneous
velocity d′(1) = 2 · 1 = 2 ft/sec .

At t = 2, the particle is at position d(2) = 22 = 4 ft, and has instantaneous
velocity d′(2) = 2 · 2 = 4 ft/sec .

At t = 3, the particle is at position d(3) = 32 = 9 ft, and has instantaneous
velocity d′(3) = 2 · 3 = 6 ft/sec .

The particle moves faster and faster as it travels along the line.

EXERCISE 2 ♣ Find v(t) for each of the distance functions from Exercise 1. Does this velocity
information agree with the description of the motion you gave in Exercise 1?
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EXAMPLE

‘velocity’
versus
‘speed’

When d(t) = −2t + 3, then v(t) := d′(t) = −2 . At every time t, the particle
has velocity −2 ft/second. That is, when t increases by 1, d(t) decreases by 2 .
Thus, the negative sign indicates that the particle is moving to the left.

The word speed is commonly used to describe how fast something moves, re-
gardless of the direction in which it moves. For example, if a particle travels
to the right, covering 2 feet per second, it has speed 2 ft/second. If a particle
travels to the left, covering 2 feet per second, it still has speed 2 ft/second.

Precisely, the speed of a particle at time t is given by the magnitude of velocity.
That is:

speed at time t = |v(t)|

Observe that velocity has both magnitude (size) and direction, but speed has
only magnitude.

EXAMPLE Problem: Suppose the position of a particle traveling along a line is given by
d(t) = t2 − 5t + 3 . Find the position, velocity, and speed of the particle at
t = 1. Suppose distance along the line is measured in meters; time is measured
in minutes.

Solution: The position of the particle at t = 1 is d(1) = 12 − 5 · 1 + 3 = −1
meters.

v(t) := d′(t) = 2t − 5; so the velocity at t = 1 is v(1) = 2 · 1 − 5 = −3
meters/minute.

The speed at t = 1 is |v(1)| = | − 3| = 3 meters/minute.

At t = 1, the particle is traveling to the left, at the rate of 3 meters per minute.

EXERCISE 3 ♣ Suppose the position of a particle traveling along a line is given by d(t) =
t3 − 2t2 + 3 . Suppose distance is measured in meters, and time is measured in
seconds. Find the position, velocity, and speed of the particle at: t = 1, t = −1,
t = 0, t = T

instantaneous
acceleration,
a(t) := v′(t) = d′′(t)

A change in velocity per change in time is commonly called acceleration. For
example, when a car ‘accelerates’, this means that its speed is increasing.

The function v′ gives the change in velocity per change in time. Thus, this
function v′ is renamed a, and called the ‘acceleration function’. Observe that
v′(t) = d

dtv(t) = d
dtd

′(t) = d′′(t). Precisely:

a(t) := v′(t) = d′′(t) = instantaneous acceleration at time t

What are the units of acceleration? Since acceleration is a change in velocity
per change in time, it has units of velocity

time . For example, if distance is measured
in feet and time in seconds, then:

units of acceleration =
ft/sec

sec
=

ft

sec2

Going ‘backwards’: when you see units of (say) ft/sec2 , it may be valuable to
remind yourself that this is ‘feet per second, per second’.

For example, consider the distance function d(t) = t. Here, differentiating once
yields v(t) = 1, and differentiating once more yields a(t) = 0 . The particle
always travels to the right with speed 1. Its velocity is not changing. Thus, its
acceleration is 0 .
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Next consider the distance function d(t) = t2. Here, v(t) = 2t and a(t) = 2 .
When time increases by 1, the velocity of the particle increases by 2. The
particle is speeding up. And no matter what time we look at the particle, it is
always speeding up at the same rate. It has a constant acceleration of 2 ft/sec2.

EXERCISE 4 ♣ 1. Find the acceleration functions for each of the distance functions from
Exercise 1. Think about your results.

♣ 2. Find the acceleration function for d(t) = 2t3 + t2 − 3t + 1 .

vectors A vector is a mathematical object that is completely characterized by two pieces
of information: a magnitude (size, absolute value) and a direction. Vectors are
conveniently represented using arrows: the length of the arrow represents the
magnitude of the vector; the direction that the arrow is pointing represents
the direction of the vector. The directions that vectors are allowed to take
on is determined by the ‘space’ in which the vectors live, as illustrated by the
examples below.

vectors in
a line

Suppose the ‘space’ in which the vectors ‘live’ is a line. In a line, there are only
two possible directions to move. If the line is positioned so that it is horizontal,
these two directions are conveniently referred to as ‘left’ and ‘right’. If the line
is positioned so that it is vertical, these two directions are conveniently referred
to as ‘up’ and ‘down’. For other orientations of the line, names for the two
directions are not so clear.

the starting point
of a vector
shows where
it is ‘acting’

Some vectors in a line are shown below. Note that each vector has a starting
point (the non-arrow end). This starting point indicates where the vector is
‘acting’.

For example, if vectors are being used to display velocity information of a
particle traveling along a line (distance measured in feet, time in seconds) then
the right-most vector below shows that when the particle is at position 1, it is
moving left at a speed of 1

2 foot/sec. The left-most vector below shows that
when the particle is at position −1, it is moving right at a speed of 1 foot/sec.

EXERCISE 5 ♣ 1. Suppose that when a particle is at position 5 on a line, it is moving left
at 2 feet/sec. Illustrate this information using a vector.

♣ 2. Suppose that when a particle is at position −2 on a line, its velocity is
1 ft/sec. Illustrate this information using a vector.

♣ 3. The distance function d(t) = t2−1 describes a particle’s motion along a
line (distance in feet, time in seconds). Illustrate the velocity information
on a distance axis, at t = 2 .
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vectors in the plane If vectors ‘live’ in a plane, then there are a lot more directions to move. Some
vectors in a plane are illustrated below.

free-body diagram We are now in a position to begin study of the motion of a falling object. A
famous law from physics, known as Newton’s Second Law of Motion, says that
the sum of the forces acting on an object completely determines the acceleration
of the object. Precisely:∑

(forces acting on an object) = (mass of object) · (acceleration of object)

In physics, vectors are commonly used to illustrate the forces acting on an
object; the resulting picture is called a free-body diagram (FBD).

For example, the object shown below has three forces acting on it. If this
object is viewed as a falling object, then these forces can be interpreted: the
force acting down is the force due to gravity; the small force acting upwards is
air resistance; and the remaining force could be due to a wind current.

acceleration due
to gravity;
g ≈ 32.2 ft/sec2

If air resistance and other minor forces are neglected, then the only force acting
on a falling body is the force due to gravity. For a particle falling relatively
close to the earth’s surface, the force due to gravity is given by

force due to gravity = (mass of object)(g) ,

where g denotes the acceleration due to gravity: g ≈ 32.2 ft/sec2

What shall we
call the ‘positive’
vertical direction?

Initially, we’ll agree
that ‘down’ is
the positive direction.

Newton’s Second Law is used to analyze the motion of a falling object; an
object traveling along the vertical line shown. First, however, an agreement
must be reached about what is the ‘positive’ direction of this vertical line. Very
often, ‘up’ is considered the positive direction. However, when working with
a falling object (which will be traveling down), it is often more convenient to
decide that ‘down’ will be the positive direction. Either way will work, as long
as one is consistent. Here, we will choose ‘down’ to be the positive direction.
In the exercises, you will get a chance to re-do this example, with ‘up’ being
the positive direction.



368 copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org

using
Newton’s Second Law

Letting m denote the mass of the falling object, and letting a(t) denote its
acceleration at time t, an application of Newton’s Second Law (with ‘down’ the
positive direction) says that:∑

forces acting on object = (mass of object) · (acceleration of object)

That is:
mg = m · a(t)

Observe that the simplifying assumptions have resulted in only one force act-
ing on the object. This is assumed to be the only force acting on the object
throughout its entire fall (until it hits the earth). Note that the force mg ap-
pears in this equation as a positive constant; this is because the force mg points
down, and it has been agreed upon that ‘down’ is the positive direction.

correct sign
for a(t) is
DETERMINED by
the equation

In this equation, the resulting acceleration a(t) of the object is the ‘unknown’.
The correct sign for a(t) is determined by the equation, based on the forces
present. That is, the unknown acceleration always appears simply as ‘a(t)’; it
would never enter the equation as, say, ‘−a(t)’.

using antidifferentiation
to find v(t) and d(t)

Once a(t) is found, this information (together with some additional information,
to be discussed momentarily) can be used to determine the velocity and distance
functions for the particle, by antidifferentiating. How? Well, the falling object
has some distance function d that describes its motion along the vertical line;
and it must be that d′′(t) = a(t). Roughly, we will ‘undo’ the known derivative
d′′(t) = a(t) to get information about d′ and d .

mass cancels out
of the equation
of motion

Observe that in the equation mg = m · a(t), the mass cancels out. Thus, under
the simplifying assumptions, the resulting acceleration of the object is NOT
dependent on the mass of the object. This has an extremely important physical
interpretation: if you simultaneously drop a penny and a concrete block from
the top of a tall building, they will both hit the ground at the same time!

After cancellation of m, the resulting equation is g = a(t). Since the unknown is
a(t), and it is common to put the unknown on the left, the equation is rewritten
as a(t) = g. Remember that g is a constant, g ≈ 32 ft/sec2.

finding v(t) Since a(t) = v′(t), the equation a(t) = g can be rewritten as:

v′(t) = g

The unknown velocity function v has derivative g. Do we know ANY function
of t that has derivative g? Of course: y = gt has derivative g. Thus, ANY
OTHER function with derivative g must have exactly the same shape, but may
be translated vertically. That is, any function with derivative g must be of the
form gt + C for some constant C.

These thoughts are commonly written down as a list of implications:

v′(t) = g =⇒
∫

v′(t) dt =

∫
g dt

=⇒ v(t) = gt + C

There are two important things to note about this mathematical sentence:
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two constants of
integration have
been combined

• When the integration was performed, two constants of integration were
really obtained: one from the integral on the left, and one from the integral
on the right. However, these two constants were combined into a single
constant, called C.

A =⇒ B =⇒ C
means
A⇒ B and B ⇒ C

• This mathematical sentence is of the form ‘A ⇒ B ⇒ C ’, which is short-
hand for ‘A ⇒ B and B ⇒ C ’. So whenever A is true, then B must
be true. And whenever B is true, then C must be true. It follows that
whenever A is true, C must be true.

Letting:

A be the sentence v′(t) = g

B be the sentence

∫
v′(t) dt =

∫
g dt

C be the sentence v(t) = gt + C ,

we conclude that whenever v′(t) = g, then v(t) = gt+C for some constant
C.

interpreting the
constant of integration;
initial velocity, v0

Read ‘v0’ as
‘v naught’

Let’s investigate the resulting equation v(t) = gt+C. This equation gives ALL
functions that have derivative g. At time zero, v(0) = g · 0 +C = C. Thus, the
constant C represents the initial velocity of the object, and is commonly denoted
by v0 . Read ‘v0’ as ‘v naught’. Thus, if the initial velocity of the falling object
is known, then the velocity of the object at ALL times t is known (until some
other force enters the picture, like the ground). If the object starts from rest,
then the initial velocity is zero.

integrate once more
to find d(t)

Now, use the fact that v(t) = d′(t), and integrate again:

v(t) = gt + v0 =⇒ d′(t) = gt + v0

=⇒
∫

d′(t) dt =

∫
(gt + v0) dt

=⇒ d(t) = g · t
2

2
+ v0t + K

initial position, d0

Read ‘d0’ as
‘d naught’

At time zero, d(0) = g · 0 + v0 · 0 + K = K, so the constant K represents the
initial position of the falling object. This initial distance is commonly denoted
by d0 . Read ‘d0’ as ‘d naught’.

choosing the zero
reference point
on the vertical line

To measure distance along a vertical line, one MUST know where the number
‘ 0 ’ lies. There are two common choices: the reference point ‘ 0 ’ can coincide
with the initial position of the falling object; or, ‘ 0 ’ can coincide with the
ground. Either choice is fine, providing one remains consistent when interpret-
ing the results. This should become clear in the examples below.

summary In summary, it has been found that if an object is acted on only by gravity,
then its distance function d is given by

d(t) =
gt2

2
+ v0t + d0 ,

where v0 represents the initial velocity of the object, and d0 represents the
initial position of the object.
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This equation was derived under the assumption that the positive direction of
the vertical line is ‘down’. The equation is valid until forces other than gravity
(like the ground) act on the object.

EXAMPLE Problem: Suppose that an object is dropped from a height of 100 feet. Answer
the following questions:

• What is its distance function?

• How long does it take the object to hit the ground?

• What is the speed of the object when it hits the ground?

Solution #1 Solution #1. It is usually safest to re-derive the equations yourself. It doesn’t
take very long, and this way you are CERTAIN of the conventions about what
is the positive direction, and what is the initial position.

Make a sketch, clearly showing the initial position of the object and the ground.
Show the initial force acting on the object. On a vertical line, clearly label your
choice for the positive direction, and your choice for ‘0’. Here, ‘down’ has been
chosen as the positive direction, and ‘0’ coincides with the initial position of
the object.

Observe that with this choice of measuring scale, d(0) = 0 .

Newton’s second law︷ ︸︸ ︷
mg = m · a(t) =⇒ v′(t) = g (cancel m, a(t) = v′(t), switch sides)

=⇒ v(t) = gt + v0 (integrate, v(0) = v0)

=⇒ v(t) = gt (v0 = 0)

=⇒ d′(t) = gt (v(t) = d′(t))

=⇒ d(t) =
gt2

2
+ d0 (integrate, d(0) = d0)

=⇒ d(t) =
gt2

2
(d0 = 0)

Thus, the distance function is:

d(t) =
gt2

2

For the chosen measuring scale, the ground is at position +100. So to answer
the question: ‘How long does it take the object to hit the ground? ’, the distance
function is set to 100, and solved for t :

gt2

2
= 100 ⇐⇒ t2 =

200

g

⇐⇒ t = ±
√

200

g

The nonnegative number t that makes this true is:

t =

√
200

g
≈

√
200 ft

32 ft/sec2
= 2.5 seconds

The object will hit the ground in approximately 2.5 seconds.
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What does
A = B ≈ C = D
mean to us?

Let’s be sure we agree upon what the sentence

t =

√
200

g
≈

√
200 ft

32 ft/sec2
= 2.5 seconds

really means. Earlier in the text, it was decided that when a ‘chain’ like

A = B ≈ C = D

appears, the symbols (in this case, ‘≈’ and ‘=’) always compare the objects to
their immediate left and right.

Thus,

t =

√
200

g

is a true equality, because
√

200
g is the exact desired time. However,

√
200

g
≈

√
200 ft

32 ft/sec2

is an approximation, because the value of g is being approximated. And,√
200 ft

32 ft/sec2
= 2.5 seconds

is a true equality, because
√

200
32 is precisely 2.5.

Note that if there is at least one ‘≈ ’ in a chain, then the first thing in the
chain is only approximately equal to the last in the chain. That is, in a chain
like

A = B ≈ C = D ,

it follows that A ≈ D. The ‘strength’ of a chain is determined by its weakest
link!

The velocity function was found above to be v(t) = gt . Thus, the velocity at
time t = 2.5 is:

v(2.5) = g · (2.5) ≈ (32
ft

sec2
)(2.5 sec) = 80 ft/sec

Observe that the parentheses in v(2.5) are being used for function evaluation,
NOT multiplication. That is, v(2.5) means the function v, evaluated at 2.5 .



372 copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org

Solution #2 Solution #2. This time, a different choice for ‘ 0 ’ is made; ‘0’ coincides with
the ground. Since ‘down’ is still the positive direction, the choices lead to
d(0) = −100 . Now we get:

mg = m · a(t) =⇒ v′(t) = g

=⇒ v(t) = gt + v0

=⇒ v(t) = gt

=⇒ d′(t) = gt

=⇒ d(t) =
gt2

2
+ d0

=⇒ d(t) =
gt2

2
− 100

♣ Fill in a reason for each step in the preceding derivation.

This time, the distance function looks slightly different; it is given by:

d(t) =
gt2

2
− 100

However, we will obtain precisely the same information as we did previously.
(We must!)

The object hits the ground at time t for which d(t) = 0 . That is:

gt2

2
− 100 = 0

This happens when t =
√

200
g ≈ 2.5 seconds.

The velocity function is still v(t) = gt, so still v(2.5) ≈ 80 ft/sec.

EXERCISE 6 ♣ Re-do the previous example, with the conventions:

• ‘up’ is the positive direction

• ‘0’ coincides with the initial position of the object

Be sure that you obtain the same answers!

EXERCISE 7 ♣ Re-do the previous example, with the conventions:

• ‘up’ is the positive direction

• ‘0’ coincides with the ground

Be sure that you obtain the same answers!
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EXERCISE 8 Suppose an object is dropped from rest at a height of 200 feet. Answer the
following questions, being careful to distinguish ‘=’ from ‘≈’ in your solutions:

♣ 1. What is the distance function for the falling object? What conventions
have you used in your derivation?

♣ 2. How long will it take the object to hit the ground?

♣ 3. Where is the object after 1 second? 2 seconds?

♣ 4. The object falls past a 100 foot building. How long does it take to reach
the top of this building?

♣ 5. What is the velocity of the object at 1 second? 2 seconds? When it hits
the ground?

♣ 6. For how many seconds is the equation of motion that you derived valid?

EXAMPLE Problem: Suppose a person standing at the top of a 150 foot cliff reaches out
and throws an object upwards with an initial speed of 10 ft/sec. Answer the
following questions:

• What is the distance function for the object? (Derive it.)

• What is the velocity function for the object?

• How long will it go up, before it starts to come down again?

• What is the maximum height that the object will reach?

• How long will it be before the object passes the person who threw it?

• When will the object hit the ground?

Solution. Choose ‘up’ to be the positive direction, and ‘0’ to coincide with the
initial position of the object. Observe that the force acting on the object points
DOWN, which is now the negative direction. Then:

−mg = m · a(t) =⇒ a(t) = −g
=⇒ v′(t) = −g
=⇒ v(t) = −gt + v0

=⇒ v(t) = −gt + 10

=⇒ d′(t) = −gt + 10

=⇒ d(t) = −gt2

2
+ 10t + d0

=⇒ d(t) = −gt2

2
+ 10t

Thus, the distance and velocity functions are given by:

d(t) = −gt2

2
+ 10t and v(t) = −gt + 10

♣ Fill in reasons justifying each step in the preceding derivation.

When the object reaches its maximum height, its velocity is 0 :

0 = −gt + 10 ⇐⇒ t =
10

g
≈ 0.31 seconds

Thus, the object rises for about 0.31 seconds, before it turns around to come
down again.
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At t = 0.31 :

d(0.31) = −g(0.31)2

2
+ 100(.31) ≈ 1.56 feet

Remember that this position is relative to the ‘0’ mark; the top of the cliff. Thus,
the maximum height the object reaches is 150 + 1.56 = 151.56 feet. (Observe
that the height of the person who threw the object is being neglected.)

The person on the cliff is at position 0 relative to the chosen scale. Thus, we
must set d(t) equal to 0 and find the nonnegative value of t that makes this
true:

−gt2

2
+ 10t = 0 ⇐⇒ t(−gt

2
+ 10) = 0

⇐⇒ t = 0 or − gt

2
+ 10 = 0

⇐⇒ t = 0 or t =
20

g
≈ 0.63 seconds

It takes the object about 0.63 seconds to pass the person who threw it.

The object hits the ground when d(t) = −150, relative to the chosen scale:

−gt2

2
+ 10t = −150 ⇐⇒ −gt2

2
+ 10t + 150 = 0

⇐⇒ t =
−10±

√
(10)2 − 4(− g

2 )(150)

2(−g/2)

⇐⇒ t ≈ −2.77 secs or t ≈ 3.39 secs

Choosing the nonnegative answer, the object hits the ground after approxi-
mately 3.39 seconds.

QUICK QUIZ

sample questions

1. What is the difference between ‘speed’ and ‘velocity’?

2. Suppose that the distance function for an object is given by d(t) = t2 +
2t . Let distance be measured in feet, time in seconds. Find the position,
velocity, speed, and acceleration of the object at t = 1 .

3. What is a ‘vector’?

4. What is a ‘free body diagram’?

5. Suppose that v(t) = gt . In the sentence ‘v(2) = g(2)’, what does ‘v(2)’
mean? What does ‘g(2)’ mean?

KEYWORDS

for this section

Motion along a line, instantaneous velocity and acceleration, velocity versus
speed, vectors, vectors in a line, vectors in space, free-body diagrams, acceler-
ation due to gravity, Newton’s second law of motion, using antidifferentiation
to find v(t) and d(t), interpreting the constants of integration, distinguishing
between ‘ = ’ and ‘≈ ’.
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END-OF-SECTION
EXERCISES

♣ Suppose a person standing at the top of a 75 foot cliff reaches out and throws
an object upwards with an initial speed of 20 ft/sec. You may ignore the height
of the person throwing the object. Answer the following questions:

1. What is the distance function for the object? (Derive it. Use any appro-
priate conventions.)

2. What is the velocity function for the object?

3. How long will it go up, before it starts to come down again?

4. What is the maximum height that the object will reach?

5. How long will it be before the object passes the person who threw it?

6. When will the object hit the ground?



6.4 The Substitution Technique for Integration

a recurrent theme
in mathematics;
transforming a difficult
problem into an
easier one

A recurrent theme in mathematics is that of transforming a problem that is
difficult to solve into one that is easier to solve.

This idea has already been used extensively: in the process of solving an equa-
tion, one transforms the original equation into an equivalent one (that is, one
with the same solution set) that is easier to work with.

In this section, a method is studied by which it is often possible to transform
a difficult integration problem into one that is much easier. The transformed
problem is then solved, and the solution used to obtain the solution of the
original problem. The technique is referred to as substitution.

EXAMPLE

the substitution
technique
for integration

Here’s an example that illustrates the technique. Suppose one wants to find:∫
(3− 4x2)100(−8x) dx

Theoretically at least, this problem is solvable with the tools currently available:
one need ‘only’ multiply out (3 − 4x2)100, multiply this by −8x, and then
integrate the resulting polynomial term-by-term. Practically speaking,

there must be a better way,

and there is.

376
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do some renaming Let’s do some ‘renaming’. Define a new variable u by u := 3 − 4x2, and
differentiate to see that du

dx = −8x. There just happens to be a −8x in the
integrand. So, the integral can be rewritten in terms of u:

∫
(

u︷ ︸︸ ︷
3− 4x2)100

du
dx︷ ︸︸ ︷

(−8x) dx =

∫
u100

du

dx
dx

Motivated by ‘ cancelling the dx’s ’, one might conjecture that an equivalent
problem is ∫

u100 du ,

which is a problem that can be solved easily:
∫
u100 du = u101

101 + C

♣ What is a ‘conjecture’?

Indeed, u101

101 + C is the solution of
∫
u100 dudx dx, since by the extended power

rule for differentiation:

d

dx

u101

101
=

1

101
(101u101−1)

du

dx
= u100

du

dx

(Remember that u is a function of x, and differentiate accordingly.) Next,

transform the solution u101

101 +C back to the variable x . Since u = 3− 4x2, the
solution to the original problem is:∫

(3− 4x2)100(−8x) dx =
(3− 4x2)101

101
+ C

EXERCISE 1 ♣ Check, by differentiating, that:∫
(3− 4x2)100(−8x) dx =

(3− 4x2)101

101
+ C

simplified notation
for the
previous problem

Henceforward, here’s how the previous problem will be written down:

∫
(

u︷ ︸︸ ︷
3− 4x2)100

du︷ ︸︸ ︷
(−8x) dx =

∫
u100 du

=
u101

101
+ C

=
(3− 4x2)101

101
+ C
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Observe several important features of this solution:

• Write the substitution (u = 3 − 4x2, in this case) directly under the inte-
gration problem.

• When u is a function of x, du is found by first differentiating u with respect
to x

du

dx
= −8x

and then ‘multiplying’ both sides by dx to obtain du. The justification for
this procedure was motivated by the first example.

Usually, one doesn’t bother to write down the intermediate step du
dx = −8x.

• Line up the equal signs as you are solving the problem. This form makes
it easy to see the original integration problem and the solution at a glance.

• Once the solution in terms of the new variable u is obtained, rewrite this
solution in terms of the original variable, x.

EXERCISE 2 ♣ Supply a reason for each step:

∫
(

u︷ ︸︸ ︷
3− 4x2)100

du︷ ︸︸ ︷
(−8x) dx =

∫
u100 du

=
u101

101
+ C

=
(3− 4x2)101

101
+ C

Don’t mix
variables!

Don’t ever ‘mix’ variables when writing down your solution, like in:

∫
(3− 4x2)100x dx =

∫ BAD!︷ ︸︸ ︷
u100x︸ ︷︷ ︸

u and x mixed

dx = · · ·

Get everything ready to change to the new variable, and then do it—all at once.

choosing a
‘u that works’

Strategy: choose
something for u
such that du

dx
also appears
in the integrand

Not all problems are solvable by substitution, but many are. If you are faced
with a difficult integration problem, the technique of substitution should always
be tried. The challenge is, of course, to find a choice for u that ‘works’. Here’s
the general strategy:

• Choose something for u so that its derivative du
dx appears as a factor in the

integrand (possibly off by a constant).

Often, as examples will illustrate, u is something that is raised to a power, or
under a radical.

In the previous example, u was chosen to be 3−4x2 because it was noted that the
derivative, −8x, was also a factor in the integrand. Actually, it is only critical
that the variable part of the derivative appear in the integrand; linearity of the
integral can be used to take care of constants, as the next example illustrates.
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EXAMPLE

introducing a
constant;
multiply by 1 in
an appropriate form

Problem: Evaluate
∫

(3− 4x2)100 x dx .

Solution: Note the similarity to the previous example. The only difference is
that this time the ‘−8’ is missing.

The substitution u = 3 − 4x2 is still a good choice, since d
dx (3 − 4x2) = −8x,

and the variable part of this derivative, x, appears as a factor in the integrand.

To transform the problem into an integral in u, it is necessary to bring a −8
into the picture, without changing the problem. This can be accomplished by
the usual technique of multiplying by 1 in an appropriate form:∫

(3− 4x2)100x dx =

∫
(3− 4x2)100

(−8

−8

)
x dx (multiply by 1 in form

−8

−8
)

=
1

−8

∫
(

u︷ ︸︸ ︷
3− 4x2)100

du︷ ︸︸ ︷
(−8x) dx (linearity of integral)

= −1

8

∫
u100 du (transform to u)

= −1

8
· u

101

101
+ C (solve problem in u)

= −1

8
· (3− 4x2)101

101
+ C (rewrite in x)

Since constants can be ‘slid out’ of the integral, we were able to ‘get rid of’ the
undesired ‘ 1

−8 ’ in the integrand. Only the −8 was left in the integrand, since
this was needed as part of du.

EXERCISE 3 ♣ 1. Check, by differentiating, that:∫
(3− 4x2)100x dx = −1

8
· (3− 4x2)101

101
+ C

♣ 2. Where and how was the linearity of the integral used in arriving at this
solution?

The technique of substitution is further illustrated with a number of examples.
Pay particular attention to the complete mathematical sentences in each of these
examples.

EXAMPLE

evaluate an integral

Problem: Evaluate
∫

(t+ 10)7 dt .

Solution:

∫
(

u︷ ︸︸ ︷
t+ 10)7

du︷︸︸︷
dt =

∫
u7 du

=
u8

8
+ C

=
(t+ 10)8

8
+ C

Check:
d

dt

(t+ 10)8

8
=

1

8
· 8(t+ 10)7(1) = (t+ 10)7
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EXAMPLE

find all the
antiderivatives
of a function

Problem: Find all the antiderivatives of
x2√
x3 − 1

.

Solution: ∫
x2√
x3 − 1

dx =
1

3

∫
3x2√
x3 − 1

dx

=
1

3

∫
1√
u
du

=
1

3

∫
u−1/2 du

=
1

3
· u

1/2

1/2
+ C

=
2

3

√
x3 − 1 + C

EXERCISE 4 ♣ 1. Why was u chosen to be x3 − 1 in the previous example?

♣ 2. Supply reasons for each step in the previous example. In particular,
make sure you identify where the linearity of the integral was used.

♣ 3. Check the previous solution, by differentiating.

EXAMPLE

integrate

Problem: Integrate:

∫
y + 1

(y2 + 2y + 1)3
dy

Solution: ∫
y + 1

(y2 + 2y + 1)3
dy =

∫
( 1
2 )(2)(y + 1)

(y2 + 2y + 1)3
dy

=
1

2

∫
2y + 2

(y2 + 2y + 1)3
dy

=
1

2

∫
1

u3
du

=
1

2

∫
u−3 du

=
1

2
· u
−2

−2
+ C

= − 1

4u2
+ C

= − 1

4(y2 + 2y + 1)2
+ C

EXERCISE 5 ♣ 1. Why was u chosen to be y2 + 2y + 1 in the previous example?

♣ 2. Rewrite the previous example, using the dummy variable x instead of
the dummy variable y. Do not look at the text while you are solving the
problem.

♣ 3. Check the solution to the previous example, by differentiating.
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EXAMPLE

two different
approaches to
the same problem

Problem: Find
∫
e4+x dx in two different ways.

Old way: New way:∫
e4+x dx =

∫
e4ex dx

∫
e4+x dx =

∫
eu du

= e4
∫
ex dx = eu + C

= e4 · ex + C = e4+x + C

= e4+x + C

Which was easier?

EXAMPLE∫
ekx dx = 1

ke
kx + C

Problem: Find a formula for integrating ekx, for any nonzero constant k.

Solution: ∫
ekx dx =

1

k

∫
k · ekx dx

=
1

k

∫
eu du

=
1

k
eu + C

=
1

k
ekx + C

This is a nice formula to remember. Thus, for example:∫
7e3x dx = 7(

1

3
)e3x + C =

7

3
e3x + C

EXAMPLE Some people take a slightly different approach when solving problems like∫
e4+x dx and

∫
e3x dx, as illustrated below:

∫
e4+x dx =

∫
du

∫
e3x dx =

1

3

∫
3e3x dx

= u+ C =
1

3

∫
du

= e4+x + C =
1

3
u+ C

=
1

3
e3x + C

Variety is the spice of life. Which way do you prefer?

EXAMPLE

finding a
particular solution

Problem: Find a function f satisfying the following two conditions:

• the graph of f passes through the point (0, 1)

• f ′(x) =
1

3x+ 5
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Solution: First, find ALL functions f that have derivative 1
3x+5 . That is, find

all the antiderivatives of f ′:

f(x) =

∫
f ′(x) dx

=

∫
1

3x+ 5
dx

=
1

3

∫
3

3x+ 5
dx

=
1

3

∫
1

u
du

=
1

3
ln |u|+ C

=
1

3
ln |3x+ 5|+ C

A problem like this was integrated earlier in the chapter, via a different tech-
nique. (See, for example, page 350.) Which technique do you prefer?

Check: Remember:
d

dx
ln |x| = 1

x

An application of the Chain Rule gives:

d

dx
ln |f(x)| = 1

f(x)
· f ′(x)

Then:
d

dx
(
1

3
ln |3x+ 5|) =

1

3
· 1

3x+ 5
· 3 =

1

3x+ 5

Second, choose the antiderivative that passes through the desired point:

(0, 1) lies on graph of f(x) =
1

3
ln |3x+ 5|+ C ⇐⇒ f(0) = 1

⇐⇒ 1

3
ln 5 + C = 1

⇐⇒ C = 1− ln 5

3

⇐⇒ C =
3− ln 5

3

Note how this was written down using a complete mathematical sentence.

The desired function is therefore:

f(x) =
1

3
ln |3x+ 5|+ 3− ln 5

3

=
ln |3x+ 5|+ 3− ln 5

3
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EXERCISE 6 ♣ 1. Use the Chain Rule to prove that:

d

dx
ln |f(x)| = 1

f(x)
· f ′(x)

♣ 2. Verify that the function

f(x) =
ln |3x+ 5|+ 3− ln 5

3

has a graph that passes through the point (0, 1), and has derivative f ′(x) =
1

3x+5 .

EXAMPLE

antidifferentiate

Problem: Antidifferentiate
lnx

x
.

Solution: ∫
lnx

x
dx =

∫
u du

=
u2

2
+ C

=
1

2
(lnx)2 + C

Check:
d

dx
(
1

2
(lnx)2) =

1

2
· 2(lnx)(

1

x
) =

lnx

x

EXAMPLE

using a letter
different than ‘u’
for the substitution
variable

Problem: Evaluate
∫

(2− u)4 du .

Solution: Just use a letter different than ‘u’ for the substitution variable! Here,
the letter ‘w’ is used. ∫

(2− u)4 du = −
∫

(2− u)4(−du)

= −
∫
w4 dw

= −w
5

5
+ C

= −1

5
(2− u)5 + C

QUICK QUIZ

sample questions

1. What is the idea behind the substitution technique for integration?

2. Solve
∫

1
2x−1 dx two ways; without using substitution, and using substitu-

tion. Do your answers agree?

3. Where is linearity of the integral used in the substitution technique?

4. Solve:
∫
e3x dx

5. Is
∫

(3x+ π)5 dx = (3x+π)6

18 + C ? Justify your answer.

KEYWORDS

for this section

Transforming a difficult problem into an easier one, the substitution technique
for integration, choosing a ‘u that works’, multiplying by 1 in an appropriate
form.
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END-OF-SECTION
EXERCISES

♣ Evaluate the following indefinite integrals. Be sure to write complete math-
ematical sentences. Check your answers by differentiating.

1.

∫
(2x− 1)17 dx

2.

∫
5t
√
t2 + 3 dt

3.

∫
3 ln 4x

x
dx

4.

∫
(4e2t + e1+t) dt

5.

∫
e
√
x

√
x
dx

6.

∫
−1

2u+ 5
du

7.

∫
4t+ 2√

(t2 + t+ 1)3
dt

8.

∫
(ex + 1)5 · 3ex dx

9. Find a function f whose graph passes through the point (0, 4), and that
has derivative f ′(x) = ex(ex + 1)3.

10. A particle traveling along a line has velocity function given by:

v(t) = (t− 2)3

It is known that at t = 1, the particle is at position 1
2 . Find the distance

function for this particle.

11. A student passed in the following solution to an integration problem:∫
(x2 + 1)5 dx =

∫
2x

2x
(x2 + 1)5 dx

=
1

2x

∫
(x2 + 1)5(2x dx)

=
1

2x

∫
u5 du

=
1

2x

u6

6
+ C

=
1

2x

(x2 + 1)6

6
+ C

=
(x2 + 1)6

12x
+ C

♣ a) Do you believe that this is a correct solution? If not, where has the
student made a mistake?

♣ b) Check the student’s solution by finding d
dx

(x2+1)6

12x . (Use the quotient
rule.) Is the student’s solution correct?



6.5 More on Substitution

integration is
more difficult
than differentiation

Integration is more difficult than differentiation. To differentiate a function,
one only needs to recognize the form of the function—a product, a quotient, a
composite function—and then use the appropriate differentiation tool. There
is a much bigger ‘bag of tricks’ associated with integration. For the most part,
people who are good at integrating are people who have had lots of experience
integrating. Over time, with lots of practice, you will learn to recognize different
types of integration problems, and apply appropriate tools.

more advanced
substitution techniques

The substitution technique discussed in the previous section is the ‘basic model’
of substitution. In this section, more advanced substitution techniques are
investigated.

a slight twist
on the ‘basic model’
of substitution

Consider the integration problem:∫
x(x + 1)10 dx

From a theoretical viewpoint, since x(x+1)10 is just a polynomial, the problem
is easy. From a computational viewpoint, one certainly doesn’t want to multiply
out (x + 1)10. And, the ‘basic model’ of substitution doesn’t seem to work at
first glance: one could try letting u = x + 1, but there’s an extra ‘x’ in the
integrand, that cannot be pulled out of the integral.

Study the next example, to see how this ‘problem’ is overcome.

EXAMPLE Problem: Solve
∫
x(x + 1)10 dx .

Solution: Define u := x + 1 . Then, du = dx, and (writing x in terms of u),
x = u− 1. Transforming the integral in x to an integral in u yields:∫

x(x + 1)10 dx =

∫
(u− 1)u10 du

=

∫
u11 − u10 du

=
u12

12
− u11

11
+ C

=
(x + 1)12

12
− (x + 1)11

11
+ C

What made this work? Firstly, it was possible to rewrite the entire integrand
in terms of u. Secondly, the resulting function of u was easier to integrate than
the original function of x.

‘role reversal’ Note that the substitution u = x + 1 in the previous example transformed∫
x(x + 1)10 dx to

∫
(u− 1)u10 du ;

in the first integral, the sum is raised to the tenth power, and in the second
integral, the singleton is raised to the tenth power. Hence, the substitution
provided a sort of ‘role reversal’. The next few examples illustrate the use of
substitution for this type of ‘role reversal’.

385
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EXAMPLE

‘role reversal’

Problem: Find

∫
x

x + 1
dx .

Solution: The problem is of the form
∫

singleton
sum dx. If the problem were instead

of the form
∫

sum
singleton dx, then it would be easy, since, for example, x+1

x = 1+ 1
x .

Thus, the denominator is ‘transformed to a singleton’ by defining u := x + 1:∫
x

x + 1
dx =

∫
u− 1

u
du

=

∫
(1− 1

u
) du

= u− ln |u|+ C

= (1 + x)− ln |1 + x|+ C

= x− ln |1 + x|+ K

In the last step, the constant 1 was absorbed into the constant of integration,
to obtain a simpler answer.

Check:
d

dx
(x− ln |1 + x|) = 1− 1

1 + x
=

1 + x− 1

1 + x
=

x

1 + x

alternate solution;
long division

Here’s an alternate solution to the integration problem

∫
x

1 + x
dx .

Alternate Solution: First, do a long division. Remember that when you divide
by a polynomial, you want to write the divisor so that the powers of x decrease
as you go from left to right:

Thus,
x

x + 1
= 1− 1

x + 1
. Then:

∫
x

x + 1
dx =

∫
(1− 1

x + 1
) dx

= x− ln |x + 1|+ C

EXERCISE 1 ♣ Find

∫
3t

t− 1
dt in two ways. First, use the ‘role reversal’ substitution

technique. Second, use long division.
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EXAMPLE Problem: Find all the antiderivatives of
3t

2t + 1
.

Solution: In problems such as this, it is often easier to keep track of things if
‘dt’ is solved for in terms of ‘du’:∫

3t

2t + 1
dt = 3

∫
t

2t + 1
dt

= 3

∫ u−1
2

u

du

2

=
3

4

∫
u− 1

u
du

=
3

4

∫
1− 1

u
du

=
3

4
(u− ln |u|) + C

=
3

4
(2t + 1− ln |2t + 1|) + C

=
3

4
(2t− ln |2t + 1|) + K

The technique worked, because it was possible to rewrite the integrand entirely
in terms of u, AND the resulting function of u was easier to integrate than the
initial function of x.

♣ What was done in the last step of the previous integration?

EXERCISE 2 ♣ Evaluate
∫

2t
3t−1 dt in two ways. First, use the ‘role reversal’ substitution

technique. Second, use long division.

EXAMPLE Problem: Find

∫
3x

(2x− 1)5
dx .

Solution: ∫
3x

(2x− 1)5
dx = 3

∫
(u + 1)/2

u5

du

2

=
3

4

∫
u + 1

u5
du

=
3

4

∫
(u−4 + u−5) du

=
3

4
(
u−3

−3
+

u−4

−4
) + C

=
3

4

(
− 1

3(2x− 1)3
− 1

4(2x− 1)4

)
+ C
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EXAMPLE Problem: Find

∫
x

2
√

3x− 1
dx .

Solution: ∫
x

2
√

3x− 1
dx =

1

2

∫
u + 1

3
· 1√

u

du

3

=
1

18

∫
u + 1

u1/2
du

=
1

18

∫
(u1/2 + u−1/2) du

=
1

18
(
2

3
u3/2 + 2u1/2) + C

=
1

18

(2

3
(3x− 1)3/2 + 2(3x− 1)1/2

)
+ C

=
1

27

√
(3x− 1)3 +

1

9

√
3x− 1 + C

EXERCISE 3 Solve the following integration problems. Use any appropriate techniques.

♣ 1.
∫
t(t + 1)7 dt

♣ 2.
∫

5x√
(3−2x)3

dx

♣ 3.
∫
u
√
u2 + 1 du

rationalizing
substitutions

Remember that to ‘rationalize’ means to ‘get rid of the radical’. Sometimes,
an appropriate substitution can be used to get rid of a radical, and transform
a difficult problem into a more manageable one. The technique is illustrated in
the next example.

EXAMPLE

a rationalizing
substitution

Problem: Find

∫
1

1 +
√
x
dx .

Solution: To rationalize the integrand, let u =
√
x, so that u2 = x. Remember

that u is a function of x, and differentiate both sides of u2 = x with respect to
x, getting:

2u
du

dx
= 1

Thus,
2u du = dx .

Now, transforming to an integral in u yields:∫
1

1 +
√
x
dx =

∫
1

1 + u
(2u du)

= 2

∫
u

1 + u
du
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At this point, the previous reversal of roles procedure can be used:

2

∫
u

1 + u
du = 2

∫
w − 1

w
dw

= 2

∫
1− 1

w
dw

= 2(w − ln |w|) + C

= 2
(
(1 + u)− ln |1 + u|

)
+ C

= 2u− 2 ln |1 + u|+ K

= 2
√
x− 2 ln |1 +

√
x|+ K

Remember that since we started with an integration problem involving x, it
was necessary to end up with the antiderivatives in terms of x.

EXERCISE 4 ♣ 1. Re-do the previous problem, without looking at the text.

♣ 2. Check that:
d

dx
(2
√
x− 2 ln |1 +

√
x|) =

1

1 +
√
x

EXERCISE 5 ♣ Solve the integral
∫

x√
x−1 dx in two ways. First, let u = x−1 and make a ‘role

reversal’. Second, let u =
√
x− 1, so that u2 = x− 1, and make a rationalizing

substitution. Compare your answers. Which way do you think was easier?

tables of integrals In closing, it must be remarked that there are extensive tables of integrals
available. One such compilation is:

Tables of Integrals and other Mathematical Data
Herbert Bristol Dwight, third edition

The MacMillan Company, New York, 1957

(This was my Dad’s, so it is very special to me! There are obviously newer
books available.)

To use such tables, one identifies the form of the integrand, finds a correspond-
ing form in the table, and applies the formula.

For example, suppose one must integrate:∫
1

x(1 + 3x7)
dx

One finds the following entry in a table of integrals:∫
dx

x(a + bxm)
=

1

am
log

∣∣∣∣ xm

a + bxm

∣∣∣∣
Letting a = 1, b = 3, and m = 7, one applies the formula, getting:∫

1

x(1 + 3x7)
dx =

1

7
log

∣∣∣∣ x7

1 + 3x7

∣∣∣∣
♣ Check!
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QUICK QUIZ

sample questions

1. Which is harder, in general, differentiation or integration?

2. Find all the antiderivatives of
x

2 + x
. Use any appropriate technique.

3. What tools are available to help with integration?

KEYWORDS

for this section

Reversal of roles substitution technique, a rationalizing substitution, tables of
integrals.

END-OF-SECTION
EXERCISES

♣ The purpose of these exercises is to provide you with additional practice
using all the antidifferentiation techniques discussed thus far in this chapter.
Be sure to write complete mathematical sentences.

1.

∫
e2x + 1

5
dx

2.

∫
xe(3x

2−1) dx

3.

∫
t

3
√

4t2 − 1
dt

4.

∫
x

2x− 1
dx

5.

∫
x(x + 1)3(x− 1)3 dx

6.

∫
2t− 1

t
dt

7.

∫
(lnx)3

3x
dx



6.6 Integration by Parts Formula

Introduction An attentive reader may have noticed that we have not yet learned how to
integrate lnx. Indeed, the integral

∫
lnx dx is a classic example of an integral

that requires the integration by parts formula, which is the topic of this section.
First, a derivation.

derivation of the
Integration By Parts
formula

The integration by parts formula is an easy consequence of the product rule for
differentiation. Suppose that u and v are differentiable functions of x. Then,
the product uv is also differentiable, and:

d

dx
(uv) = u

dv

dx
+ v

du

dx

Integrating both sides with respect to x (and using the linearity of the integral)
yields: ∫

d

dx
(uv) dx =

∫
u
dv

dx
dx +

∫
v
du

dx
dx

the remaining integrals
absorb the
constant of integration

Look at the left-hand side of this equation, and answer the following (trick)
question: do we know a function whose derivative with respect to x is d

dx (uv)?

Of course! The function uv has derivative d
dx (uv)! So we can replace the left-

hand side by uv + C to obtain:

uv + C =

∫
u
dv

dx
dx +

∫
v
du

dx
dx

This equation can be simplified considerably. First, observe that the indefinite
integrals remaining on the right-hand side will generate their own constant of
integration, so it is not necessary to include the constant C on the left-hand
side.

Furthermore, the integrals
∫
u dv
dx dx and

∫
v du
dx dx can be replaced by the simpler

notation
∫
u dv and

∫
v du. Thus, we have:

uv =

∫
u dv +

∫
v du

The final result is rearranged slightly, by solving for
∫
u dv :

Integration by Parts
formula

∫
u dv = uv −

∫
v du

This formula is commonly referred to more simply as the ‘parts formula’.

EXERCISE 1 ♣ Derive the integration by parts formula, without looking at the text.

391
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using the
Integration by Parts
formula;

hopefully,
the new integral
is easier

The idea in using the integration by parts formula is a familiar one: take a
difficult integration problem, and try to transform it into an easier problem.
When using the integration by parts formula, one takes an integral of the form∫
u dv and rewrites it in the form uv −

∫
v du . The hope is that the ‘new’

integral
∫
v du is easier than the original integral

∫
u dv .

The general scheme is outlined below, and then illustrated in the example that
follows.

a general procedure
for using the
parts formula

• Suppose that
∫
f(x) dx cannot be solved by either elementary formulas, or

substitution. It is decided to try integration by parts.

• You must choose u and dv to rewrite the integral in the form
∫
u dv. There

will often be several possible choices for u and dv; this is the part of the
problem that requires some expertise.

A general strategy for choosing a u and dv that ‘work’ is presented after
the example.

• From u, obtain du by differentiation.

• From dv, obtain v by integration. Any antiderivative can be used—usually
(but not always), the constant of integration C is chosen to be zero, to
obtain the simplest antiderivative.

• At this point, all the ingredients are at hand to rewrite the integral using
the parts formula: ∫

u dv = uv −
∫

v du

Look at the new integral
∫
v du . The hope is that this new integral

∫
v du

is easier to handle than the original integral
∫
u dv .

EXAMPLE

a classic;

integrating
∫

lnx dx

Problem: Find
∫

lnx dx .

Solution: No previous technique seems to work here, so we are motivated to
try the integration by parts formula. First, u and dv must be chosen to rewrite∫

lnx dx in the form
∫
u dv .

The choices u = lnx and dv = dx are made; following the example, the moti-
vation for these choices is discussed.

Then:

∫ u︷︸︸︷
lnx

dv︷︸︸︷
dx = (

u︷︸︸︷
lnx)(

v︷︸︸︷
x )−

∫ v︷︸︸︷
x ·

du︷ ︸︸ ︷
1

x
dx

= x lnx−
∫

1 dx

= x lnx− x + C

Check:
d

dx
(x lnx− x) =

[
x(

1

x
) + (lnx)(1)

]
− 1 = 1 + lnx− 1 = lnx

So, the result is correct.
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a strategy for
choosing u and dv

Here is a general strategy for choosing u and dv :

• The choice for dv must include dx. Also, since dv must be integrated to
obtain v, you must choose something for dv that you know how to inte-
grate. Sometimes, this consideration will completely determine the choice.
(Observe that once dv is chosen, u must be everything that is left.)

• If there are several possible choices for dv, then choose something for u that
gets EASIER when you differentiate it. This is motivated by the fact that
du appears in the new integral: the simpler du is, the better.

In many problems, these two considerations will lead to a correct choice for
u and dv. If not—experience, trial and error, and luck can all be factors in
obtaining a correct choice for u and dv (if one exists).

return to the
previous example;
choosing u and dv

Reconsider the problem of finding
∫

lnx dx. Here’s how we arrived at the choices
for u and dv :

• Choose something for dv that includes dx, and that you know how to in-
tegrate. We can’t choose dv to be lnx dx, since we don’t know how to
integrate this (that’s the problem). So we are forced to choose dv = dx.

• Now, the choice for u is completely determined: u must equal everything
else. Thus, u = lnx .

EXAMPLE

choosing u and dv

Problem: Evaluate
∫
xex dx .

• There are several possible choices for dv here, since there are several ‘pieces’
that we know how to integrate. We could choose:

dv = dx

or dv = x dx

or dv = ex dx

Since this first consideration has not solved the ‘choice’ problem, we move
on to the next consideration.

• Choose something for u that gets simpler when you differentiate it. If we
choose u = ex, then du

dx = ex, which is no simpler. But if we choose u = x,

then du
dx = 1, which is certainly simpler.

• Thus, choose u = x. Then dv must be everything else: dv = ex dx. Here’s
how the problem is written down:∫

x ex dx = (x)(ex)−
∫

ex dx

= x ex − ex + C

EXERCISE 2 ♣ Check that: d
dx (xex − ex) = xex

In the following examples, use the strategy to see how we arrived at the choices
for u and dv.
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EXAMPLE Problem: Evaluate

∫
x

ex
dx .

Solution: ∫
x

ex
dx =

∫
xe−x dx

= −xe−x −
∫

(−e−x) dx

= −xe−x +

∫
e−x dx

= −xe−x − e−x + C

= −e−x(x + 1) + C

EXERCISE 3 ♣ 1. In applying the parts formula to
∫
xe−x dx, list three possible choices

for dv.
♣ 2. Corresponding to each choice for dv, what would u have to be? In which

case is du
dx simpler than u?

EXAMPLE Problem: Evaluate
∫
x2 lnx dx .

Solution: One could choose either dv = dx or dv = x2 dx, since both of these
pieces can be integrated with prior techniques. If dv = dx is chosen, then
u must be x2 lnx, which gets much more complicated when differentiated. If
dv = x2 dx is chosen, then u must be lnx, with the relatively simply derivative
1
x . Thus, it is decided to initially try dv = x2 dx:∫

x2 lnx dx =
x3

3
lnx−

∫
x3

3
(
1

x
) dx

=
x3

3
lnx− 1

3

∫
x2 dx

=
x3

3
lnx− 1

3
· x

3

3
+ C

=
x3 lnx

3
− x3

9
+ C

EXERCISE 4 Use the parts formula to evaluate the following integrals. Use the ‘strategy’ to
decide on your choices for u and dv.

♣ 1.
∫
x lnx dx

♣ 2.
∫
xe3x dx

♣ 3.
∫
x3 lnx dx

♣ 4.
∫

ln 3x dx
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a problem that’s
easier if a
nonzero constant
of integration
is chosen
when finding v

Problem: Evaluate
∫

ln(x + 3) dx .

Solution: We must choose dv = dx and hence u = ln(x+ 3). If the ‘traditional’
approach is taken, where the constant of integration is chosen to be 0 when
going from dv to v, then here’s what happens:∫

ln(x + 3) dx = x ln(x + 3)−
∫

x · 1

x + 3
dx

This is fine, except that to solve the resulting integral
∫

x
x+3 dx , either a ‘role-

reversing’ substitution or long division is required. However, if we’re a bit
clever, this can be avoided:

∫
ln(x + 3) dx = (x + 3) ln(x + 3)−

∫
(x + 3)

1

x + 3
dx

= (x + 3) ln(x + 3)−
∫

(1) dx

= (x + 3) ln(x + 3)− x + C

In obtaining v, we merely need a function whose derivative with respect to x
is 1 (dv = dx ⇐⇒ dv

dx = 1). Usually, we use v = x, because it’s simplest.
Here, however, it was certainly to our advantage to choose a nonzero constant
of integration.

EXERCISE 5 ♣ 1. Check that: d
dx [(x + 3) ln(x + 3)− x] = ln(x + 3)

♣ 2. Find all the antiderivatives of 3 ln(x + 1).

♣ 3. Evaluate
∫

ln(t− 1
2 ) dt .
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EXAMPLE
repeated parts

Problem: Evaluate
∫
x2ex dx .

Solution: ∫
x2ex dx = x2ex −

∫
2xex dx

= x2ex − 2

∫
xex dx

∫
xex dx = xex −

∫
ex dx

= xex − ex + C

Combining results: ∫
x2ex dx = x2ex − 2(xex − ex) + C

= ex(x2 − 2x + 2) + C

Check:

d

dx

(
ex(x2 − 2x + 2)

)
= ex(2x− 2) + ex(x2 − 2x + 2)

= ex(2x− 2 + x2 − 2x + 2)

= x2ex

After the first application of parts, it was noted that the resulting ‘new’ integral∫
xex dx was easier than the one started with: the power of x was knocked down

by one. Thus, we were motivated to repeat the process.

It’s very important to write things down neatly and carefully!

EXERCISE 6 ♣ 1. Re-do the previous example without looking at the text.

♣ 2. Evaluate
∫
x2e3x dx. Be sure to write a complete mathematical sentence.

EXERCISE 7 Evaluate the integral
∫

x
(1+x)6 dx in two ways:

♣ 1. First, use an appropriate ‘role-reversal’ substitution. Differentiate to
verify that you have a correct solution.

♣ 2. Second, use parts with u = x and a corresponding dv. Differentiate to
verify that you have a correct solution.

♣ 3. The answers obtained from the two different approaches probably look
a bit different. However, they must differ by at most a constant. Express
each answer as a fraction with the same denominator, so that you can better
compare them.

The antidifferentiation tools studied in this chapter are summarized next for
your convenience:
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ANTIDIFFERENTIATION TOOLS

F ′(x) = f(x) F is an antiderivative of f∫
f(x) dx all antiderivatives of f∫

f ′(x) dx = f(x) + C all antiderivatives differ by a constant∫ (
f(x) + g(x)

)
dx =

∫
f(x) dx +

∫
g(x) dx the integral of a sum is the sum of the integrals∫

kf(x) dx = k
∫
f(x) dx constants can be ‘slid out’ of the integral∫

xn dx = xn+1

n+1 + C Simple Power Rule for integration, n 6= −1∫
1
x dx = ln |x|+ C integrating 1

x∫
ekx dx = 1

ke
kx + C integrating ekx∫

f ′(u)du
dx dx = f(u) + C, u a function of x substitution technique∫

u dv = uv −
∫
v du integration by parts formula

QUICK QUIZ

sample questions

1. What is the Integration By Parts formula? Where does it come from?

2. Evaluate
∫

ln 2t dt .

3. Evaluate
∫

ln(x− 1) dx .

4. What must you think of when choosing dv for use in the Parts formula?

KEYWORDS

for this section

Integration by Parts formula, derivation of the parts formula, a strategy for
choosing u and dv, choosing a nonzero constant when obtaining v, repeated
parts.

END-OF-SECTION
EXERCISES

The purpose of these exercises is to provide you with additional practice using
all the antidifferentiation techniques discussed thus far in this chapter. Be
sure to write complete mathematical sentences. Properties of exponents and
logarithms may be needed to rewrite the integrand before integrating.

1.

∫
(ex − 1)2 dx

2.

∫
ln(x2 + 2x + 1)

x + 1
dx

3.

∫
ex

1 + ex
dx

4.

∫
ln

1 + x

x
dx

5.

∫ √
et

2
dt

6.

∫
x√

x4 lnx
dx



NAME
SAMPLE TEST, worth 100 points, Chapter 6

Show all work that leads to your answers. Good luck!

8 pts TRUE or FALSE. Circle the correct response. (2 points each)

T F F (x) = x lnx− x + 2 is an antiderivative of f(x) = lnx .

T F If f ′(x) = g′(x) for all x ∈ R, then f and g differ by at most a constant.

T F
∫
t2 dt = t3 + C

T F An antiderivative of f is a function with derivative f .

6 pts The graph of a function f is given below. In the space provided, graph a function F
satisfying:

• F ′(x) = f(x) ∀ x ∈ D(f) ;

• F is continuous at 0 ; and

• F (−1) = 2.

13 pts (6 pts) These questions have to do with the indefinite integral
∫
f(x) dx.

Fill in the blanks:
The symbol

∫
is called the .

The function f being integrated is called the .

The process of finding
∫
f(x) dx is called .

(There are two possible correct answers here.)

(2 pts) Rewrite the integral
∫
x2 dx using a different dummy variable.

(5 pts) What is meant by the phrase ‘the linearity of the integral’?

6 pts Classify each entry as an EXPRESSION or a SENTENCE.

If a sentence, state whether it is TRUE, FALSE, or CONDITIONAL.

(2 pts) a)
∫
f(t) dt +

∫
g(t) dt

(2 pts) b)
∫
x dx = 1

2

∫
2x dx

(2 pts) c) f(1) = 2

398
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32 pts Evaluate the following indefinite integrals. Be sure to write complete mathematical
sentences. Use any appropriate methods.

(8 pts) a)

∫
(
2

x
+ e3x − 1) dx

(8 pts) b)

∫
ln(x− 1) dx

(8 pts) c)

∫
t

3
√
t2 − 1

dt

(8 pts) d)

∫
3x

2x + 1
dx

6 pts
Find a function g satisfying g′(x) =

1√
2x− 1

and g(1) = 2 .

4 pts Give an antidifferentiation ‘counterpart’ to the differentiation formula:

d

dx
f(g(x)) = f ′(g(x)) · g′(x)
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9 pts (5 pts) Fill in a reason for each step below:∫
(2x + 1)3 dx =

∫
(2x + 1)3 · 2

2
dx ( )

=
1

2

∫
(2x + 1)32 dx ( )

=
1

2

∫
u3 du ( )

=
1

2
· u

4

4
+ C ( )

=
1

8
(2x + 1)4 + C ( )

(4 pts) Now, CHECK this antidifferentiation problem.

8 pts A function f is graphed below. Find all the antiderivatives of f . Graph two of these
antiderivatives in the space provided.

8 pts A function f is graphed below. On the same graph, graph another function that has the
same derivative as f , and has a nonremovable discontinuity at x = 1.
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CHAPTER 7

THE DEFINITE INTEGRAL

In the previous chapter, the indefinite integral
∫
f(x) dx

was studied. This integral gives all the antiderivatives
of the function f .

In this chapter, another type of integral is studied,
called the definite integral of f on [a, b], and denoted

by
∫ b

a
f(x) dx. Under suitable conditions,

∫ b

a
f(x) dx

gives information about the area trapped between the
graph of f and the x-axis over the interval [a, b].

The integrals
∫
f(x) dx and

∫ b

a
f(x) dx are, in one sense,

very different:
∫
f(x) dx is a class of functions, (all

the antiderivatives of f), but
∫ b

a
f(x) dx is a number.

However, in another sense, the integrals are very much
related: the Fundamental Theorem of Integral Calcu-
lus tells us that if we know just one antiderivative of

f , then we can compute the number
∫ b

a
f(x) dx.
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7.1 Using Antiderivatives to find Area

Introduction In this section a formula is obtained for finding the area of the region bounded
between the graph of a continuous, nonnegative function f and the x-axis. As
mentioned in the previous chapter, it is seen that the antiderivatives of f play
a crucial role in this process.

finding the area
under the graph
of a nonnegative,
continuous function f

Let f be a function that is continuous on [a, b]. Also suppose that f is nonneg-
ative, so that its graph lies on or above the x-axis. In this case, it makes sense
to talk about the area under the graph of f ; we seek the area between x = a
and x = b .

the area function;

A(x)

First, define:

A(x) := the area under the graph of f , from a to x

Observe that A(a) = 0, and A(b) is the area being sought.

in the pictures,
h is positive

Now, let x be a number between a and b, and let h be a small positive number.
In the exercises accompanying this section, you will consider the case where h
is a small negative number.

∆A;

a little piece of area

Focus attention on the little piece of area between x and x+h, as shown below.

This area can be obtained as follows: take the area under the graph from a to
x + h, and subtract off the area from a to x . What’s left is the area under the
graph between x and x + h, as shown.

Thus, this little piece of area can be written in terms of the area function A as:

∆A := A(x + h)−A(x)

The symbol ∆A is read as ‘delta A’ and denotes a change in A.

EXERCISE 1 ♣ 1. If h is a small negative number, where is x + h in relation to x?

♣ 2. Make a sketch showing x and x + h. What is the correct formula for
∆A in this case?

401
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using the
Max-Min Theorem

By hypothesis, f is continuous on the entire interval [a, b], so it is also continuous
on the subinterval [x, x+h]. Therefore, the Max-Min Theorem guarantees that
f attains a minimum value f(m) and a maximum value f(M) on [x, x + h], as
illustrated below. Observe that both m and M come from the interval [x, x+h].

under- and
over-approximating
the area
with rectangles

The actual area ∆A of the little piece under inspection is under-approximated
by the rectangle of height f(m) and width h . Also, ∆A is over-approximated
by the rectangle of height f(M) and width h . That is:

f(m) · h ≤ ∆A ≤ f(M) · h

Division by the positive number h yields

f(m) ≤ ∆A

h
≤ f(M) ,

and substituting in the definition of ∆A yields:

f(m) ≤ A(x + h)−A(x)

h
≤ f(M)

Be aware!

The numbers
m and M
depend on:
the function f
the number x
the number h

What is about to be said applies to both m and M . For simplicity, it is stated
only for m .

It’s important that you understand that the number m depends on:

• the function ( f ) that you’re working with

• the small interval [x, x + h] that is currently under investigation;

this interval depends on both x and h

Change any of these ( f , x , or h ) and the number m could change!

For this reason, a name like ‘mf,x,h ’ (with three subscripts) might be better
than just m . But then the notation would be so cumbersome that it could
make things appear harder than they really are! So, we’ll stick with just ‘m ’.
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EXERCISE 2 You should have discovered in the previous exercise that if h < 0, then ∆A =
A(x)−A(x + h), and the picture becomes the one shown below:

♣ 1. Why is the area of the under-approximating rectangle given by the
formula f(m) · (−h) in this case?

♣ 2. What is the formula for the area of the over-approximating rectangle?

♣ 3. Provide a justification for each step in the mathematical sentence below.
Remember that h < 0, and ∆A = A(x)−A(x + h).

f(m)(−h) ≤ ∆A ≤ f(M)(−h) ⇐⇒ f(m) ≤ ∆A

−h
≤ f(M)

⇐⇒ f(m) ≤ A(x)−A(x + h)

−h
≤ f(M)

⇐⇒ f(m) ≤ A(x + h)−A(x)

h
≤ f(M)

Thus, precisely the same inequality is obtained as when h is positive.

let h
approach 0; then

m must approach x

Now let h approach 0 (from the right-hand side, since h is positive). Remember
that m is trapped in the interval [x, x+h], so as h approaches zero, m is forced
to get close to x. That is, as h→ 0+, it must be that m→ x+.

Note: Here, we’re holding x fixed and letting h change. Since h is changing,
m can change! The same label, ‘h ’, is used in all four sketches above, even
though h is getting smaller. The same label, ‘m ’, is used, even though it can
change. This can be confusing—same labels, different numbers—so be aware!

EXERCISE 3 ♣ Rewrite the previous paragraph so that it applies when h < 0 .

using the
continuity of f

By hypothesis, f is continuous at x. Therefore, when the inputs are close to
x, the corresponding outputs must be close to f(x). In particular, when m is
close to x, f(m) must be close to f(x). More precisely, as m → x+, we must
have f(m)→ f(x).
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as h approaches 0,
both m and M
must get close to x

Similarly, since M is trapped between x and x+ h, as h approaches 0, M must
approach x. And as M gets close to x, the continuity of f at x tells us that
f(M) approaches f(x).

the quotient
A(x+h)−A(x)

h
is pinched between
numbers that are both
going to f(x)

Reconsider the previous inequality in light of our new information:

f(m) ≤ A(x + h)−A(x)

h
≤ f(M)

As h approaches 0 (from the right-hand side), both f(m) and f(M) are ap-
proaching f(x). So the quotient

A(x + h)−A(x)

h

is pinched between numbers which are both going to the same number, f(x)!

Therefore, A(x+h)−A(x)
h must also be getting close to f(x)! (This observation

is sometimes formalized in a result called the Pinching Theorem for Limits.)
That is, it must be that:

lim
h→0+

A(x + h)−A(x)

h
= f(x)

EXERCISE 4 ♣ Rewrite the necessary paragraphs, and conclude that:

lim
h→0−

A(x + h)−A(x)

h
= f(x)

the limit

lim
h→0

A(x + h)−A(x)

h

exists

Now it is known that

lim
h→0+

A(x + h)−A(x)

h
= f(x) ;

and, if you’ve been doing the exercises, it is also known that:

lim
h→0−

A(x + h)−A(x)

h
= f(x)

Putting these two pieces of information together, we conclude that the two-sided
limit exists and equals f(x) :

lim
h→0

A(x + h)−A(x)

h
= f(x)

But when the limit

lim
h→0

A(x + h)−A(x)

h

exists, it is given a special name: A′(x)! So it is now known that:

A′(x) = f(x)

That is, the area function A is a function which, when differentiated, yields f .
That is, A is an antiderivative of f .
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A(x) is an
antiderivative of f(x)

The fact just discovered is so important that it is worth repeating. The area
function A is an antiderivative of f . In particular, it has been shown that
whenever f is continuous and nonnegative on [a, b], an antiderivative of f always
exists! This is an extremely beautiful and important result.

now we know
what all the
antiderivatives
look like

Getting our hands on one antiderivative is always the hard part; now we know
what all the antiderivatives of f must look like—they must differ from A by at
most a constant. That is, if F denotes any antiderivative of A, then:

A(x) = F (x) + C (*)

solving for
the constant C

Remember that we want to find A(b), since this represents the area under the
graph of f between a and b. Using the fact that A(a) = 0, equation (*) yields

0 = A(a) = F (a) + C

so that C = −F (a). Then (*) can be rewritten as:

A(x) = F (x)− F (a)

Now, letting x equal b, we obtain:

desired area = A(b) = F (b)− F (a)

This is the formula for the desired area, given in terms of any antiderivative of
f . The result is summarized below.

formula for the area
beneath the graph of
a nonnegative,
continuous
function f
on [a, b]

Let f be nonnegative and continuous on the interval [a, b]. Let F be any
antiderivative of f on [a, b]. Then:

the area under the graph of f on [a, b] = F (b)− F (a)
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EXAMPLE

testing the formula
in a case where
the answer
is already known

It’s always a good idea to test a new result in a situation where you can find the
answer by alternate means. So let’s find the area under the graph of f(x) = 2x
between x = 0 and x = 3 .

Calculus is certainly not needed, since the area is just a triangle:

1

2
(base)(altitude) =

1

2
(3)(6) = 9

Now, use the formula. An antiderivative of f(x) = 2x is needed; the easiest one
is F (x) = x2. Then,

F (b)− F (a) = F (3)− F (0) = 32 − 0 = 9 ,

which agrees with the first result.

EXERCISE 5 ♣ 1. Show that F (x) = x2 + 7 is an antiderivative of f(x) = 2x .

♣ 2. Find the area discussed in the previous example, using the antiderivative
F (x) = x2 + 7. What happens to the ‘7’?

EXERCISE 6 Find the area under the graph of f(x) = 2x between x = 1 and x = 4 in two
ways:

♣ 1. Show that the desired area is a trapezoid; find the area of this trapezoid.

♣ 2. Use an antiderivative of f to find the area.

EXAMPLE Problem: Find the area beneath the graph of f(x) = x2 on [1, 3].

Solution: Here, the area of the region is not easily obtainable from geometry.
However, we can get some rough bounds on the desired area, as follows.

The minimum value of f on [1, 3] is 12 = 1 . Thus, the desired area is under-
approximated by a rectangle of width 3− 1 = 2 and height 1 .

The maximum value of f on [1, 3] is 32 = 9 . Thus, the desired area is over-
approximated by a rectangle of width 2 and height 9 . Together:

(1)(2) ≤ actual area ≤ (9)(2)

The actual area must lie between 2 and 18. Also, from the sketch, we expect
the actual area to be near the middle of this range of numbers.

applying the formula Now apply the formula. We need any antiderivative of f(x) = x2; take F (x) =
x3

3 , since it’s the simplest one. Then:

F (b)− F (a) = F (3)− F (1) =
33

3
− 13

3
= 9− 1

3
= 8

2

3

The answer is certainly believable, based on the earlier estimates.
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EXERCISE 7 ♣ 1. Consider the function f(x) = x2 on the interval [2, 5]. As in the previous
example, get an under-approximation and an over-approximation of the
area under f on [2, 5].

♣ 2. Find the area, using an antiderivative of f .

♣ 3. Find the area, using a different antiderivative of f .

EXERCISE 8 ♣ Use calculus to find the area under the graph of f(x) = x2 on [−2,−1]. Here,
[a, b] = [−2,−1], so a = −2 and b = −1. Make a sketch of the graph of f , and
the area that you are finding.

EXERCISE 9 ♣ 1. Graph f(x) = −x2. Show the area trapped between the graph of f and
the x-axis on [1, 3].

♣ 2. Using any antiderivative F of f , compute F (3)− F (1). How does your
answer compare to the area under the graph of f(x) = x2 on [1, 3]?

♣ 3. Make a conjecture, based on this example.

QUICK QUIZ

sample questions

1. Suppose h > 0, and f is continuous on the interval [x, x + h]. What does
the Max-Min Theorem guarantee?

2. Under what condition(s) does a function f have the property that as x→ a,
f(x)→ f(a)?

3. Make a sketch that illustrates a function f , and a ∈ D(f), for which f(x) 6→
f(a) as x→ a.

4. Find the area under the graph of y = 3x2 on the interval [0, 2] .

5. Suppose f is continuous and nonnegative on [c, d], and F is an antiderivative
of f . Give a formula for the area under the graph of f on [c, d] .

KEYWORDS

for this section

Finding the area under the graph of a continuous, nonnegative function f on
the interval [a, b]; a formula for this area in terms of any antiderivative F of f .

END-OF-SECTION
EXERCISES

In each problem below, an area is described.

♣ Sketch the area that is described.

♣ Approximate the area in any reasonable way.

♣ Use calculus to find the area.

1. area bounded between the graph of y = lnx and the x-axis on the interval
[1, e]

2. area under the graph of y = 1
t on [1, 2]

3. area bounded by the graph of y =
√
x, the x-axis, the line x = 1, and the

line x = 4

4. area bounded by the graph of y = x2 + 1, the line y = 1, the y-axis, and
the line x = 1



7.2 The Definite Integral

the definite integral In the previous section, it was found that if a function f is continuous and
nonnegative, then the area under the graph of f on [a, b] is given by F (b)−F (a),
where F is any antiderivative of f .

This result is usually expressed in terms of an integral, called the definite integral
of f on [a, b], and denoted by: ∫ b

a

f(x) dx

(Read
∫ b

a
f(x) dx as ‘the definite integral of f , from a to b’.)

In this section, study of the definite integral begins.

the actual
definition of∫ b

a
f(x) dx

is a bit complicated

The actual definition of the definite integral
∫ b

a
f(x) dx is a bit complicated, due

mainly to the fact that (not surprisingly!) it is defined in terms of a limit. The

precise definition of
∫ b

a
f(x) dx is presented in the next section. This definition

reveals the following facts (which you can take on faith for the moment, and
start understanding now):

For a continuous function f ,

•
∫ b

a
f(x) dx is a NUMBER; and

• if f happens to be nonnegative on [a, b], then this number
∫ b

a
f(x) dx has

a very nice interpretation; it gives the area under the graph of f on [a, b].
Since F (b)−F (a) gives this same area, where F is any antiderivative of f ,
we can in this case write:∫ b

a

f(x) dx = F (b)− F (a)

lower limit
of integration;

upper limit
of integration

The definite integral ∫ b

a

f(x) dx

and the indefinite integral ∫
f(x) dx

have similar appearances. The only difference is that the definite integral has
numbers a and b adorning the integral sign. These two new components have
names:

• a is called the lower limit of integration

• b is called the upper limit of integration

comparing the
definite and
indefinite integrals

Since the appearance of the two integrals is so similar, you should be asking
yourself the following questions: Why the similar appearance? How are these
integrals the same? How are they different? Here are some answers to these
questions.

408
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How are the
integrals different?

The definite integral
∫ b

a
f(x) dx is a NUMBER. If f is nonnegative on [a, b],

then this number has a nice interpretation as the area under the graph of f on
[a, b]. However, the indefinite integral

∫
f(x) dx is an INFINITE CLASS OF

FUNCTIONS; all the antiderivatives of f . So, in one sense, the two integrals
are very, very different.

How are the
integrals the same?

In another sense, however, they are very much the same. It will be seen that
if JUST ONE antiderivative of f is known, then the definite integral can be
computed. This fact has already been established in a special case—when f
is continuous and nonnegative on [a, b]—and we will see that it actually holds
for any continuous function f . This is precisely the content of the Fundamen-
tal Theorem of Integral Calculus (to be presented momentarily); and is the
justification for the similarity in the appearance of the two integrals.

EXERCISE 1 TRUE or FALSE:

♣ 1. The definite integral
∫ b

a
f(x) dx is a function.

♣ 2. The number
∫ 5

1
x2 dx gives the area under the graph of x2 on the interval

[1, 5].

♣ 3. For a continuous function f ,
∫ b

a
f(x) dx =

∫
f(x) dx.

♣ 4. This text has not yet presented the actual definition of
∫ b

a
f(x) dx.

We’ve run across a situation before where a (precise) definition was hard to
work with, and—fortunately—we could often get away with NOT working with
the definition. Remember the definition of the derivative of a function?

f ′(x) := lim
h→0

f(x + h)− f(x)

h

Evaluating this limit was a nuisance, even for fairly simple functions f . Fortu-
nately, this definition rarely needs to be used any more, because the definition
was USED to develop tools that allow us to thereafter BYPASS the definition;
tools such as the simple power rule, chain rule, product rule, and quotient rule.
Similarly, the Fundamental Theorem of Integral Calculus gives a convenient
tool for computing the definite integral of f , whenever we can get our hands on
an antiderivative of f . Here’s a precise statement of the fundamental theorem:

Fundamental
Theorem
of Integral Calculus

Let f be continuous on [a, b]. If F is any antiderivative for f on [a, b], then:∫ b

a

f(x) dx = F (b)− F (a)

FF

antiderivative of f
on [a, b]

For F to be an antiderivative of f on [a, b], not only must F ′(x) = f(x) for
all x ∈ (a, b), but F must also be continuous on the closed interval [a, b]. In
particular, F must ‘behave properly’ at the endpoints a and b.
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some notation
used in connection
with the
definite integral;

F (x)
∣∣b
a

Let F be an antiderivative of f . The following notation is used in connection
with evaluating the definite integral:∫ b

a

f(x) dx = F (x)
∣∣b
a

= F (b)− F (a)

That is, the notation F (x)
∣∣b
a

is used to represent the operation of evaluating
the antiderivative F at b, evaluating it at a, and then subtracting these two
numbers, as illustrated in the next example.

EXAMPLE Problem: Compute the definite integral:∫ 2

1

x3 dx

Solution: Find an antiderivative of x3, and use the Fundamental Theorem.

The simplest antiderivative of f(x) = x3 is F (x) = x4

4 . Using this antiderivative
to evaluate the definite integral yields:∫ 2

1

x3 dx =
x4

4

∣∣2
1

=
(2)4

4
− (1)4

4

= 4− 1

4
= 3

3

4

Since x3 is positive on [1, 2], the number 3 3
4 gives the area under the graph of

f on [1, 2].

factor constants
out first

Note that the constant 1
4 appears in both terms (shown bold above) in the

evaluation process. It is usually easiest to factor this constant out first, and
more simply write: ∫ 2

1

x3 dx =
x4

4

∣∣2
1

=
1

4
(24 − 14)

=
1

4
(16− 1) =

15

4
= 3

3

4

EXAMPLE Problem: Compute the definite integral:∫ 1

−1
x3 dx

Solution: Find an antiderivative of x3, and use the Fundamental Theorem.

Observe that, this time, x3 is NOT positive over the entire interval of integra-
tion. Applying the fundamental theorem:∫ 1

−1
x3 dx =

x4

4

∣∣1
−1 =

1

4
(14 − (−1)4)

=
1

4
(1− 1) =

1

4
(0) = 0

Momentarily, it will be made clear why the answer is 0. ♣ Any speculation?
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EXERCISE 2 Evaluate the following definite integrals. Be sure to write complete mathemat-
ical sentences. When possible, interpret your answer in terms of area.

♣ 1.
∫ 1

0
x5 dx

♣ 2.
∫ 4

0
ex dx

♣ 3.
∫ 0

−4 e
x dx

♣ 4.
∫ 2

1
1
x dx

♣ 5.
∫ 2

1/2
1
x dx

dummy variable
of integration

Since the definite integral is a number, the variable of integration is irrelevant.

That is, once
∫ b

a
f(x) dx is evaluated, the letter ‘x’ is gone. Any letter may be

used; for example, one can write∫ b

a

f(x) dx or

∫ b

a

f(t) dt or

∫ b

a

f(ω) dω ;

they are all equal. Just be sure to carry this same letter through your compu-
tations; for example: ∫ 2

1

t3 dt =
t4

4

∣∣2
1

=
1

4
(24 − 14) = 3

3

4

The letter used in
∫ b

a
f(x) dx is called the dummy variable of integration.

EXERCISE 3 ♣ Suppose you KNOW
∫ b

a
f(x) dx . Then, do you know

∫ b

a
f(t) dt? How about∫ b

a
f(s) ds? How about

∫ d

c
f(x) dx? How about

∫ b

a
g(x) dx?

To begin to better understand the definite integral, some properties that it
satisfies are stated next.

Properties of
the Definite Integral

linearity

Suppose that f is continuous on [a, b].

For all constants k : ∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx

That is, constants can be pulled out of the definite integral.

Also: ∫ b

a

f(x)± g(x) dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx

That is, the integral of a sum is the sum of the integrals.

Together, these two properties are referred to as the linearity of the (definite)
integral.
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Properties of
the Definite Integral

additivity

There are also properties that relate to the limits of integration. Again suppose
that f is continuous on [a, b].

For any c ∈ (a, b): ∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx

That is, to integrate from a to b, one can choose any number c between a and
b, and integrate instead in two pieces: from a to c, and then from c to b.

This property is referred to as the additivity of the integral.

Finally, for all real numbers a and b:∫ a

a

f(x) dx = 0 and

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx

The last property says that if you integrate ‘backwards’, you must introduce a
minus sign.

If F is an antiderivative of f , then the fundamental theorem can be used to
find the definite integral, and we see that:∫ a

b

f(x) dx = F (a)− F (b)

= −(F (b)− F (a))

= −
∫ b

a

f(x)dx

This explains the last property above.

the definite integral
treats area under the
x-axis as negative

Let’s investigate the property:∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx

This property shows that if a negative function is integrated, then a negative
number will be obtained. The magnitude of this negative number corresponds
to the magnitude of the area beneath the x-axis.

To see this, suppose that g is positive on [a, b]. Then, −g is negative on [a, b],
and: ∫ b

a

(−g(x)) dx = −
∫ b

a

g(x) dx

The graphs of g and −g are symmetric about the x-axis;
∫ b

a
g(x) dx gives the

area under the graph of g. Thus, the definite integral treats area under the
x-axis as negative.
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EXAMPLE ∫ 2

1

x2 dx =
x3

3

∣∣2
1

=
1

3
(23 − 13) =

7

3

and ∫ 2

1

−x2 dx = −
∫ 2

1

x2 dx = −7

3

Here, since the function −x2 is negative over the entire interval [1, 2], the result
− 7

3 is interpreted as follows:

• The magnitude of the result, | − 7
3 | =

7
3 , indicates that there is 7

3 units of

area trapped between the graph of −x2 and the x-axis.

• The fact that the answer − 7
3 is negative indicates that this area lies beneath

the x-axis.

Caution!!∫ b

a
f(x) dx = 0

does not imply that
f(x) = 0

If one integrates over an interval [a, b] on which the area trapped between the
graph of f and lying above the x-axis is the same as that area below the x-axis,
then the additivity of the integral shows that the definite integral will have
value 0 .

For example, it was seen earlier that
∫ 1

−1 x
3 dx = 0 . This is because, by addi-

tivity: ∫ 1

−1
x3 dx =

∫ 0

−1
x3 dx +

∫ 1

0

x3 dx

= (−A) + (A) = 0 ,

where A represents the magnitude of the area trapped between the graph of x3

and the x-axis on [0, 1].

So, just because

∫ b

a

f(x) dx = 0 does not necessarily mean that f(x) = 0 on

[a, b]. Instead, it means that the area trapped between the graph of f and lying
above the x-axis, is the same as the area trapped between the graph of f and
lying below the x-axis, on the interval [a, b].
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EXERCISE 4 The graph of a function f is shown below, and certain areas are labeled. Based
on this information, evaluate the following integrals, if possible. If this is not
possible based on the given information, so state.

♣ 1.
∫ −2
−3 f(x) dx

♣ 2.
∫ 0

−3 f(t) dt

♣ 3.
∫ 2

−3 f(s) ds

♣ 4.
∫ 5

0
f(x) dx

♣ 5.
∫ 2

−2 f(t) dt

♣ 6.
∫ −1
−3 f(y) dy

This section is concluded with some examples that illustrate how the properties
of the definite integral can be used to help in its evaluation.

EXAMPLE Problem: Evaluate
∫ 1

0
(x2 − 2x + 3) dx.

Solution: By linearity:∫ 1

0

(x2 − 2x + 3) dx =

∫ 1

0

x2 dx− 2

∫ 1

0

x dx + 3

∫ 1

0

(1) dx

=
x3

3

∣∣1
0
− 2 · x

2

2

∣∣1
0

+ 3 · x
∣∣1
0

=
1

3
(1− 0)− 2

2
(1− 0) + 3(1− 0)

=
1

3
− 1 + 3 = 2

1

3

The solution is usually written down in a much more abbreviated form:∫ 1

0

(x2 − 2x + 3) dx = (
x3

3
− 2 · x

2

2
+ 3x)

∣∣1
0

= (
1

3
− 1 + 3)− (0) = 2

1

3
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EXAMPLE

find the
indefinite integral
first;
then use any
antiderivative
to find the
definite integral

When the integrand in a definite integral problem is complicated, some people
prefer to first solve the companion indefinite integral, and then use any anti-
derivative to find the definite integral. This prevents having to ‘carry around’
the limits of integration.

Problem: Find the area under the graph of 1
3x+1 on [0, 2].

Solution: It is not necessary to graph 1
3x+1 ; it is only necessary to recognize

that whenever x ∈ [0, 2], 1
3x+1 > 0. Thus, the graph lies entirely above the

x-axis on this interval, and the desired area is given by the definite integral:∫ 2

0

1

3x + 1
dx

In a future section, we will discuss how to use the technique of substitution
directly with definite integrals. For now, find an antiderivative by first solving
the companion indefinite integral problem:∫

1

3x + 1
dx =

1

3

∫
1

3x + 1
3 dx =

1

3

∫
1

u
du

=
1

3
ln |u|+ C =

1

3
ln |3x + 1|+ C

Use the simplest antiderivative to evaluate the desired definite integral:∫ 2

0

1

3x + 1
dx =

1

3
ln |3x + 1|

∣∣2
0

=
1

3
(ln 7− ln 1) =

1

3
ln 7 ≈ 0.65

One more time! Since variety is the spice of life, the previous problem is solved in a different
way: ∫ 2

0

1

3x + 1
dx =

∫ 2

0

1

3(x + 1
3 )

dx =
1

3

∫ 2

0

1

x + 1
3

dx

=
1

3
ln |x +

1

3
|
∣∣2
0

=
1

3
(ln

7

3
− ln

1

3
)

=
1

3
(ln

7/3

1/3
) =

1

3
(ln 7) ≈ 0.65

EXERCISE 5 ♣ Evaluate

∫ 1

0

1

5x + 1
dx in two ways.
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EXAMPLE Problem: Determine the area of the region bounded by the graph of

y = −(x− 2)2 + 1

and the x-axis on the interval [0, 3].

Solution: A quick sketch is easy to get and helpful. View y as being ‘built up’
as follows:

The x-axis intercepts occur when y is zero:

y = 0 ⇐⇒ −(x− 2)2 + 1 = 0

⇐⇒ (x− 2)2 = 1

⇐⇒ |x− 2| = 1

⇐⇒ x = 3 or x = 1

Here we used the facts that:

• For all real numbers x,
√
x2 = |x|; and

• |x− 2| tells us how far x is from 2 . Thus, |x− 2| = 1 is true exactly when
x is a number whose distance from 2 equals 1 .

Now, to find the desired area, we MUST integrate in two pieces:∫ 1

0

(
−(x− 2)2 + 1

)
dx = − (x− 2)3

3
+ x

∣∣1
0

=
(
− (1− 2)3

3
+ 1
)
−
(
− (0− 2)3

3
+ 0
)

=
4

3
− 8

3
= −4

3

The answer is negative, because the area is beneath the x-axis.

Also: ∫ 3

1

(
−(x− 2)2 + 1

)
dx = . . . =

4

3

The desired area is therefore:
4

3
+

4

3
=

8

3

EXERCISE 6 ♣ What would have happened if, in the previous problem, you had tried to

compute the desired area by finding
∫ 3

0

(
−(x − 2)2 + 1

)
dx ? Evaluate this

integral to confirm your answer.

EXERCISE 7 ♣ Determine the area of the region bounded by the graph of y = (x + 2)2 − 1
on the interval [−3, 0]. Make a sketch showing the area that you are finding.
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QUICK QUIZ

sample questions

1. In a few words, explain why there is such a similar appearance between the

indefinite integral
∫
f(x) dx and the definite integral

∫ b

a
f(x) dx .

2. Give a precise statement of the Fundamental Theorem of Integral Calculus.

3. What does the notation F (x)
∣∣b
a

mean, when used in the context of evalu-
ating definite integrals?

4. Compute:
∫ 2

−1 x
2 dx

5. Show that:
∫ 1

−1 x
3 dx = 0

Interpret your answer in terms of area.

KEYWORDS

for this section

Notation for the definite integral, upper and lower limits of integration, compar-
ing the definite and indefinite integrals, the Fundamental Theorem of Integral

Calculus, the notation F (x)
∣∣b
a
, dummy variable, properties of the definite in-

tegral, linearity, additivity, integrating backwards introduces a minus sign, the
definite integral treats area under the x-axis as negative.

END-OF-SECTION
EXERCISES

Evaluate the following integrals. Use any appropriate methods. Be sure to
write complete mathematical sentences.

1.

∫ 2

0

3

2
x4 dx

2.

∫ 8

1

t1/3 dt

3.

∫ 1

−1
(2x− 3) dx

4.

∫ 1

0

(ax + b) dx

5.

∫ 1

0

x2

1 + x3
dx

6.

∫ ln 3

ln 2

e2t dt

Find the area bounded by the graph of the given function and the x-axis on
the stated interval. Make a sketch showing the area that you are finding. You
may have to evaluate more than one integral to obtain your final answer.

7. f(x) = 1 + ex; [0, 2]

8. f(x) = (x− 1)(x + 3); [−2, 2]

9. f(x) = 2x2 + 5x− 3; [0, 2]



7.3 The Definite Integral as the Limit of Riemann Sums

Introduction This section presents the actual definition of the definite integral. As previ-
ously noted, one is often able to bypass this definition, due to the Fundamental
Theorem of Integral Calculus. However, it is still extremely important that you
see this definition, for three reasons:

• The definition provides the motivation for the notation∫ b

a

f(x) dx

that is used in connection with the definite integral.

• The definition provides the intuition that mathematicians use to help them
develop many useful formulas involving the definite integral; e.g., finding
the area between two curves and finding volumes of revolution. These
formulas are presented later on in this chapter.

• The definition provides the justification for numerical methods used to ap-

proximate
∫ b

a
f(x) dx, when one is unable to obtain an antiderivative of

f .

EXERCISE 1 ♣ What are the three reasons for which it is important that you see the defini-
tion of the definite integral?

partition of
an interval [a, b]

We begin with some definitions.

A partition of the interval [a, b] is a finite collection (set) of points from [a, b]
that includes the endpoints a and b.

Some partitions of [a, b] are shown below:

By convention, when one writes a partition

P = {x0, x1, x2, . . . , xn−1, xn}

of [a, b], it is assumed that:

• x0 = a; that is, the first point in the partition is the left-hand endpoint a

• xn = b; that is, the last point in the partition is the right-hand endpoint b

• The points are listed in increasing order, so that:

x0 < x1 < x2 < · · · < xn−1 < xn

Observe that a partition of [a, b] naturally breaks the interval [a, b] into non-
overlapping subintervals whose union is the entire interval [a, b]:

[

=a︷︸︸︷
x0 , x1) ∪ [x1, x2) ∪ · · · ∪ [xn−2, xn−1) ∪ [xn−1,

=b︷︸︸︷
xn ]

418



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 419

EXERCISE 2 ♣ 1. How many points are in the partition P = {1 , 2 , 2.5 , 3} of [1, 3]? Show
these points on a number line. Into how many subintervals is [1, 3] divided
by this partition?

♣ 2. How many points are in the partition P = {x0, x1, . . . , xn} of an interval
[a, b]? Into how many subintervals is [a, b] divided by this partition?

norm A norm is a tool used in mathematics to measure the size of objects.

For example, the absolute value | · | measures the size of real numbers; the
function that maps a real number x to its ‘size’ |x| is a norm on R .

As a second example, a natural way to ‘measure the size’ of a pair of real
numbers (x, y) is to first look at the arrow (vector) representing (x, y), and
then measure its length;

the function that maps a pair (x, y) of real numbers to its ‘size’
√
x2 + y2 is a

norm on the set of all ordered pairs.

measuring the
‘size’ of a
partition

We need a way of measuring the size of a partition of [a, b]. We want to say that
the partition is ‘small’ if the lengths of all the subintervals are small. Observe
that if the length of the longest subinterval is small, then the lengths of all the
subintervals must be small. This motivates the next definition.

norm of a partition;
‖P‖

Define ‖P‖ (read as the ‘norm of the partition P ’) to be the length of the longest
subinterval in the partition P .

For example, if P is the partition {1, 2, 4, 5, 8, 10} of [1, 10], then ‖P‖ = 3, since
the length of the longest subinterval is 3 .

Also, if P = {1 , 1.5 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10}, then ‖P‖ = 1, since the
length of the longest subinterval is 1 .

The closer ‖P‖ is to zero, the smaller the subintervals, and hence the more
points there are in P .

EXERCISE 3 ♣ 1. Give a partition of [0, 1] that has norm 1
2 . How many points are in this

partition?

♣ 2. Give a different partition of [0, 1] that has norm 1
2 . How many points

are in this partition?

♣ 3. What are the fewest number of points that you must have in a partition
of [0, 1], in order for it to have norm 1

2?
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Riemann Sum for f ;

x∗i is our
choice from the
ith subinterval,
which has length
∆xi

Let f be continuous on [a, b], and let P = {x0, . . . , xn} be any partition of the
interval [a, b], as illustrated below.

In each of the n subintervals, choose any point ; let x∗i denote the choice from
the ith subinterval.

Also, let ∆xi := xi − xi−1 denote the length of the ith subinterval.

Then, the sum

R(P ) := f(x∗1)∆x1 + f(x∗2)∆x2 + · · ·+ f(x∗n)∆xn

is called a Riemann sum for f , corresponding to the partition P . (‘Riemann’
is pronounced REE-mon.)

Observe that if f is nonnegative, then the sum R(P ) represents the sum of the
areas of the rectangles shown below, which approximates the area under the
graph of f on [a, b].

EXERCISE 4 Consider the partition P = {0, 1, 2, 3, 4} of [0, 4]. Let f(x) = x2.

♣ 1. Choose the midpoint from each subinterval of P . That is, choose:

x∗1 = 0.5 , x∗2 = 1.5 , x∗3 = 2.5 , x∗4 = 3.5

Make a sketch that shows the graph of f , the partition P , and the choices
x∗i .

♣ 2. On each subinterval, draw a rectangle with height f(x∗i ).

♣ 3. Sum the areas of these rectangles. That is, find the Riemann sum for f
corresponding to the choices x∗i .

♣ 4. What is the actual area under the graph under f on [0, 4]?
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EXERCISE 5 ♣ Repeat the previous exercise, except this time with the partition

{0 , 0.5 , 1 , 1.5 , 2 , 2.5 , 3 , 3.5 , 4}

of [0, 4]. Again choose the x∗i to be the midpoints of each subinterval.

This time, what is the Riemann sum for f corresponding to the partition
P and choices x∗i ?

obtain the
definite integral
by letting ‖P‖ → 0

Under the hypothesis that f is continuous on [a, b], it can be proven that as one
chooses partitions with smaller and smaller norms, the corresponding Riemann
sums approach a unique number.

We define this unique number to be the definite integral of f on [a, b], denoted

by
∫ b

a
f(x) dx.

more precisely More precisely, as ‖P‖ → 0, R(P )→
∫ b

a
f(x) dx .

That is, we can get the numbers R(P ) as close to
∫ b

a
f(x) dx as desired, merely

by choosing a partition P of [a, b] with norm sufficiently close to 0.

In other words, for every ε > 0, there exists δ > 0, such that if a partition P is
chosen with ‖P‖ < δ, then:∣∣∣∣∣R(P )−

∫ b

a

f(x) dx

∣∣∣∣∣ < ε

Rephrasing yet one more time, we can get the Riemann sum R(P ) as close to

the number
∫ b

a
f(x) dx as desired, by choosing a partition P of [a, b] that has

sufficiently small subintervals.

It is clear from the definition of
∫ b

a
f(x) dx that this integral gives information

about the area trapped between the graph of f and the x-axis.

If f is positive on [a, b], then any Riemann sum R(P ) is also positive, and
approximates the area under the graph of f on [a, b].

If f is negative on [a, b], then any Riemann sum R(P ) is also negative. (♣
Why?) The magnitude of the negative number R(P ) approximates the area
trapped between the graph of f and the x-axis on [a, b].

motivation for

the notation
∫ b

a
f(x) dx;

f(x) dx is
the (signed) area of
a rectangle, with
width dx, and
height f(x)

The definition of the definite integral of f on [a, b] provides the motivation for

the notation
∫ b

a
f(x) dx used, as follows:

Think of dx as an infinitesimally small piece of the x-axis. At a point x be-
tween a and b, construct a rectangle of width dx and height f(x). Then (using
calculus!) ‘sum’ these rectangles as x varies from a to b .
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becomes∫

The integral sign
∫

is, therefore, a kind of super sum; indeed, one can think of
obtaining it from the summation sign

∑
used for finite sums by stretching it

out!

integration is
an (infinite)
summation process

That is, integration is really an (infinite) summation process.

If seeing the notation
∫ b

a
f(x) dx conjures an image of a limit of Riemann sums,

then it is a successful notation.

QUICK QUIZ

sample questions

1. What is a partition of an interval [a, b]?

2. Give two different partitions of [1, 3] that have norm 1/2.

3. Let f(x) = x2, and take the partition {0, 1, 2, 3} of the interval [0, 3]. Is
there a unique Riemann sum for f corresponding to this partition? Com-
ment.

4. What picture might you think of when you see the notation
∫ b

a
f(x) dx?

KEYWORDS

for this section

Three reasons for seeing the definition of the definite integral, partition of an
interval, norm, norm of a partition, Riemann sum for f , obtain the definite

integral by letting ‖P‖ → 0, motivation for the notation
∫ b

a
f(x) dx, integration

is an (infinite) summation process.

END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression (EXP) or a sentence (SEN).

♣ For any sentence, state whether it is TRUE (T), FALSE (F), or CONDI-
TIONAL (C).

1.
∫
x2 dx

2.
∫ 1

0
x2 dx

3.
∫ 1

0
x2 dx = 1

3

4. The integral
∫ b

a
f(x) dx gives the magnitude of the area bounded between

the graph of f and the x-axis on [a, b].

5. If a < b, then the integral
∫ b

a
ex gives the magnitude of the area bounded

between the graph of y = ex and the x-axis on [a, b].

6. If P is a partition of [a, b], then a Riemann sum R(P ) corresponding to f

is an approximation to
∫ b

a
f(x) dx .

7. If g is twice differentiable on the interval [a, b], then
∫ b

a
g′(x) dx = g(b)−g(a).

8. If a < b and f is continuous on [a, b], then
∫ b

a
|f(x)| dx ≥ 0 .

9. If a < b and f is continuous on [a, b], then
∫ b

a
(−|f(x)|) dx ≤ 0 .

10. For all real numbers a and b,
∫ b

a
x2 dx =

∫ b

a
t2 dt .



7.4 The Substitution Technique applied to Definite Integrals

Introduction Consider the definite integral: ∫ 1

0

x
√

1− x2 dx

To find an antiderivative of x
√

1− x2 requires a substitution; when this substi-
tution is performed in the context of the definite integral, one must be careful
how things are written down.

There are two basic approaches for using substitution in definite integral prob-
lems. Both are discussed in this section.

Approach #1

first find
an antiderivative;

use it to solve
the definite integral

The first approach, which has already been illustrated in an earlier section, is
to recognize that once we have an antiderivative, solving the definite integral
problem is easy. So we can first solve the corresponding indefinite integral prob-
lem, and then use the simplest antiderivative to compute the desired definite
integral.

EXAMPLE

approach #1

Problem: Find
∫ 1

0
x
√

1− x2 dx .

Solution #1: First solve the corresponding indefinite integral problem:∫
x
√

1− x2 dx =
1

−2

∫
−2x

√
1− x2 dx

= −1

2

∫
u1/2 du

= −1

2
(
2

3
u3/2) + C

= −1

3
(1− x2)3/2 + C

= −1

3

(√
1− x2

)3
+ C

The simplest antiderivative is when C = 0 . Then:∫ 1

0

x
√

1− x2 dx = −1

3
(
√

1− x2)3
∣∣1
0

= 0− (−1

3
· 1) =

1

3

423
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EXAMPLE

approach #2;

transform the original
definite integral
into a NEW
definite integral;

changing the
limits of
integration

Another approach, that allows the solution to be written down more compactly,
is to transform the original definite integral into a NEW definite integral, as
illustrated in this alternate solution:

Solution #2: ∫ 1

0

x
√

1− x2 dx = −1

2

∫ 1

0

−2x
√

1− x2 dx

= −1

2

∫ 0

1

u1/2 du

= −1

2
· 2

3
u3/2

∣∣0
1

= −1

3
u3/2

∣∣0
1

= −1

3
(0− 1) =

1

3

KEY
OBSERVATIONS
for using
Approach #2

• Decide upon an appropriate substitution, just as you do with indefinite
integral problems.

• Write the substitution directly under the definite integral, as usual.

• Directly under the substitution, calculate the limits of integration for the
new definite integral (in the variable u). Remember: don’t change the
limits of integration UNTIL you’ve rewritten the integral in terms of the
new variable!

• With this method, you never need to transform the antiderivative back to
a function in the original variable.

Below is a sketch illustrating what is happening, from a graphical point of view,
in this process.
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variation on
approach #2;

don’t actually
calculate the
new limits, just
note that
they are different

There is a variation on the second approach that is often useful. Instead of
actually calculating the new limits of integration, just make the reader aware
that the limits have changed in the transformed problem. That is, when an
‘old’ limit of integration is ‘a’, the ‘new’ limit of integration is denoted by ‘u(a)’
(the function u, evaluated at a). The technique is illustrated below:

Solution #3: ∫ 1

0

x
√

1− x2 dx = −1

2

∫ 1

0

−2x
√

1− x2 dx

= −1

2

∫ u(1)

u(0)

u1/2 du

= −1

2

2

3
u3/2

∣∣u(1)
u(0)

= −1

3
(1− x2)3/2

∣∣1
0

= −1

3
(0− 1) =

1

3

This technique is useful if the limits of integration for the transformed problem
would be particularly messy, or difficult to compute.

EXERCISE 1 ♣ Find
∫ 1

0
x(3x2 − 1)5 dx . Write down your solution in three different ways.

Be sure to write complete and correct mathematical sentences.

lurking in the
background

The theoretical justification for this section lies in the following change of vari-
ables formula:

Change of Variables
Formula

Let f and g′ be continuous. Then:∫ b

a

f(g(x)) g′(x) dx =

∫ g(b)

g(a)

f(u) du

Observe that this formula states exactly what we’ve been doing in this section:
letting u = g(x), one obtains du = g′(x) dx; when x = a, u = g(a) and when
x = b, u = g(b). ∫ b

a

f(

u︷︸︸︷
g(x))

du︷ ︸︸ ︷
g′(x) dx =

∫ g(b)

g(a)

f(u) du

FF

existence of
antiderivatives

If a function f is continuous on [a, b], then the function F defined by

F (x) =

∫ x

a

f(t) dt

is continuous on [a, b], differentiable on (a, b), and F ′(x) = f(x) for all x ∈ (a, b).

Thus, every continuous function has an antiderivative. This fact is needed in
(the first line of) the following proof.
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PROOF
of the
Change of Variables
Formula

Proof. Let F be any antiderivative for f , so F ′ = f . Then, by the Chain Rule,

d

dx
F (g(x)) = F ′(g(x)) · g′(x) = f(g(x)) · g′(x)

so that F (g(x)) is an antiderivative of f(g(x)) · g′(x). Thus:∫ b

a

f(g(x)) g′(x) dx = F (g(x))
∣∣b
a

= F (g(b))− F (g(a))

Also: ∫ g(b)

g(a)

f(u) du = F (u)
∣∣g(b)
g(a)

= F (g(b))− F (g(a))

Compare!

using
integration by parts
with definite
integrals

When using the integration by parts formula with definite integrals, one again
has to be careful how things are written down.

As usual, one option is to first solve the corresponding indefinite integral prob-
lem, and use any antiderivative to evaluate the definite integral. However, it
is more compact to evaluate the definite integral directly, as illustrated in the
next example.

EXAMPLE

using parts
with a
definite integral

Problem: Find
∫ 2

1
lnx dx .

Solution: ∫ 2

1

lnx dx = x lnx
∣∣2
1
−
∫ 2

1

x · 1

x
dx

= (2 ln 2− 1 ln 1)−
[
x
∣∣2
1

]
= 2 ln 2− [2− 1]

= 2 ln 2− 1 ≈ 0.386

Thus, the area under the graph of y = lnx on [1, 2] is approximately 0.386 .

Note that it was necessary to evaluate each part of the antiderivative from 1 to

2 . In both cases, the symbol ‘
∣∣2
1
’ is read as ‘evaluated from 1 to 2’.
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EXAMPLE Problem: find
∫ 0

−1 3 ln(1− x) dx .

Solution: It is usually easiest to use the linearity of the integral to factor the
constant out first:∫ 0

−1
3 ln(1− x) dx = 3

[∫ 0

−1
ln(1− x) dx

]
= 3

[
(x− 1) ln(1− x)

∣∣0
−1 −

∫ 0

−1
(x− 1)

1

x− 1
dx

]
= 3

[
(0 + 2 ln 2)−

∫ 0

−1
(1) dx

]
= 3

[
2 ln 2− x

∣∣0
−1

]
= 3[2 ln 2− (0 + 1)]

= 6 ln 2− 3 ≈ 1.159

Observe how v was chosen to be x − 1, instead of simply x, to simplify the
integral

∫
v du .

EXERCISE 2 ♣ Find
∫ 1

0
xex dx, by using parts. Do not solve the corresponding indefinite

integral problem first; work directly with the definite integral.

QUICK QUIZ

sample questions

1. Find
∫ 1

2

0
(2x−1)3 dx by first solving the companion indefinite integral prob-

lem.

2. Find
∫ 1

2

0
(2x−1)3 dx by transforming it into a definite integral in the variable

u, with correct limits of integration.

3. Solve
∫ e

1
lnx dx directly. That is, do NOT first solve the companion indef-

inite integral problem.

KEYWORDS

for this section

Various approaches to using the substitution technique in the context of definite
integrals, the Change of Variables formula, using parts with definite integrals.

END-OF-SECTION
EXERCISES

Evaluate the following definite integrals. Use any correct solution technique.
Be sure to write complete mathematical sentences. Approximate answers to
three decimal places.

1.

∫ 1

−1
x
√

1 + x2 dx

2.

∫ 3

0

2

3x + 4
dx

3.

∫ 2

1

1

(5− t)3
dt

4.

∫ 3

1

ln 3x dx

5.

∫ 3

2

5 ln(x− 1) dx



7.5 The Area Between Two Curves

Introduction The definition of the definite integral provides mathematicians with intuition
that helps to develop formulas involving the definite integral. First, a formula
is developed for finding the area of the region between two curves.

distance between
two real numbers

Recall that if a and b are any two real numbers, then the distance between them
is |b−a|. If, in addition, b ≥ a, then the distance between them is |b−a| = b−a.

finding the
area between
two curves;

a motivation

Let f and g both be continuous on the interval [a, b], and suppose that f(x) ≥
g(x) for all x ∈ [a, b], so that the graph of f lies above the graph of g on [a, b].

We want to find the area between the graphs of f and g on [a, b]. To motivate
the formula, proceed as follows:

Investigate a typical ‘infinitesimal slice’ of the desired area. First, choose a
value of x between a and b, and look at a slice of the desired area at this value
x. Denote the width of this typical slice by dx (think of dx as denoting an
infinitesimal piece of the x-axis).

Since f(x) ≥ g(x), the height of the slice is f(x) − g(x). Observe that this is
the height of the slice, regardless of the signs (plus or minus) of f and g.

428
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Therefore, the area of this typical slice is:

( height︷ ︸︸ ︷
f(x)− g(x)

) width︷︸︸︷
dx

Now, use calculus to ‘sum’ these slices:

desired area =

∫ b

a

(
f(x)− g(x)

)
dx

Although this is certainly not a rigorous development of the formula (which
would require partitioning [a, b] and investigating Riemann sums), the result is
correct. The process illustrates how intuition about the definite integral can be
used to gain some useful results.

EXERCISE 1 ♣ 1. Show that whenever f(x) ≥ g(x), then f(x)−g(x) ≥ 0. Be sure to write
a complete mathematical sentence. (This is a one-liner.)

♣ 2. Suppose that f(1) = −2 and g(1) = −4 . Plot the two points described
here. Is f(1) ≥ g(1)? What is f(1)− g(1) in this case?

another viewpoint Now, view the previous problem from a different perspective. Suppose for the
moment that both f and g are positive, and the graph of f lies above the graph
of g. Then, the area between f and g can be found by finding the area under
f , and subtracting off the area beneath g:

area between f and g =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx

=

∫ b

a

(
f(x)− g(x)

)
dx (by linearity)

Similarly, if f is positive and g is negative, then the graph of f necessarily lies
above the graph of g, and the desired area can be found as follows:

Keep in mind that the word ‘area’ always refers to a nonnegative quantity.

In this situation (illustrated in the sketch),
∫ b

a
g(x) dx is a negative number,

since the definite integral treats area beneath the x-axis as negative. Thus,

B = −
∫ b

a
g(x) dx. The desired area between the two curves on [a, b] is then:

desired area =

∫ b

a

f(x) dx +

(
−
∫ b

a

g(x) dx

)

=

∫ b

a

(
f(x)− g(x)

)
dx (by linearity)

The same formula is again obtained.
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EXERCISE 2 ♣ Suppose that f and g are both negative on the interval [a, b], and that
f(x) ≥ g(x) on [a, b]. Make a sketch that illustrates this situation. Then,
proceeding as in the previous example, find the formula for the area between
f and g on [a, b].

The result concerning the area between two curves is summarized below:

AREA BETWEEN
TWO CURVES

Let f and g be continuous on [a, b], and suppose that f(x) ≥ g(x) on [a, b],
so that the graph of f lies above the graph of g. Then, the area between the
graphs of f and g on [a, b] is given by:∫ b

a

(
f(x)− g(x)

)
dx

EXAMPLE

finding the area
between two curves

Problem: Find the area between y = ex and y = x on [1, 2].

Solution: A quick sketch shows that the graph of y = ex lies above the graph
of y = x on the interval [1, 2]. Thus, the desired area is given by:∫ 2

1

(ex − x) dx = (ex − x2

2
)
∣∣2
1

= (e2 − 2)− (e− 1

2
)

= e2 − e− 3

2
≈ 3.171

the phrase
‘bounded by’

The phrase ‘bounded by . . . ’ can be roughly interpreted as ‘having edges (bound-
ary) given by the graphs of . . . ’. The idea is illustrated in the following examples:

• The area in the first quadrant bounded by y = x and y = x3 is shown
below. This is the area in the first quadrant that has as its boundary only
the graphs of y = x and y = x3.
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• The area in the third quadrant bounded by y = x and y = x3 is shown
below. This is the area in the third quadrant that has as its boundary only
the graphs of y = x and y = x3.

• The area bounded by y = x and y = x3 is shown below. This is the area
that has as its boundary the graphs of y = x and y = x3. Observe that
this area is naturally composed of two pieces.

• The area bounded by y = x, y = x3, and x = 2 is shown at left. This is the
area having as its boundary the graphs of the given equations. Remember
that the graph of x = 2 (viewed as an equation in two variables) is the set
of all points (x, y) with x = 2. That is, the graph of x = 2 consists of all
points with x-value equal to 2; thus, it is the vertical line that crosses the
x-axis at 2.

• The phrase ‘the area bounded by y = x, y = x3 and x = 1
2 ’ is ambiguous;

there are two adjacent pieces of area with the given edges. Do we want just
one of these? Both of these? If both are desired, why wasn’t the simpler
description ‘the area in the first quadrant bounded by y = x and y = x3’
given?

Because of this ambiguity, the desired area is clarified by using, say, the
description ‘the area bounded by y = x, y = x3, x = 0, and x = 1

2 ’.

Alternately, the description ‘the area between y = x and y = x3 on [0, 1
2 ]’

can be used. In either case, there is no doubt that the area being described
is the one shown below.
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EXERCISE 3 Sketch each of the areas described below:

♣ 1. The area bounded by y = x2 and y = x .

♣ 2. The area in the first quadrant bounded by y = x2 and y = x4 .

♣ 3. The area in the second quadrant bounded by y = x2 and y = x4.

♣ 4. The area bounded by y = x2 and y = x4.

♣ 5. The area bounded by y = x2, the x-axis, x = 1 and x = 3 .

♣ 6. The area bounded by y = x2, y = −x2, x = 1 and x = 3 .

♣ 7. The area bounded by y = x2, y = 1, and y = 2 .

♣ 8. The area bounded by y = x2 and y = 4x− 3 .

EXERCISE 4 ♣ Describe each of the areas shown below, using an appropriate variation of
the phrase:

‘the area bounded by . . . ’

EXAMPLE Problem: Find the area bounded by y = x2 and y = 4x− 3 .
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finding
intersection
points

Solution: It is first necessary to find the intersection points. To do this, we seek
points (x, y) that make both equations true (so that the point (x, y) lies on both
curves).

If (x, y) is an intersection point, then when the number x is substituted into
either equation, the same value of y results. Therefore, values of x are sought
for which the y values on both curves are the same. To find such values, set
the y values of both curves equal to each other, and solve for the corresponding
value(s) of x:

x2 = 4x− 3 ⇐⇒ x2 − 4x + 3 = 0

⇐⇒ (x− 1)(x− 3) = 0

⇐⇒ x = 1 or x = 3

EXERCISE 5

review of
equivalence and
the mathematical words
‘or’ and ‘and’

♣ 1. In English, what does the sentence ‘x2 = 4x− 3 ⇐⇒ x = 1 or x = 3’
mean?

♣ 2. For what value(s) of x is the sentence ‘x = 1 or x = 3’ true? (If necessary,
review the mathematical meaning of the word ‘or’.)

♣ 3. Suppose that, for a given value of x, the sentence ‘x2 = 4x− 3’ is false.
Can anything be said about the truth value of the sentence ‘x = 1 or x = 3’?

♣ 4. Is it correct to say

(x− 1)(x− 3) = 0 ⇐⇒ x = 1 and x = 3 ?

Why or why not? (If necessary, review the mathematical meaning of the
word ‘and’.)

So the curves intersect when x = 1 and when x = 3 . Since the points with
these x values lie on both curves, either curve, y = x2 or y = 4x − 3, can be
used to find the corresponding y-values:

x = 1 =⇒ y = 12 = 1 (substituting into y = x2)

or x = 1 =⇒ y = 4(1)− 3 = 1 (substituting into y = 4x− 3)

x = 3 =⇒ y = 32 = 9 (substituting into y = x2)

or x = 3 =⇒ y = 4(3)− 3 = 9 (substituting into y = 4x− 3)
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use the
simplest curve to
find the corresponding
y-values

Since either curve can be used to find the corresponding y-values, one usually
chooses the simplest one. (In this example, it would be a toss-up as to which
curve is simpler.)

From the sketch, the graph of y = 4x − 3 lies above the graph of y = x2 on
[1, 3]. (Momentarily, it will be observed that it is not really necessary to know
which curve is on top.) Thus, the desired area is given by:∫ 3

1

(
(4x− 3)− x2

)
dx = 2x2 − 3x− 1

3
x3
∣∣3
1

= (18− 9− 9)− (2− 3− 1

3
)

=
4

3

EXAMPLE

it’s not really
necessary to know
which curve is
on top

Problem: Find the area in the first quadrant bounded by y = 10x2 and y = x3.

Solution: It’s not necessary to graph the functions; just find the intersection
points:

10x2 = x3 ⇐⇒ x3 − 10x2 = 0

⇐⇒ x2(x− 10) = 0

⇐⇒ x = 0 or x = 10

The curves intersect at x = 0 and x = 10 . So, on the interval [0, 10], either the
graph of x3 is on top, or the graph of 10x2 is on top. (If one were on top for
only part of the time, then there would have to be another intersection point.)
Just guess that x3 is on top, and calculate:∫ 10

0

(
x3 − 10x2

)
dx =

1

4
x4 − 10

3
x3
∣∣10
0

= (
10000

4
− 10000

3
)

= 10000(
3

12
− 4

12
)

= −2500

3

Since the answer is negative, the guess was incorrect: actually, y = 10x2 is on
top. But the desired area is still known:

desired area =

∣∣∣∣−2500

3

∣∣∣∣ =
2500

3

EXAMPLE

jigsaw puzzles

Problem: Find the area bounded by y = x2, y = 1 and y = 4 .

Solution: If you like jigsaw puzzles, you’ll like this sort of problem. Just figure
out the easiest ‘pieces’ that make up the desired area.

Symmetry can be used to simplify the problem. Find the area in the first
quadrant, and double it.
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One way to view the area in the first quadrant is as being composed of a
rectangle, and an extra piece.

The height of the rectangle is 4 − 1 = 3. What is the width? To answer this,
we need to know where y = 1 and y = x2 intersect:

x2 = 1 ⇐⇒ x = ±1

(Remember that ‘x = ±1’ is shorthand for ‘x = 1 or x = −1’.)

Thus, the width of the rectangle is 1−0 = 1. The rectangle has area (3)(1) = 3 .

What is the area of the remaining piece? We need to know where y = 4 and
y = x2 intersect:

x2 = 4 ⇐⇒ x = ±2

Then, calling the area of this piece A :

A =

∫ 2

1

(4− x2) dx = 4x− x3

3

∣∣2
1

= (8− 8

3
)− (4− 1

3
)

= 4− 7

3
=

12

3
− 7

3
=

5

3
= 1

2

3

Therefore, the area bounded by y = x2, y = 1 and y = 4 is:

2 · (3 + 1
2

3
) = 9

1

3

QUICK QUIZ

sample questions

1. Suppose that g and f are continuous functions, and that g(x) ≥ f(x) on
the interval [c, d]. Give a formula for the area between f and g on [c, d].

2. Find the area bounded by y = −x2 + 1 and the x-axis.

3. Is the phrase ‘the area bounded by y = (x − 2)2, x = 1 and y = 4’
ambiguous? Why or why not?

4. Find the area between y = ex and f(x) = −x on [0, 1]. Make a sketch
showing the area that you are finding.

KEYWORDS

for this section

The distance between two real numbers, finding the area between two curves,
the phrase ‘bounded by’, finding intersection points, it is not necessary to know
which curve is on top.

END-OF-SECTION
EXERCISES

♣ Find the area of each region described below. Make a sketch, and shade the
area that you are finding. Be sure to write complete mathematical sentences.

1. In the first quadrant, bounded by: y = x2 and y = x4

2. In the third quadrant, bounded by: y = x and y = x3

3. Bounded by y = −(x− 2)2 + 3 and y = −1

4. Bounded by y = x and y = x3

5. Bounded by y = x2, y = 1 and y = 2

6. Bounded by y = x2 and y = −1, x = 0 and x = 2

7. Bounded by y = x3, y = 8 and x = −1



7.6 Finding the Volume of a Solid of Revolution—Disks

Introduction Again, in this section, intuition gained from the definition of the definite inte-
gral helps to motivate some useful formulas for finding the volume of solids of
revolution. Keep in mind that strict derivations of these formulas would require
partitioning and investigating Riemann sums.

generating a
solid of revolution;

revolving about
the x-axis

Let f be continuous on an interval [a, b]. If the area between the graph of f
and the x-axis on [a, b] is rotated about the x-axis, then a solid of revolution
is generated. Our goal is to use calculus to find the volume of this solid of
revolution.

EXAMPLE For example, consider the upper-half-circle shown below. When this graph is
rotated about the x-axis, a sphere results.

The phrase ‘this graph is rotated about the x-axis’ is shorthand for the more
correct phrase, ‘the area between the graph and the x-axis is rotated about the
x-axis’.

EXAMPLE If the line shown below is revolved about the x-axis, a right circular cone is
obtained.

These two examples will be used to ‘test’ our formula, after its derivation.

436
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motivational
derivation of
the formula;

a typical slice
of the solid

Let f be continuous on [a, b]. For the moment, suppose that f is nonnega-
tive, so that its graph lies above the x-axis. (This restriction will be removed
momentarily.)

Revolve the graph about the x-axis. Let’s investigate a typical infinitesimal
slice of the resulting solid of revolution.

the slice is
a disk with volume
π(f(x))2 dx

Choose a value x between a and b. Imagine holding a saw, perpendicular to the
xy-plane, and cutting a thin slice from the desired solid at this value x. Call
the thickness of this slice dx, and think of dx as representing an infinitesimally
small piece of the x-axis. Pull this slice out and lay it down. It looks like a
disk! (Consequently, this technique is often referred to as the disk method.) The
radius of the disk is f(x), and hence its volume is:

(area of circle)(thickness) = π(f(x))2 · dx

Now, use integration to ‘sum’ these slices, as x travels from a to b :

desired volume =

∫ b

a

π
(
f(x)

)2
dx

f can be
negative

Observe that if f is negative, the radius of the resulting slice is |f(x)|, but,
(since this radius is squared in finding the area of the circle), the volume of
the typical slice is still π(f(x))2 dx. Thus, the formula holds for all continuous
functions f .

The result is summarized below:

DISK METHOD Let f be continuous on [a, b]. If the area between the graph of f and the x-
axis on the interval [a, b] is revolved about the x-axis, then the volume of the
resulting solid of revolution is: ∫ b

a

π(f(x))2 dx
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EXAMPLE

testing the formula;

finding the volume
of a sphere

Problem: Recall that the volume of a sphere of radius r is 4
3πr

3. Derive this
formula by investigating an appropriate integral.

Solution: The circle of radius r with center at the origin is the set of all points
(x, y) satisfying the equation x2 + y2 = r2; solving for y yields:

y2 = r2 − x2 ⇐⇒ |y| =
√
r2 − x2 ⇐⇒ y = ±

√
r2 − x2

The upper-half-circle is a function; its equation is obtained by using the + sign:
f(x) =

√
r2 − x2. Now, revolve this upper-half-circle about the x-axis on the

interval [−r, r] to generate a sphere of radius r.

take advantage
of symmetry

To cut down on the algebra, we can take advantage of symmetry and find the
volume of the half sphere over the interval [0, r]; doubling this yields the desired
result.

A typical infinitesimal slice of the desired solid at x ∈ [0, r] has volume:

π(
√
r2 − x2)2 dx

Then, using calculus to ‘sum’ these slices yields:

volume of sphere = 2 ·
∫ r

0

π
(√

r2 − x2
)2
dx

= 2π

∫ r

0

(r2 − x2) dx

= 2π(r2x− x3

3
)
∣∣r
0

= 2π
[
(r3 − r3

3
)− 0

]
= 2π

2r3

3

=
4

3
πr3

The expected result is indeed obtained.

EXERCISE 1 ♣ Repeat the previous exercise, without looking at the text.
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EXAMPLE

testing the formula;

finding the volume
of a right circular
cone

Problem: Recall that the volume of a right circular cone of height h and base
radius r is:

1

3
πr2h

Thus, three such cones would completely fill the cylinder of height h and base
radius r. Derive the formula for the volume of a right circular cone by investi-
gating an appropriate integral.

Solution #1 Solution #1: First, find the equation of the line passing through the point (0, 0)
and (h, r); it has slope r

h and passes through the origin, so has equation y = r
hx .

Revolving this graph about the x-axis on [0, h] yields the desired solid.

An infinitesimal slice at x ∈ [0, h] has volume

π(
r

h
x)2 dx

and integration over [0, h] yields

desired volume =

∫ h

0

π(
r

h
x)2 dx

= π
r2

h2

∫ h

0

x2 dx

= π
r2

h2
· x

3

3

∣∣h
0

= π
r2

h2
[
(
h3

3
)− 0

]
=

1

3
πr2h ,

which is of course the anticipated result.

EXERCISE 2 ♣ 1. Repeat the previous example, without looking at the text.

♣ 2. Use calculus to find the volume of a cylinder of height h and radius r,
by investigating an appropriate integral.
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Solution #2 Solution #2. The ‘disk formula’ can also be applied to find the volume of a
solid that results from revolution about the y-axis. It is only necessary that a
typical ‘slice’ be a disk. This is illustrated in the next, alternate, derivation of
the volume of a right circular cone.

This time, generate the cone by revolving the line y = h
r x about the y-axis.

Observe that y = h
r x ⇐⇒ x = r

hy . Make a thin (thickness dy) horizontal
slice at a typical distance y, where y ∈ [0, h]. The volume of this slice is:

π(
r

h
y)2 · dy

Using calculus to sum these slices as y varies from 0 to h yields:

desired volume =

∫ h

0

π(
r

h
y)2 dy

= · · · = πr2h

3

EXAMPLE Problem: Revolve the graph of ex about the x-axis on [0, 1]. Find the volume
of the resulting solid of revolution.

Solution:

desired volume =

∫ 1

0

π(ex)2 dx

= π

∫ 1

0

e2x dx

= π · 1

2
e2x
∣∣1
0

=
π

2
(e2 − 1) ≈ 10.036
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EXAMPLE Problem: Take the graph of x2 on [0, 2] and revolve it about the y-axis. Find
the volume of the resulting solid of revolution.

Solution: Observe that the top of the desired solid is at y = 4, and the bottom
is at y = 0 .

Make a thin (thickness dy) horizontal slice through the solid at distance y ∈
[0, 4]. For y ≥ 0,

y = x2 ⇐⇒ x = ±√y ,

so the radius of the thin slice is
√
y, and has volume:

π(
√
y)2 dy

Using calculus to ‘sum’ the disks as y goes from 0 to 4 yields:

desired volume =

∫ 4

0

π(
√
y)2 dy

= π

∫ 4

0

y dy

= π · y
2

2

∣∣4
0

=
π

2
(16− 0) = 8π

EXAMPLE

a solid with
a hole

Problem: Find the volume of the solid generated by taking the region bounded
by y = 5 and y = x2 + 1, and revolving it about the x-axis.

Solution: The resulting solid of revolution has a hole in it. Note that the graphs
y = 5 and y = x2 + 1 intersect at values of x for which 5 = x2 + 1; solving this
equation gives x = ±2 . This problem will be solved in two different ways.
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Approach #1;

view the desired volume
as a difference
of volumes

Approach #1. The desired volume can be viewed as a difference of volumes:

Revolve y = 5 about the x-axis on [−2, 2]; call this volume V1 .

Revolve y = x2 + 1 about the x-axis on [−2, 2]; call this volume V2 .

The desired volume is V1 − V2.

Volume V1 can be found without calculus, since it is has a constant cross-
sectional area:

V1 = (area of circle)(height) = π(5)2 · 4 = 100π

To find V2, use symmetry and calculus:

V2 = 2

∫ 2

0

π(x2 + 1)2 dx

= 2π

∫ 2

0

(x4 + 2x2 + 1) dx

= · · · = 412π

15

Thus, the desired volume is V1 − V2 = 100π − 412π
15 = 72.53̄π .

Approach #2;

look at an
infinitesimal slice

Approach #2. This time, let’s investigate a typical thin slice of the desired
solid, at a distance x ∈ [0, 2]. It is shaped like a donut, and has volume:

π(5)2 dx− π(x2 + 1)2 dx = π[52 − (x2 + 1)2] dx

Thus, the desired volume is (again using symmetry):

2

∫ 2

0

π[52 − (x2 + 1)2] dx = 2π

∫ 2

0

24− x4 − 2x2 dx

= · · · = 72.53̄π

QUICK QUIZ

sample questions

1. Show two ways in which a cylinder of height h and radius r can be generated
as a solid of revolution.

2. Show two ways in which a right circular cone of height h and base radius r
can be generated as a solid of revolution.

3. Revolve the graph of x2 about the x-axis on [0, 1]. Find the volume of the
resulting solid of revolution. Make a sketch of a typical ‘slice’.

4. Take the area in the first quadrant bounded by y = x2, the y-axis, and
y = 1, and revolve it about the y-axis. Find the volume of the resulting
solid of revolution. Make a sketch of a typical ‘slice’.

KEYWORDS

for this section

Generating a solid of revolution by revolving about the x-axis; what is the volume
of a typical thin slice? The disk method, revolving about the y-axis, a solid with
a hole.
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END-OF-SECTION
EXERCISES

♣ Revolve each region described below about the x-axis. Find the volume
of the resulting solid of revolution. Be sure to write complete mathematical
sentences. Make a rough sketch of the solid under investigation.

1. Bounded by: y = 2x, x = 0, x = 1, and the x-axis

2. Bounded by: y = x3, x = 1, x = 2, and the x-axis

3. Bounded by: y = 1
x , x = 1, x = 2, and the x-axis

4. Bounded by: y = |x|, x = −1, x = 1, and the x-axis

5. Bounded by: y =
√
x, x = 0, x = 4, and the x-axis

6. Bounded by: y = ex + 1, x = 0, x = 1, and the x-axis

7. In the first quadrant, bounded by: y = x2, y = 0, y = 4, and the y-axis

(A typical slice will have a hole—be careful.)

8. Bounded by: y = x3, y = 0, y = 8, and the y-axis

(A typical slice will have a hole—be careful.)

Revolve each region described below about the y-axis. Find the volume of the
resulting solid of revolution. Be sure to write complete mathematical sentences.
Make a rough sketch of the solid under investigation.

9. Bounded by: y = x, y = 0, y = 2, and the y-axis

10. Bounded by: y = 2x, y = 1, y = 3, and the y-axis

11. Bounded by: y = 1
x , y = 1, y = 2, and x = 1

2

(The resulting solid will have a hole—be careful.)



7.7 Finding the Volume of a Solid Of Revolution—Shells

generating a
volume of revolution;

revolving about
the y-axis

Let f be continuous and nonnegative on [a, b]. Take the area bounded by the
graph of f and the x-axis on the interval [a, b], and revolve it about the y-axis.

In some instances, the volume of the resulting solid of revolution can be found
by looking at disks (or disks with holes) that are sliced horizontally, that is,
perpendicular to the y-axis. However, it is shown in this section that there is
a more natural way to view the resulting solid in this case; as being built up
from thin shells.

EXAMPLE

horizontal disks
with holes

Problem: Revolve the area bounded by f(x) = x2 and the x-axis on [0, 2] about
the y-axis. Find the volume of the resulting solid of revolution, using horizontal
disks.

Solution: The method discussed here was introduced in the previous section.
This is a review problem.

When x = 2, y = 22 = 4 . Let y denote a typical value in [0, 4], and cut a thin
horizontal slice (thickness dy) from the desired volume at this value of y. As
usual, view dy as an infinitesimally small piece of the y-axis. The slice is a disk
with a hole (a donut); what is its volume?

444
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get an
expression
for x in terms
of y

Given y, it is necessary to know the corresponding value of x (since the x-value
of the point determines the inner radius of the donut). That is, a formula for x
in terms of y is needed. Solving y = x2 for x yields:

y = x2 ⇐⇒ |x| = √y ⇐⇒ x = ±√y

Two answers are obtained, since, viewed from the y-axis, the curve is not a
function of y. The positive number +

√
y is chosen to give the inner radius of

the donut.

The volume of this slice is found by first getting the volume of the slice when
it doesn’t have a hole, and then subtracting off the volume of the hole:

π(2)2 dy − π(
√
y)2 dy = π(4− y) dy

Then, ‘sum’ these slices, as y travels from 0 to 4:

desired volume =

∫ 4

0

π(4− y) dy

= π(4y − y2

2
)
∣∣4
0

= π(16− 16

2
) = 8π

EXERCISE 1 ♣ Problem: Revolve the area bounded by f(x) = x3 and the x-axis on [0, 2]
about the y-axis. Find the volume of the resulting solid of revolution, by
using horizontal disks. Make a sketch of the volume that you are finding.
Also make a sketch of a typical ‘slice’.

disadvantages of
the disk approach
in this setting

The previous approach was ‘hard’ in two ways:

• It was necessary to solve for x in terms of y. This is unnatural, since
although y is a function of x, x may not be a function of y.

• The typical slice was not a simple disk, but a disk with a hole, which is
more difficult to work with.

These disadvantages are overcome by viewing the volume in a different way, as
discussed below.

the shell method Let f be continuous and nonnegative on [a, b]. Take the area bounded by the
graph of f and the x-axis on [a, b], and revolve it about the y-axis. Take a ‘donut
cutter’ of radius x (where x is a number between a and b), and, coming down
from the top, punch a thin shell (thickness dx) from the solid of revolution.
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the shell has
volume
2πxf(x) dx

To calculate the volume of this thin shell, observe first that its circumference
is 2π(radius) = 2πx, and its height is f(x). Cut the shell and unroll it. The
volume is now easy to calculate:

(width)(height)(thickness) = (2πx)f(x)(dx)

Summing the volumes of these shells as x travels from a to b yields the desired
volume of revolution:

(desired volume) =

∫ b

a

2πx f(x) dx

Remember that a rigorous derivation of this formula would require partitioning,
and looking at Riemann sums.

EXAMPLE Problem: Revolve the area bounded by f(x) = x2 and the x-axis on [0, 2] about
the y-axis. Using shells, find the volume of the resulting solid of revolution.

Solution: The solution is now much easier than when the volume was viewed
as being ‘built up’ from horizontal disks:

(desired volume) =

∫ 2

0

2πx (x2) dx

= 2π

∫ 2

0

x3 dx

= 2π
x4

4

∣∣2
0

=
π

2
(16− 0)

= 8π

Note that you only integrate from 0 to 2; yet the volume being found extends
from −2 to 2 . (♣ Why is this?)

The result is summarized below.

SHELL METHOD Let f be continuous and nonnegative on [a, b]. If the area between the graph of
f and the x-axis on [a, b] is revolved about the y-axis, then the volume of the
resulting solid of revolution is: ∫ b

a

2πx f(x) dx
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EXAMPLE

finding the
volume of a sphere,
using shells

Problem: Derive the formula V = 4
3πr

3 for the volume of a sphere of radius r,
using shells.

Solution: As shown in the previous section, the upper-half circle of radius r has
equation y =

√
r2 − x2. Take the area bounded by this curve and the x-axis on

[0, r] and revolve it about the y-axis. Double this volume to obtain the desired
result.

desired volume = 2

∫ r

0

2πx
√
r2 − x2 dx

= 4π

∫ r

0

x
√
r2 − x2 dx

=
4π

(−2)

∫ r

0

(−2)x
√
r2 − x2 dx

= −2π

∫ 0

r2
u1/2 du

= −2π · 2

3
u3/2

∣∣0
r2

= −4π

3
[0− (r2)3/2]

= −4π

3
(−r3)

=
4

3
πr3

EXERCISE 2 ♣ Cite a reason for every step in the previous example.

EXAMPLE Problem: Revolve the region bounded by y = x2 + 1, the x-axis, x = 1 and
x = 2 about the y-axis. Find the volume of the resulting solid of revolution in
two ways: using shells, and using disks. In each case, sketch the typical ‘slice’
(or ‘slices’). Be sure to write complete mathematical sentences.

Solution using shells:∫ 2

1

2πx(x2 + 1) dx = 2π

∫ 2

1

x3 + x dx

= 2π(
x4

4
+
x2

2
)
∣∣2
1

= 2π
[
(4 + 2)− (

1

4
+

1

2
)
]

= 2π(6− 3

4
) =

21π

2
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Solution using disks: This time, the solid must be separated into two pieces,
because the ‘slices’ look different, depending upon the value chosen for y.

The volume V1 of the bottom piece can be found without calculus; it is a
cylinder, with a hole, of height 2. The outer radius is 2 and the inner radius is
1:

V1 = π22 · 2− π12 · 2 = 2π(22 − 12) = 2π(3) = 6π

The second volume V2 requires using disks with holes:

Let y > 2, and find the corresponding x-value:

y = x2 + 1 ⇐⇒ x2 = y − 1 ⇐⇒ x = ±
√
y − 1

Therefore, a typical slice for the upper section has inner radius
√
y − 1, and

outer radius 2, and thus has volume:

π22 · dy − π(
√
y − 1)2 · dy = π(4− (y − 1)) dy = π(5− y) dy

‘Summing’ these disks as y travels from 2 to 5 yields:∫ 5

2

π(5− y) dy = π(5y − y2

2
)
∣∣5
2

= π
[
(25− 25

2
)− (10− 2)

]
= π(

9

2
)

The total volume is

V1 + V2 = 6π +
9

2
π =

21π

2
,

which agrees with the earlier result. You should be convinced that shells were
much easier in this situation!

QUICK QUIZ

sample questions

1. What is the volume of the thin shell sketched here?

2. Revolve the area bounded by y = x and the x-axis on [0, 2] around the
y-axis. Use shells to find the volume of the resulting solid of revolution.

3. In the sketch below, would it be easier to use horizontal disks or shells to
find the volume? Justify your answer.

KEYWORDS

for this section

The shell method for finding the volume of a solid of revolution; what is the
volume of a typical thin slice?
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END-OF-SECTION
EXERCISES

Revolve each region described below about the y-axis. Find the volume of the
resulting solid of revolution. Be sure to write complete mathematical sentences.
Make a rough sketch of the solid under investigation.

1. Bounded by: y = 2x, x = 0, x = 1, and the x-axis

(Find the volume in two ways; using shells, and using disks.)

2. Bounded by: y = 2x, x = 1, x = 2, and the x-axis

(Find the volume in two ways; using shells, and using disks.)

3. Bounded by: y = ex, x = 0, x = 1, and the x-axis

4. Bounded by: y = ex, x = 1, x = 2, and the x-axis

Now, do these additional problems:

5. Derive the formula for the volume of a right circular cone of base radius r
and height h, using shells.

6. Derive the formula for the volume of a cylinder of height h and base radius
r, using shells.



NAME (1 pt)
SAMPLE TEST, worth 100 points, Chapter 7

Show all work that leads to your answers. Good luck!

1.
(15 pts)

TRUE or FALSE. Circle the correct response. (3 points each)

T F Suppose f is continuous on R and F ′ = f . Then,
∫ b

a
f(x) dx = F (b)− F (a).

T F If f is continuous on R, then
∫ b

a
f(x) dx =

∫ b

a
f(t) dt.

T F If
∫ b

a
f(x) dx = 0, then f(x) = 0 on [a, b].

T F If f is continuous, then
∫ b

a
f(x) dx is a function of x.

T F For all functions f that are defined at a, if x→ a, then f(x)→ f(a).

2.
(8 pts)

Find the area bounded by the graph of lnx and the x-axis on the interval [e, e2]. Make
a sketch that shows the area you are finding.

3.
(12 pts)

Refer to the sketch below, where certain areas are labeled. Evaluate the following inte-
grals, if possible. If not possible with the given information, so state.

(3 pts)
∫ b

a
f(t) dt

(3 pts)
∫ 0

b
f(x) dx

(3 pts)
∫ c

a
f(u) du

(3 pts) Let z ∈ (b, c), and find
∫ z

b
f(x) dx +

∫ c

z
f(x) dx

450
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4.
(5 pts)

In a few words, discuss why the notation
∫ b

a
f(x) dx is used for definite integrals.

5.
(20 pts)

Evaluate the following integrals. Use any appropriate techniques. Be sure to write
complete sentences.

(5 pts)

∫ 0

−1
e3x dx

(5 pts)

∫ 1

0

(2x− 1)7 dx

(5 pts)

∫
2t

t− 1
dt

(5 pts)

∫
1

t ln t
dt

6.
(8 pts)

Find the area in the first quadrant, bounded by y = x2 and y = x4. Sketch the area that
you are finding. Show all work that leads to your answer.
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7.
(13 pts)

(5 pts) Give two different partitions of the interval [0, 1], each with norm 1
3 .

(8 pts) Find a Riemann sum for f(x) = x2 corresponding to the partition {0, 1, 2} of
the interval [0, 2]. (There are many correct answers possible.) What is your
Riemann sum an approximation to?

8.
(18 pts)

Revolve the area shaded below around the y axis.

(8 pts) Find the volume of the resulting solid of revolution by using SHELLS.

(10 pts) Find the volume of the resulting solid of revolution by using horizontal DISKS.



ABBREVIATED SOLUTIONS TO
QUICK QUIZ QUESTIONS and ODD-NUMBERED END-OF-SECTION EXERCISES

CHAPTER 1. ESSENTIAL PRELIMINARIES

Section 1.1 The Language of Mathematics—Expressions versus Sentences

Quick Quiz:

1. a mathematical expression

2. numbers, functions, sets

3. x = x
2 + x

2 (many others are possible)

4.
√
x > 2 and 4− 3 = 7 are sentences

End-of-Section Exercises:

1. EXP 19. SEN, T

3. SEN, T 21. SEN, F

5. SEN, F 23. SEN, T

7. SEN, T 25. SEN, ST/SF

9. SEN, ST/SF 27. EXP

11. SEN, T 29. SEN, T

13. EXP 31. SEN, T

15. SEN, T 33. SEN, ST/SF

17. SEN, ST/SF 35. SEN, F

37. Commutative Property of Addition

39. Distributive Property

41. If x = 1 and y = 3 : 1− 3 = 1 + (−3) = −2
If x = 1 and y = −3 : 1− (−3) = 1 + (−(−3)) = 1 + 3 = 4

43. The expression xyz is not ambiguous; if one person computes this as (xy)z and another as x(yz), the
same results are obtained.

Section 1.2 The Role of Variables

Quick Quiz:

1. The variables are x and y; the constants are A, B, and C.

2. With universal set R, x2 = 3 has solution set {
√

3,−
√

3}. With universal set Z, the solution set is
empty.

3. To ‘solve’ an equation means to find all choices (from some universal set) that make the equation true.

Three solutions of x+ y = 4: (0, 4), (4, 0), and (2, 2). There are an infinite number of solution pairs!

4. The equation x2 ≥ 0 is (always) true. The equation x > 0 is conditional; it is true for x ∈ (0,∞), and
false otherwise.

5. Choose two from the following list:

• variables are used in mathematical expressions to denote quantities that are allowed to vary (like
in the formula A = πr2);

• variables are used to denote a quantity that is initially unknown, but that one would like to know
(for example, ‘solve 2x+ 3 = 5’);

• variables are used to state a general principle (like the commutative law of addition).

End-of-Section Exercises:

1. EXP 3. SEN, F

5. SEN, T 7. SEN, F

453
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9. SEN, F 11. SEN, T

13. EXP

15. R: the only solution is 1;

the rational numbers: the only solution is 1;

the integers: the only solution is 1.

17. R: setting each factor to 0, the real number solutions are 1, −π, and 3
2 ;

the rational numbers: the only rational solutions are 1 and 3
2 ;

the integers: the only integer solution is 1.

19. a) The points are plotted at right:

b) Since (− 1
2 )2 + (

√
3
2 )2 = 1

4 + 3
4 = 1, the point (− 1

2 ,
√
3
2 ) lies on the unit circle. Same for the remaining

point.

c) Clearly, the number 1 satisfies the equation. To see that − 1
2 +

√
3
2 i satisfies x3 = 1, observe that:

(−1

2
+

√
3

2
i)3 = (−1

2
+

√
3

2
i)(−1

2
+

√
3

2
i)(−1

2
+

√
3

2
i)

= (
1

4
−
√

3

2
i− 3

4
)(−1

2
+

√
3

2
i)

= (−1

2
−
√

3

2
i)(−1

2
+

√
3

2
i)

=
1

4
+

3

4
= 1

Similarly for the remaining number.

d) The equation x3 − 1 = 0 has the same solutions as the equation x3 = 1, so the problem has already
been solved.

Section 1.3 Sets and Set Notation

Quick Quiz:

1. F; the set has only 3 members

2. F

3. T

4. F

5. 105 = 5 · 3 · 7; F

End-of-Section Exercises:

1. EXP; this is a set

3. SEN, T

5. SEN, F

7. SEN, C. The truth of this sentence depends upon the set S and the element x.

9. SEN, C. The truth depends on x. If x is 1, 2, or 3, then the sentence is true. Otherwise, it is false.

11. EXP; this is a set
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13. SEN, T

15. SEN, C. The only number that makes this true is 1.

17. SEN, T. No matter what real number is chosen for x, both component sentences ‘|x| ≥ 0’ and ‘x2 ≥ 0’
are true.

19. SEN, T. The two elements are both sets: {1} and {1, {2}}
21. SEN, F. The number 3

7 is in reduced form; the denominator has factors other than 2’s and 5’s.

Section 1.4 Mathematical Equivalence

Quick Quiz:

1. F; when x is −2, the first sentence is false, but the second is true.

2. THEOREM: For all real numbers a, b and c :

a = b ⇐⇒ a+ c = b+ c

3. THEOREM: For all real numbers a, b and c :

a > b ⇐⇒ a+ c > b+ c

4. {(x, y) | x 6= 3 and y 6= 0}
5. equivalent

6. expressions; sentences

End-of-Section Exercises:

3. SEN, T. Both sentences have the same implied domain, and the same solution set, {4}.
5. SEN, T. Both sentences have the same implied domain, and the same solution set, {0}.
7. EXP

9. SEN, T. Both sentences have the same implied domain, and the same solution set, {−2}.
11.

5x− 7 = 3 ⇐⇒ 5x = 10 (add 7)

⇐⇒ x = 2 (divide by 5)

13.

3x < x− 11 ⇐⇒ 2x < −11 (subtract x)

⇐⇒ x < −11

2
(divide by the positive number 2)

Section 1.5 Graphs

Quick Quiz:

1.
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2.

3. y − x2 + 1 = 0 ⇐⇒ y = x2 − 1;

4. First graph the boundary, y = 2x. We want all points on or below this line.

5. TRUE

6.

End-of-Section Exercises:

1. x = π

3. |x| = 2 ⇐⇒ x = 2 or x = −2

5. 3x < −2 ⇐⇒ x < − 2
3

7. x = 0 or |x| = 1

9. x = 1 or |x| = 1

11. The critical observation here is that there are TWO numbers whose absolute value is 7: 7, and −7.
Thus:

|3x+ 1| = 7 ⇐⇒ 3x+ 1 = 7 or 3x+ 1 = −7

⇐⇒ 3x = 6 or 3x = −8

⇐⇒ x = 2 or x = −8

3

The solution set is {2,− 8
3}.
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13. x+ y = 2 ⇐⇒ y = −x+ 2. The graph is the line that crosses the y-axis at 2, and has slope −1.

15. The graph of ‘x = 1 or y = −2’ is the set of all points with x-coordinate 1, together with all points
with y-coordinate −2. The graph is shown below.

17. The solution set of |y| = 1, viewed as an equation in two variables, is {(x, y) |x ∈ R, |y| = 1}. Thus, we
seek all points with y-coordinates 1 or −1. See the graph below.

19.

|x+ y| = 1 ⇐⇒ x+ y = 1 or x+ y = −1

⇐⇒ y = −x+ 1 or y = −x− 1

The graph is the two lines shown below.



CHAPTER 2. FUNCTIONS

Section 2.1 Functions and Function Notation

Quick Quiz:

1. In the graph shown, y is a function of x, because for every x, there is a unique y. That is, the graph
passes a vertical line test.

However, x is not a function of y. It is NOT true that for every y, there is a unique x. That is, the
graph does NOT pass a horizontal line test.

2.
x2 − y + 1 = 0 ⇐⇒ y = x2 + 1

For every value of x, there is a unique value of y. Thus, y is a function of x.
3.

x2 − y + 1 = 0 ⇐⇒ x2 = y − 1

⇐⇒ x = ±
√

y − 1

For each allowable y-value, there are two x-values. Therefore, x is NOT a function of y.

4. Calling the function f : f(x) = (x
2 − 3)2

5. g(−1) = 2(−1)2 − 1 = 2− 1 = 1

g(x2) = 2(x2)2 − 1 = 2x4 − 1

End-of-Section Exercises:

1. f(0) = 03 − 1 = −1

f(1) = 13 − 1 = 0

f(−1) = (−1)3 − 1 = −1− 1 = −2

f(t) = t3 − 1

f(f(2)); first find f(2): f(2) = 23 − 1 = 7; then, f(f(2)) = f(7) = 73 − 1 = 342

3. f(−2) = | − 2| = 2

f(t) = |t| =
{

t if t ≥ 0

−t if t < 0

f(−t) = | − t| = |t|
f(x2) = |x2| = |x|2

5. h(−x) = 1
−x = − 1

x

h(h(x)) = h( 1
x ) = 1

1/x = x

h( 1
x ) = 1

1/x = x

h(x + ∆x) = 1
x+∆x

h(|x|) = 1
|x| =

∣∣ 1
x

∣∣
7. h(1, 1) = 12 + 12 − 1 = 1

h(x, x) = x2 + x2 − 1 = 2x2 − 1

h(y, x) = y2 + x2 − 1 = h(x, y)

h(x + ∆x, y + ∆y) = (x + ∆x)2 + (y + ∆y)2 − 1

458
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Section 2.2 Graphs of Functions

Quick Quiz:

1.

D(f) = {x | 2x− 1 ≥ 0 and x2 − 9 6= 0}
= {x | 2x ≥ 1 and x2 6= 9}

= {x | x ≥ 1

2
and |x| 6= 3}

= {x | x ≥ 1

2
and x 6= 3 and x 6= −3}

= {x | x ≥ 1

2
and x 6= 3}

Note that if x ≥ 1
2 , then automatically, x is not equal to −3 .

2. TRUE. The order that elements are listed in a set is unimportant. In this sentence, the ‘=’ sign is being
used for equality of SETS.

3. By definition, the graph of f is the set of points {(x, f(x)) | x ∈ D(f)}. More precisely, the graph
usually refers to a (partial) picture of this set of points, in the xy-plane.

4. D(f) = [3,∞); the graph is ‘built up’ below:

5. P (−1) = (−1)4−2(−1)2+1 = 1−2+1 = 0; therefore −1 is a root of P . Long division by x−(−1) = x+1
yields:

Therefore: P (x) = (x + 1)(x3 − x2 − x + 1)

End-Of-Section Exercises:

1. EXP; this is a set.

3. SEN; TRUE. The component sentences ‘x ≥ 2 and x 6= 1’ and ‘x ≥ 2’ always have the same truth
values. Both are true on [2,∞) and false elsewhere.

5. SEN; TRUE

7. SEN; TRUE. Both sets are equal to {3}.
9. SEN; this is TRUE (by definition), providing g is a function of one variable.
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The graphs requested in problems 11 and 13 are given below:

Section 2.3 Composite Functions

Quick Quiz:

1. A ∩ B := {x | x ∈ A and x ∈ B}. If A = [1, 3) and B = {1, 2, 3}, then A ∩ B = {1, 2} since the only
elements that are in both A and B are 1 and 2 .

2. The sentence ‘[1, 3] ⊂ {1, 3}’ is FALSE. For example, 2 ∈ [1, 3], but 2 /∈ {1, 3}.
The sentence ‘{1, 3} ⊂ [1, 3]’ is TRUE.

The sentence ‘For all sets A and B, A ∩ B ⊂ A’ is TRUE. Everything that is in BOTH A and B, is
also in A .

3. (f + g)(x) := f(x) + g(x)

D(f + g) = {x | x ∈ D(f) and x ∈ D(g)} = D(f) ∩ D(g)

4. The function f takes an input x, multiplies by 2, then subtracts 1 . Define b(x) = 2x and a(x) = x− 1;
then:

(a ◦ b)(x) := a(b(x))

= a(2x)

= 2x− 1

:= f(x)

5. R(f) = {1,−1}. The only two output values taken on by f are 1 and −1 .

End-Of-Section Exercises:

1. EXP; A ∪B is a set.

3. SEN; CONDITIONAL. The truth of the sentence ‘A ⊂ B’ depends upon the sets A and B.

5. SEN; CONDITIONAL. The sentence ‘R(f) = R’ states that the range of a function is the set of real
numbers; the truth of this sentence depends upon the function f being referred to.

7. SEN; CONDITIONAL. The truth of this sentence depends upon the choice of functions f and g, and
the choice of x.

9. SEN; FALSE. The set {a} is NOT an element of the set {a, b}.
11. R(f) = [0, 8]

13. R(h) = {1, 2, 3, 4, 5}
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Section 2.4 One-to-One Functions and Inverse Functions

Quick Quiz:

1. The function f(x) = x2 is NOT a one-to-one function. It does NOT have the property for every y,
there is a unique x. That is, it does NOT pass the horizontal line test.

2. Translation: ‘For every y in the range of f , there exists a unique x in the domain of f .’ This is the
‘one-to-one’ condition for a function f .

3. One correct graph is shown below:

4. f(f−1(x)) = x ∀ x ∈ R(f)

f−1(f(x)) = x ∀ x ∈ D(f)

5. The graph of f is the line shown below; it is clearly 1− 1. The function f takes an input x, multiplies
by 1

3 , then subtracts 1; to ‘undo’ this, f−1 must take an input x, add 1, then divide by 1
3 (that is,

multiply by 3). Thus: f−1(x) = 3(x + 1)

End-Of-Section Exercises:

1. EXP; this is a function f−1, evaluated at x

3. SEN; T

5. EXP

7. SEN; T

9. EXP

11. D(f) = R, R(f) = (−2,∞)
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13. D(h) = R, R(h) = (5,∞)



CHAPTER 3. LIMITS AND CONTINUITY

Section 3.1 Limits—The Idea

Quick Quiz:

1. lim
x→−2

x3 = (−2)3 = −8

2. lim
x→−1

f(x) = (−1)2 = 1

3. lim
x→1

f(x) = 3(1) = 3

4. There are many correct graphs. The graph must contain the point (2, 1); and when the inputs are close
to 2 (but not equal to 2), the outputs must be close to 5.

5. |t− (−1)| ≤ 4

End-of-Section Exercises:

1. EXP

3. SEN; T

5. SEN; C

7. SEN; T

9. SEN; C

11. EXP

13. SEN; (always) T

15. SEN; (always) T

17. SEN; C

19. SEN; T

Section 3.2 Limits—Making It Precise

Quick Quiz:

1.
lim
x→c

f(x) = l ⇐⇒ ∀ ε > 0, ∃ δ > 0, such that if 0 < |x−c| < δ and x ∈ D(f), then |f(x)−l| < ε

463
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2. The ‘four step process’ is summarized using the mapping diagram and and sketch given below. Given
ε > 0, take δ = ε

3 .

3. limx→2 f(x) does not exist

limx→2+ f(x) = 4

limx→2− f(x) = 2

End-of-Section Exercises:

1. When ‘undoing’ the output −4 − ε, it is important to take the input that lies near −2 ! Take: δ :=
−2 +

√
4 + ε

3. Take δ := 16− (2− ε)4, since this is the shorter distance.

5. lim
x→1

f(x) = 3

lim
x→1+

f(x) = 3

lim
x→1−

f(x) is not defined, since f is not defined to the left of 1

7. lim
x→−1

g(x) = −1

lim
x→−1+

g(x) = −1

lim
x→−1−

g(x) = −1
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9. TRUE! Indeed, if lim
x→c

f(x) = l and f is defined on both sides of c, then both one-sided limits must also

exist and equal l.

Section 3.3 Properties of Limits

Quick Quiz:

1. To show that an object is unique, a mathematician often supposes that there are TWO, and then shows
that they must be equal.

2. As long as both ‘component’ limits exist, the limit of a sum is the sum of the limits.

3. For all real numbers a and b :
|a+ b| ≤ |a|+ |b|

4. To evaluate the limit, just evaluate the function f at c; that is, substitute the value c into the formula
for f .

5. All the component limits exist, so:

lim
z→1

−2f(z) + g(z)

h(z)
=

(−2)(3) + 5

2
= −1

2

End-of-Section Exercises:

1. SEN; TRUE

3. SEN; TRUE

5. SEN; TRUE

7. SEN; TRUE

9. SEN; FALSE

11. SEN; TRUE

13. SEN; CONDITIONAL

15.

lim
t→c

[f(t) + g(t)] = lim
t→c

f(t) + lim
t→c

g(t)

= (−1) + 2

= 1

17. There is not enough information to evaluate this limit. We don’t know anything about the behavior of
f and g, as the inputs approach the number d .

Section 3.4 Continuity

Quick Quiz:

1. A function f is continuous at c if f is defined at c, and limx→c f(x) = f(c).

2. NO! If f were continuous at c, the value of the limit would have to be 3. The discontinuity is removable.

3. f has a nonremovable discontinuity at c if limx→c f(x) does not exist.

4. When f is continuous at c .

5. There are many correct graphs. Here is one:
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End-of-Section Exercises:

1. SEN; CONDITIONAL

3. EXP

5. SEN; CONDITIONAL

7. SEN; CONDITIONAL

9. SEN; CONDITIONAL

11. SEN; TRUE

13. SEN; FALSE

15. EXP. Out of context, it is not known if this is a POINT (a, b), or an open interval of real numbers. In
either case, however, it is an EXPRESSION.

Section 3.5 Indeterminate Forms

Quick Quiz:

1. An ‘indeterminate form’ is a limit that, upon direct substitution, results in one of the forms: 0
0 , 1∞, or

±∞
±∞ .

2.

lim
x→1

x2 − 1

x− 1
= lim
x→1

(x− 1)(x+ 1)

x− 1
= lim
x→1

(x+ 1) = 1 + 1 = 2

3. NO! It is true for all values of x except 1. When x is 1, the left-hand side is not defined; the right-hand
side equals 2 .

4.

y =
x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1

for x6=1
= x+ 1

The graph is:

5. The graph of f is the same as the graph of y = x2−1
x−1 . See (4).

6. f = g if and only if D(f) = D(g), and f(x) = g(x) for all x in the common domain.

End-of-Section Exercises:
1. SEN; FALSE

3. SEN; FALSE

5. SEN; TRUE

7. SEN; TRUE. (Either both limits do not exist; or they both exist, and are equal.)

9.

lim
x→−1

x3 + x2 − 3x− 3

x+ 1
= lim
x→−1

(x+ 1)(x2 − 3)

x+ 1

= lim
x→−1

x2 − 3

= (−1)2 − 3 = −2

11. lim
x→2

x+ 2

x2 + 4x+ 4
=

2 + 2

22 + 4(2) + 4
=

4

16
=

1

4
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13.
lim
t→0+

(1 + t)1/t = e

Section 3.6 The Intermediate Value Theorem

Quick Quiz:

1. If f is continuous on [a, b], and D is any number between f(a) and f(b), then there exists c ∈ (a, b)
with f(c) = D.

2. Since f is continuous on [1, 3] and 0 is a number between f(1) and f(3), the Intermediate Value Theorem
guarantees the existence of a number c with f(c) = 0 .

3. TRUE. When the hypothesis of an implication is false, the implication is (vacuously) true.

4. FALSE. Let x = −1. Then the hypothesis | − 1| = 1 is true, but the conclusion −1 = 1 is false.

5.

END-OF-SECTION EXERCISES:
1. TRUE

3. TRUE

5. TRUE

7. TRUE

9. TRUE

Section 3.7 The Max-Min Theorem

Quick Quiz:

1. The symbol ‘⇐⇒ ’ can also be read as ‘if and only if’.

The number f(c) is a maximum of f on I if and only if f(x) ≤ f(c) for all x ∈ I.

2. There are many possible correct graphs.

3. There are many possible correct graphs.

4. If f is continuous on [a, b], then f attains both a maximum and minimum value on [a, b].

5. The contrapositive of the sentence ‘A =⇒ B’ is the sentence ‘not B =⇒ not A’.

An implication is equivalent to its contrapositive. That is, the sentences ‘A =⇒ B’ and ‘not B =⇒
not A’ always have the same truth values, regardless of the truth values of A and B.
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END-OF-SECTION EXERCISES:

1. The minimum value of f on I is 0; there is no maximum value. The only minimum point is (0, 0).

3. The maximum value of f on I is 4; the minimum value of f on I is 4. The points (x, 4) for x ∈ R are
all both maximum and minimum points.

5. The minimum value of f on I is 1; there is no maximum value. The point (2, 1) is the only minimum
point.

7. The minimum value of f on I is 0; the maximum value is 5. The only minimum point is (− 1
2 , 0); the

only maximum point is (2, 5).

9. TRUE

Contrapositive: If f does not attain a maximum value on [a, b], then f is not continuous on [a, b].

11. FALSE

Counterexample: Let f be the function graphed below. Then, the hypothesis ‘f is continuous on (a, b]’
is TRUE, but the conclusion ‘f attains a maximum value on (a, b]’ is FALSE.

Contrapositive: If f does not attain a maximum value on (a, b], then f is not continuous on (a, b].

13. TRUE

Contrapositive: If f does NOT attain both a maximum and minimum value on [1, 2], then f is not
continuous on (0, 5).
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15. FALSE.

Counterexample: Let f be the function graphed below. Then the hypothesis ‘f is continuous on R’ is
TRUE, but the conclusion ‘f attains a maximum value on R’ is FALSE.

Contrapositive: If f does not attain a maximum value on R, then f is not continuous on R.



CHAPTER 4. THE DERIVATIVE

Section 4.1 Tangent Lines

Quick Quiz:

1. Let f(x) = x . Then:

lim
h→0

f(2 + h)− f(2)

h
= lim

h→0

(2 + h)− 2

h

= lim
h→0

h

h
= 1

Thus, as expected, the slope of hte tangent line to f at the point (2, 2) is 1 .

2. The dummy variable is h . Using the dummy variable t, the limit can be rewritten as:

lim
t→0

f(x + t)− f(x)

t

3. In the limit, x represents the x-value of a point where the slope of the tangent line is desired.

4. In the limit, the difference quotient f(x+h)−f(x)
h represents the slope of a secant line through the points

(x, f(x)) and (x + h, f(x + h)). This secant line is being used as an approximation to the tangent line
at the point (x, f(x)).

5. The function f is graphed below. Since f is only defined to the right of 0, the limit is actually a
right-hand limit:

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0+

h2 − 0

h

= lim
h→0+

h = 0

The slope of the tangent line at the point (0, 0) is 0 .

End-of-Section Exercises:

1. EXP

3. SEN; CONDITIONAL

5. SEN; TRUE

7. g(0.1) = f(x+0.1)−f(x)
0.1 ; g(∆x) = f(x+∆x)−f(x)

∆x

9. h ∈ D(g) ⇐⇒
(
h 6= 0 and x + h ∈ D(f)

)
11. When lim

h→0
g(h) exists, it tells the slope of the tangent line to the graph of f at the point (x, f(x)).

Section 4.2 The Derivative

Quick Quiz:

1. When the limit exists:

f ′(x) = lim
h→0

f(x + h)− f(x)

h

2. f ′ is the derivative function; f ′(x) is a particular output of this function, when the input is x.

3. A−B = (0, 2) ∪ (2, 4); B −A = {4}

470
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4. D(f ′) = R− {1}; its graph is:

5. TRUE. If the limit lim
h→0

f(x + h)− f(x)

h
exists, then, in particular, f must be defined at x (so that f(x)

makes sense).

End-of-Section Exercises:

1. The graph of f is shown below. Here, D(f) = R .

When x > 2, the slopes of the tangent lines equal 1 .

When x < 2, the slopes of the tangent lines equal −1 .

There is no tangent line at x = 2 .

The graph of f ′ is shown at right. Here, D(f ′) = R− {2}.

3. The graph of f is shown below. Here, D(f) = R .

When x > 1, the slopes of the tangent lines equal 2 .

When x < 1, the slopes of the tangent lines equal 2x (as per an example in the text).

There is no tangent line at x = 1 .

The graph of f ′ is shown at right. Here, D(f ′) = R− {1}.
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5. Note that f(2) = 1
2−1 = 1 . Then:

lim
h→0

f(2 + h)− f(2)

h
= lim

h→0

1
(2+h)−1 − 1

h

= lim
h→0

1
1+h −

1+h
1+h

h

= lim
h→0

1− (1 + h)

h(1 + h)

= lim
h→0

−1

1 + h
= −1

Thus, f ′(2) = −1 . That is, the slope of the tangent line to the graph of f at the point (2, 1) is −1 .

7. y − 9 = 6(x− 3)

9. y = 1

Section 4.3 Some Very Basic Differentiation Formulas

Quick Quiz:

1. f(x) = x1/2; f ′(x) = 1
2x
−1/2 = 1

2
√
x

. In Leibniz notation: df
dx = 1

2
√
x

2. TRUE. The derivative of a constant equals zero.

3. y′ = 3x2; the slope of the tangent line at x = 2 is y′(2) = 3(22) = 12 . TRUE.

4.
(a− b)4 = (a + (−b))4 = (1)a4 + (4)a3(−b) + (6)a2(−b)2 + (4)a(−b)3 + (1)(−b)4

= a4 − 4a3b + 6a2b2 − 4ab3 + b4

5. g′(x) = ex + 1
x

End-of-Section Exercises:

1. Multiply out, differentiate term-by-term, and simplify: f ′(x) = 6(2x + 1)2

3.

h′(x) =

{
6x− 2 for x ≥ 1

4 for x < 1

D(h) = D(h′) = R
Section 4.4 Instantaneous Rates of Change

Quick Quiz:

1. f(2)−f(1)
2−1 = 23−13

1 = 8 − 1 = 7 ; this number represents the slope of the secant line through the points

(1, 13) and (2, 23)

2. f ′(x) = 3x2 ; f ′(1) = 3(1) = 3 . This number represents the slope of the tangent line at the point
(1, 13) .

3. less than; once we move to the right of x = 1, the rates of change increase

4. One correct sketch is given:

5. Since f is not continuous at x = 1, f is not differentiable at x = 1 .
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End-of-Section Exercises:

In all cases, the ‘predicted value’ for f(x2) from known information at x1 is given by

f(x2) ≈ f(x1) + (∆x)(f ′(x1)) ,

where ∆x2 = x2 − x1 .

1. Here, ∆x = 2− 1 = 1 ; f(2) ≈ 3 + (1)(2) = 5

3. Here, ∆x = 4− 3 = 1 ; f(4) ≈ −1 + (1)(5) = 4

Section 4.5 The Chain Rule (Differentiating Composite Functions

Quick Quiz:

1. See page 231. The Chain Rule tells us how to differentiate composite functions.

2. f ′(x) = 7
√

2(1− x)6(−1) = −7
√

2(1− x)6

3. dy
dt = dy

dw ·
dw
dv ·

dv
du ·

du
dt

4. . . . tells us that to find out how fast f ◦ g changes with respect to x, we find out how fast f changes
with respect to g(x), and multiply by how fast g changes with respect to x

5. f(x) = 1
3 ln(2x + 1), f ′(x) = 1

3 ·
1

2x+1 · 2 = 2
3(2x+1)

End-of-Section Exercises:

1. f ′(x) =
−ex√

(ex − 1)3
+ 1

3.
dy

dx
= 3e3x

5. y′ = 33(3t− 4)10

7. g′(t) =
2t + 1

2 6
√

(t2 + 2t + 1)5

9. f ′(y) = −7e−y +
1

y

11.
dy

dx
=

3

x
(lnx)2

13.
dy

dt
=

2
√
t− 1 + 1

2
√
t− 1(t +

√
t− 1)2

Section 4.6 Differentiating Products and Quotients

Quick Quiz:

1. See page 239.

2. See page 244.

3. f ′(x) = x · 5(x + 1)4(1) + (1)(x + 1)5

4. Using the Quotient Rule:
f ′(x) =

e2x(2)− (2x + 1) · 2e2x

(e2x)2

=
2e2x(1− (2x + 1))

e4x

=
−4xe2x

e4x
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5. Using a ‘generalized’ product rule:

y′ = (1)(x + 1)(x2 + 1) + x(1)(x2 + 1) + x(x + 1)(2x)

End-of-Section Exercises:

1.
y′ = 2(2− x)2(1− 2x)

y(0) = 0 , y(t2) = t2(2− t2)3

y′(0) = 8 , y′(t) = 2(2− t)2(1− 2t)

3.
f ′(x) = ex(

1

x
+ lnx)

D(f) = (0,∞) , D(f ′) = (0,∞)

f ′(ex) = e(ex)(
1

ex
+ x) , f ′(e2) = e(e2)(

1

e2
+ 2)

5.
g′(x) = ex+ex

lim
x→0

g(x) = e , lim
x→0

g′(x) = e

D(g) = R , g(g′(g(0))) = ee(e
e+ee )

7. h′(x) = x
x+1 ; the tangent line is horizontal, and has equation y = 0

9. f ′(x) = 4e2x(2x + 1)6(x + 4) ; the tangent line has equation y = 16x + 1

11. h(t) = −12e
(3t−1)5 ; the tangent line has equation y − e = −12e(t− 2

3 )

13.

y′ = 0 ⇐⇒
(
x = 3 or x = −1 or x =

1

2
or x =

3±
√

17

2

)
Section 4.7 Higher Order Derivatives

Quick Quiz:

1. The ‘higher derivatives’ of a function f are the derivatives of the form f (n) for n ≥ 2 . That is, the
second derivative, third derivative, fourth derivative, etc., are the ‘higher derivatives’ of f .

2. prime notation: f ′′(x)

Leibniz notation:
d2f

dx2
(x)

3.
∑3

i=1 i
i+1 = 11+1 + 22+1 + 33+1 = 1 + 8 + 81 = 90

4.

10 · 9 · 8 · 7 · 6 = 10 · 9 · 8 · 7 · 6 · 5!

5!

=
10!

5!

5.
d

dx

n∑
i=1

fi(x) =

n∑
i=1

fi
′(x)

End-of-Section Exercises:

1. SEN; TRUE

3. EXP
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5. SEN; CONDITIONAL

7. SEN; TRUE

9. EXP

11. EXP

13. EXP

15. SEN; TRUE

17. SEN; CONDITIONAL

Section 4.8 Implicit Differentiation (Optional)

Quick Quiz:

1.
d

dx
(xy2) =

d

dx
(2)

x(2y1)
dy

dx
+ (1)y2 = 0

dy

dx
=
−y2

2xy

2. For x > 0 :
ln y = ln(x2x) = 2x lnx

1

y

dy

dx
= (2x)

1

x
+ (2) lnx = 2 + 2 lnx = 2(1 + lnx)

dy

dx
= y · 2(1 + lnx) = 2x2x(1 + lnx)

3. Put the equation in standard form, by completing the square:

x2 − 2x + y2 = 8 ⇐⇒ (x2 − 2x + (−2
2 )2) + y2 = 8 + 1

⇐⇒ (x− 1)2 + (y − 0)2 = 32

The equation graphs as the circle centered at (1, 0) with radius 3 .

4. There are many possible correct answers. Here are two:

y given explicitly in terms of x : y = x2 + 2x + 1

y given implicitly in terms of x : xy2 = x + y
5.

End-of-Section Exercises:

1. The graph is the circle centered at (−2, 1) with radius 1 .
y is NOT locally a function of x at the points (−1, 1) and (−3, 1). (There are vertical tangent lines
here.)
The equation of the tangent line at the point (−2, 2) is y = 2 .
The equation of the tangent line at the point (−1, 1) is x = −1 .

3. The graph is the circle centered at (−2, 1) with radius 2 .
y is NOT locally a function of x at the points (0, 1) and (−4, 1); there are vertical tangent lines here.

The equation of the tangent line at the point (−1, 1 +
√

3) is:

y − (1 +
√

3) = − 1√
3

(x− (−1))
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Section 4.9 The Mean Value Theorem

Quick Quiz:

1. See page 266.

2. The word ‘mean’ refers to ‘average’; the Mean Value Theorem guarantees (under certain hypotheses)
a place in an interval (a, b) where the instantaneous rate of change is the same as the average rate of
change over the entire interval.

3. The average rate of change of f on the interval [1, 3] is:

f(3)− f(1)

3− 1
=

27− 1

2
= 13

The instantaneous rates of change are given by f ′(x) = 3x2. We esek c ∈ (1, 3) for which f ′(c) = 13 :

f ′(c) = 13 ⇐⇒ 3c2 = 13

⇐⇒ c2 =
13

3

⇐⇒ c = ±
√

13

3

Choosing the value of c in the desired interval, we get c =
√

13
3 .

4. If f WERE continuous on [a, b], then there would have to be (by the MVT) a number c ∈ (a, b) with

f ′(c) = f(b)−f(a)
b−a . Thus, it must be that f is NOT continuous on [a, b]; that is, f ‘goes bad’ at (at least

one) endpoint.

5. If f WERE differentiable on (a, b), then the MVT would guarantee that there must be c ∈ (a, b) with
f ′(c) equal to the average rate of change of f over [a, b]. Therefore, we can conclude that f is NOT
differentiable on (a, b). That is, there is at least one value of x in the interval (a, b) where f ′(x) does
not exist.

End-of-Section Exercises:

1. The limit gives the slope of the tangent line to the graph of f at the point (x, f(x)), whenever the
tangent line exists and is non-vertical.

3. There is a tangent line to the graph of f when x = 2, and its slope is 4 .

5. Let f(x) = −x2. Then:

f ′(x) := lim
h→0

f(x + h)− f(x)

h
= lim

h→0

−(x + h)2 − (−x2)

h

= lim
h→0

−(x2 + 2xh + h2) + x2

h
= lim

h→0

h(−2x− h)

h

= lim
h→0

(−2x− h) = −2x

7. Put a ‘kink’ in the graph when x− 3 .

9.

f ′(x) = e2x ln(2− x) + 2xe2x ln(2− x)− xe2x

2− x

D(f) = (−∞, 2) , D(f ′) = (−∞, 2)

The tangent line when x = 0 has equation y = (ln 2)x .



CHAPTER 5. USING THE INFORMATION GIVEN BY THE DERIVATIVE

Section 5.1 Increasing and Decreasing Functions

Quick Quiz:

1. See page 276.

2. Zeroes of f : f(x) = 0 ⇐⇒ (x = 0 or x = 1). Choose the test points −1, 1
2 , and 2. The information

is summarized below.

3. TRUE

4. TRUE

END-OF-SECTION EXERCISES:
1. Positive: (−∞,−2) ∪ (1,∞)

Negative: (−2, 1)

3. Positive: (−∞,−1) ∪ (3,∞)
Negative: (−1, 3)

5. Positive: (−∞, 13 ) ∪ ( 3
4 ,∞)

Negative: ( 1
3 ,

3
4 )

7. Positive: (0,∞)
Negative: (−∞,−1) ∪ (−1, 0)

9. Positive: (−4,−1) ∪ (1,∞)
Negative: (−∞,−4) ∪ (−1, 1)

11. Positive: (0,∞)
Negative: (−∞, 0)

13. Positive: (1,∞)
Negative: ( 1

2 , 1)

15. The function f increases on (−∞,−2) ∪ (1,∞) and decreases on (−2, 1).

17. The function f decreases on (−∞,−1) and increases on (−1,∞).

19. The function f decreases on (0, 1e ), and increases on ( 1
e ,∞).

21. b) 2278
c) 3870

23. c) 1 + 2 + 22 + 23 + 24 = 31
d) 26 + · · ·+ 210 = 1984

Section 5.2 Local Maxima and Minima—Critical Points

Quick Quiz:

1. The point (c, f(c)) must be a critical point. Thus, either it is an endpoint of the domain of f , or
f ′(c) = 0, or f ′(c) does not exist.

2. NO! There are critical points that are not local extreme points.

3. The ‘critical points’ for a function f are the CANDIDATES for the local extreme points of f .

4. NO! When A⇒ B is true, B ⇒ A may be either true or false.

5. Since f is differentiable, it is also continuous. By the First Derivative Test, there is a maximum at
x = a; a minimum at x = c1; a maximum at x = c2; and a minimum at x = b.

END-OF-SECTION EXERCISES:
3. TRUE

5. TRUE
477
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7. TRUE 9. FALSE 11. TRUE 13. TRUE

15. FALSE 17. TRUE 19. TRUE

Section 5.3 The Second Derivative—Inflection Points

Quick Quiz:

1. The second derivative of a function tells us the rate of change of the slopes of the tangent lines. This
information is referred to as the concavity of the function.

2. f is concave up on I if and only if f ′′(x) > 0 for every x ∈ I
3. The converse is: If x2 = 1, then x = 1 .

The sentence is false. Choose x to be −1 . Then the hypothesis ‘(−1)2 = 1’ is true, but the conclusion
‘−1 = 1’ is false.

4. By the Second Derivative Test, the point (c, f(c)) is a local maximum point for f .

5. f ′(x) = 3(x− 1)2, f ′′(x) = 6(x− 1), so f ′′(1) = 6(1− 1) = 0

END-OF-SECTION EXERCISES:

1. local minima at x = 0 and x = 1; local maximum at x = 1
2

3. f(x) is positive on (−∞,−2.5) ∪ (−2,∞)
f(x) is negative on (−2.5,−2)

5. f is concave up on (−2, 2)
f is concave down on (−3,−2) ∪ (2,∞)

7. D(f ′) = R− {−4,−3,−2}
9. {x | f(x) > 10} = (−2,−1.5)

11. {x | f ′′(x) < 0} = (−3,−2) ∪ (2,∞)

13. limt→−2 f(t) does not exist

15. The critical points are: {(x, 4) | x ∈ (−∞,−4)}, (0, 2), (−4, 4) and (−3, 8)

17. {x ∈ D(f) | f is not differentiable at x} = {−4,−3}
19. limh→0

f(0+h)−f(0)
h = f ′(0) = 0

Section 5.4 Graphing Functions—Some Basic Techniques

Quick Quiz:

1.

2. For x� 0 and x� 0, P (x) ≈ −6x7. So as x→∞, P (x)→ −∞ .
As x→ −∞, P (x)→∞ .

3. f(−x) = (−x)5 − (−x) = −x5 + x = −(x5 − x) = −f(x). Thus, f is ODD, but not EVEN.

4. f ′(x) = 12x− 7; f ′(x) = 0 ⇐⇒ x = 7
12

There is a horizontal tangent line at ( 7
12 , f( 7

12 )); f( 7
12 ) = 6( 7

12 )2 − 7( 7
12 )− 3 ≈ −5.04

f ′′(x) = 12, so f ′′(x) > 0 for all x
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Section 5.5 More Graphing Techniques

Quick Quiz:

1. Find A and B for which AB = (3)(−8) = −24 and A+B = −2; take A = −6 and B = 4 . Then:

3x2 − 2x− 8 = 3x2 − 6x+ 4x− 8

= 3x(x− 2) + 4(x− 2)

= (3x+ 4)(x− 2)

2. First, solve 3x2 − 2x− 8 = 0 using the Quadratic Formula:

x =
2±

√
4− 4(3)(−8)

6
=

2± 10

6
= 2, −4

3

Then:

3x2 − 2x− 8 = 3(x− 2)(x+
4

3
)

= (x− 2)(3x+ 4)

3. CANDIDATES: ±1,±2±1 = ±1, ±2

4. not(A and B) ⇐⇒ (not A) or (not B)

5. P (1) = −1; the remainder upon division by x− 1 equals −1

END-OF-SECTION EXERCISES:

1. P (x) = 2x3 − 3x2 − 3x− 5 = (x2 + x+ 1)(2x− 5)

3. P (x) = x4 − 5x2 + 6 = (x−
√

2)(x+
√

2)(x−
√

3)(x+
√

3)

Section 5.6 Asymptotes—Checking Behavior at Infinity

Quick Quiz:

1. An asymptote is a curve (often a line) that a graph gets close to as x approaches ±∞, or some finite
number.

2. lim
x→c−

f(x) = −∞ ⇐⇒ ∀ M < 0 ∃ δ > 0 such that if x ∈ (c− δ, c), then f(x) < M

3. VERTICAL: x = −2

HORIZONTAL: y = 3

4. Both individual limits (the ‘numerator’ limit and the ‘denominator’ limit) must exist. Also, the ‘de-
nominator’ limit cannot equal zero.



CHAPTER 6. ANTIDIFFERENTIATION

Section 6.1 Antiderivatives

Quick Quiz:

1. The graph of f is a line with slope 2 . Thus, f(x) = 2x+ C, for some constant C.

2. Specifying the derivative of a function completely determines its SHAPE.

3.
∫

2 dt = 2t+ C

4. The antiderivatives of a function can be used to find the area trapped between the graph of the function
and the x-axis.

5. The phrase refers to the facts that the derivative of a sum is the sum of the derivatives; and constants
can be ‘slid out’ of the differentiation process.

END-OF-SECTION EXERCISES:

1. EXP

3. EXP

5. SEN; CONDITIONAL

7. SEN; TRUE

9. SEN; TRUE

Section 6.2

Quick Quiz:

1. The ‘counterpart’ is: ∫
kekx dx = ekx + C

A more useful version of this formula is found as follows:∫
kekx dx = ekx + C ⇐⇒ k

∫
ekx dx = ekx + C ⇐⇒

∫
ekx dx =

1

k
ekx +K

2. Rewrite the integrand, and use the Simple Power Rule:∫ √
x dx =

∫
x1/2 dx =

x3/2

3/2
+ C =

2

3

√
x3 + C

3.
∫

1

2t
dt =

1

2

∫
1

t
dt =

1

2
ln |t|+ C

4. If f ′(x) = x, then antidifferentiating yields f(x) = x2

2 + C. Then:

f(0) = 3 ⇐⇒ 0 + C = 3 ⇐⇒ C = 3

Take: f(x) = x2

2 + 3

Section 6.3

Quick Quiz:

1. ‘Speed’ has only magnitude (size); ‘velocity’ has both magnitude and direction.

2. Position at t = 1: d(1) = 12 + 2(1) = 3 feet

v(t) = d′(t) = 2t+ 2 ; Velocity at t = 1: v(1) = 2(1) + 2 = 4 feet/second

Speed at time t = 1: |v(1)| = |4| = 4 feet/second

a(t) = v′(t) = 2 ; Acceleration at t = 1: a(1) = 2 feet/second2

480
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3. A ‘vector’ is a mathematical object that is completely described by two pieces of information: a mag-
nitude (size), and a direction. Vectors are conveniently represented by arrows.

4. A free-body diagram is a picture that illustrates the forces acting on an object.

5. ‘v(2)’ means the velocity function, acting on the input 2 ; this is function notation. However, ‘g(2)’
means the constant g, times the number 2 . Context is important!

END-OF-SECTION EXERCISES:

1. If ‘down’ is chosen as the positive direction, and ‘ 0 ’ coincides with the ground, then: d(t) = g t
2

2 −20t−75

3. approximately 0.63 seconds

5. approximately 1.25 seconds

Section 6.4

Quick Quiz:

1. With appropriate renaming, transform a difficult integration problem into one that is easier to handle.
Solve the ‘new’ integral, then transform the solution back into a solution of the original problem.

2. Substitution: ∫
1

2x− 1
dx =

1

2

∫
1

2x− 1
2 dx

=
1

2

∫
1

u
du =

1

2
ln |u|+ C

=
1

2
ln |2x− 1|+ C

Without substitution:∫
1

2x− 1
dx =

∫
1

2(x− 1
2 )
dx =

1

2

∫
1

x− 1
2

dx =
1

2
ln |x− 1

2
|+ C

To see that the answers differ by only a constant, write:

1

2
ln |2x− 1| = 1

2
ln |2(x− 1

2
)| = 1

2
[ln 2 + ln |x− 1

2
|] =

1

2
ln 2 +

1

2
ln |x− 1

2
|

Thus, the two answers differ only by the constant 1
2 ln 2.

3. After multiplying by ‘1’ in an appropriate form, the linearity of the integral is used to ‘pull’ the unwanted
constant part out of the integral.

4.
∫
e3x dx =

1

3

∫
e3x3 dx =

1

3

∫
eu du =

1

3
eu + C =

1

3
e3x + C

5. We need only check if (3x+π)6

18 is an antiderivative of (3x+ π)5 :

d

dx

( (3x+ π)6

18

)
=

1

18
(6)(3x+ π)5 · (3) = (3x+ π)5

Thus, it IS true that:
∫

(3x+ π)5 dx = (3x+π)6

18 + C

END-OF-SECTION EXERCISES:

1.
1

36
(2x− 1)18 + C

3.
3

2
(ln 4x)2 + C

5. 2e
√
x + C

7.
−4√

t2 + t+ 1
+ C
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9. f(x) =
(ex + 1)4

4

Section 6.5

Quick Quiz:

1. In general, integration is harder than differentiation.

2. ∫
x

2 + x
dx =

∫
u− 2

u
du =

∫
1− 2

u
du = u− 2 ln |u|+ C

= (2 + x)− 2 ln |2 + x|+ C = x− 2 ln |2 + x|+K

3. There are extensive tables of integrals, and computer programs that can do symbolic integration.

END-OF-SECTION EXERCISES:

1.
1

5
(
1

2
e2x + x) + C

3.
3

16
3
√

(4t2 − 1)2 + C

5.
(x2 − 1)4

8
+ C

7.
(lnx)4

12
+ C

Section 6.6

Quick Quiz:

1. The Integration By Parts formula is: ∫
u dv = uv −

∫
v du

It is a sort of ‘integration counterpart’ to the product rule for differentiation.
2. ∫

ln 2t dt = (ln 2t)(t)−
∫
t · 1

t
dt

= t ln 2t−
∫

(1) dt

= t ln 2t− t+ C

3. ∫
ln(x− 1) dx = (x− 1) ln(x− 1)−

∫
1

x− 1
(x− 1) dx

= (x− 1) ln(x− 1)− x+ C

4. The choice for ‘dv’ must be something that you know how to integrate!

END-OF-SECTION EXERCISES:

1. 1
2e

2x − 2ex + x+ C

3. ln |1 + ex|+ C

5.
√

2et + C



CHAPTER 7. THE DEFINITE INTEGRAL

Section 7.1 Using Antiderivatives to find Area

Quick Quiz:

1. The Max-Min Theorem guarantees numbers m ∈ [x, x + h] and M ∈ [x, x + h] for which f(m) is the
minimum value of f on [x, x+ h], and f(M) is the maximum value of f on [x, x+ h] .

2. If f is continuous at a, then as x→ a, it must be that f(x)→ f(a).

3. Any sketch where f IS defined at a, but f is NOT continuous at a, will work!

4. F (x) = x3 is an antiderivative of f(x) = 3x2. Then, the desired area is given by: F (2) − F (0) =
23 − 03 = 8

5. The desired area is given by: F (d)− F (c)

END-OF-SECTION EXERCISES:

1.

approximation by a triangle: 1
2 (1)(e− 1) ≈ 0.86

actual area: Using integration by parts, an antiderivative of f(x) = lnx is F (x) = x lnx− x. Then:

F (e)− F (1) = (e ln e− e)− (1 ln 1− 1) = (e− e)− (0− 1) = 1

3.

approximation by a trapezoid: 1
2 (4− 1)(1 + 2) = 1

2 (9) = 9
2 = 4.5

actual area: An antiderivative of f(x) =
√
x = x1/2 is F (x) = 2

3x
3/2 = 2

3

√
x3 . Then:

F (4)− F (1) =
2

3

√
43 − 2

3

√
13 =

2

3
(8)− 2

3
(1) =

2

3
(7) =

14

3
≈ 4.67

Section 7.2 The Definite Integral

Quick Quiz:

1. The indefinite integral
∫
f(x) dx gives all the antiderivatives of the function f ; by the Fundamental

Theorem of Integral Calculus, if just one of these antiderivatives is known, then the definite integral∫ b

a
f(x) dx can be computed!

2. See page 409.

3. The notation F (x)
∣∣b
a

means F (b)− F (a).

4.
∫ 2

−1
x2 dx = x3

3

∣∣2
−1

= 1
3 (23 − (−1)3) = 1

3 (8− (−1)) = 1
3 (9) = 3

5.
∫ 1

−1
x3 dx = x4

4

∣∣1
−1

= 1
4 (14 − (−1)4) = 0 . On the interval [−1, 1], there is the same amount of area

above the graph of y = x3, as there is below.

END-OF-SECTION EXERCISES:
1. 48

5

3. −6

5. 1
3 ln 2

7. 1 + e2

9. The desired area is: 19
24 + 81

8 = 131
12

483
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Section 7.3 The Definite Integral as the Limit of Riemann Sums

Quick Quiz:

1. A partition of an interval [a, b] is a finite set of points from [a, b] that includes both a and b.

2. The length of the longest subinterval must be 1
2 :

P1 = {1, 1.5, 2, 2.5, 3}
P2 = {1, 1.3, 1.5, 2, 2.5, 3}

3. There is NOT a unique Riemann sum for f corresponding to this partition; any number x∗1 may be
chosen from the subinterval [0, 1); any number x∗2 may be chosen from the second subinterval [1, 2), etc.

4. Think of a rectangle with ‘width’ dx and ‘height’ f(x), where x is a number between a and b.

END-OF-SECTION EXERCISES:

1. EXP

3. SENTENCE; TRUE

5. SENTENCE; TRUE

7. SENTENCE; TRUE

9. SENTENCE; TRUE

Section 7.4 The Substitution Technique applied to Definite Integrals

Quick Quiz:

1.
∫

(2x− 1)3 dx = 1
2

∫
u3 du = 1

2
u4

4 + C = 1
8 (2x− 1)4 + C ;∫ 1/2

0
(2x− 1)3 dx = 1

8 (2x− 1)4
∣∣1/2
0

= 1
8 (0− 1) = − 1

8

2.
∫ 1/2

0
(2x− 1)3 dx = 1

2

∫ 1/2

0
(2x− 1)3 2 dx = 1

2

∫ 0

−1
u3 du = 1

2
u4

4

∣∣0
−1

= 1
8 (0− 1) = − 1

8

3.
∫ e

1

lnx dx = x lnx
∣∣e
1
−
∫ e

1

x · 1

x
dx

= (e ln e− 1 ln 1)− x
∣∣e
1

= e− (e− 1) = 1
END-OF-SECTION EXERCISES:

1. 0

3. ≈ 0.024

5. ≈ 1.931

Section 7.5 The Area Between Two Curves

Quick Quiz:

1.
∫ d

c

(
g(x)− f(x)

)
dx

2. The x-axis is described by y = 0. The intersection points are found by:

−x2 + 1 = 0 ⇐⇒ x2 = 1 ⇐⇒ x = ±1

Using symmetry, the desired area is:

2

∫ 1

0

(−x2 + 1) dx = (x− x3

3
)
∣∣1
0

= 1− 1

3
=

2

3

3. A quick sketch shows that the phrase IS ambiguous; there are two regions with the indicated boundaries.
Which is desired? Or, are both desired?
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4. ∫ 1

0

(ex − (−x)) dx =

∫ 1

0

(ex + x) dx

= (ex +
x2

2
)
∣∣1
0

= (e+
1

2
)− e0 = e+

1

2
− 1 = e− 1

2END-OF-SECTION EXERCISES:

1.
2

15

3.
32

3

5. ≈ 2.438

7. 20
1

4

Section 7.6 Finding the Volume of a Solid of Revolution—Disks

Quick Quiz:

1. Revolve x = r about the y-axis; or revolve y = r about the x-axis.

2. Revolve y = −h
r x + h about the y-axis; or revolve y = h

r x about the y-axis. (There are other correct
answers.)

3. ∫ 1

0

π(x2)2 dx = π
x5

5

∣∣1
0

=
π

5
(1− 0) =

π

5

4. intersection points of y = x2 and y = 1: x2 = 1 ⇐⇒ x = ±1

Also: y = x2 ⇐⇒ x = ±√y
A typical ‘slice’ at a distance y has volume π(

√
y)2 dy . The desired volume is:∫ 1

0

π(
√
y)2 dy =

∫ 1

0

πy dy = π
y2

2

∣∣1
0

=
π

2
(1− 0) =

π

2
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END-OF-SECTION EXERCISES:

1.
4π

3

3.
π

2

5. 8π

7.
128π

5

9.
8π

3

11.
π

4

Section 7.7 Finding the Volume of a Solid of Revolution—Shells

Quick Quiz:

1. ‘Cut’ the shell and unroll it; the volume is:

2πr · h · dx

2. ∫ 2

0

2πx(x) dx = 2π
x3

3

∣∣2
0

=
2π

3
(8− 0) =

16π

3

3. To use horizontal disks would require disks ‘with holes’. Thus, in this case, shells are easier to use.

END-OF-SECTION EXERCISES:

1.
4π

3

3. 2π



INDEX

A
absolute value, 63
adding (a solution), 37
acceleration, 365

due to gravity, 367
additivity (of the definite integral), 412
and (the mathematical word), 25

truth table, 26
annotated, 36
antiderivatives:

definition, 344
on [a, b], 409
section on, 342–451
use for finding area, 405

antidifferentiation, 344
approaches, 109
approximating area by rectangles, 402
approximating (nearby function values), 221
approximating polynomials by highest order term, 313
arbitrary constant, 344
area:

between two curves, 428–435
of circle, 54
under a graph, 401
of triangle, 54

associativity (of the logical ‘and’), 86
associative laws, 11
assumption in this text, 84
asymptotes:

section on, 330–338
average rate of change, 222
B
backwards (integrating ‘backwards’), 412
between, 160
black boxes, 55
body (of proof), 225
bounded by, 430
bounds (getting bounds on function values), 268
brackets, 24
‘building up’ graphs from simpler pieces, 46, 77
C
calculus, 44
candidates for rational roots, 325
chain rule:

Leibniz notation for, 232
motivation for name, 232
precise statement, 231
section on, 228–237

change of variables formula, 425

487
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circles, 264
classifying:

discontinuities, 148
an equation, 44

close (numbers being ‘close’), 108
closed interval, 150
clubsuit symbol, iv
collection, 22
combinations (of functions), 82
common graphs, 45
complete and correct mathematical sentences, 1
complex numbers (C), 19
complicated (products and quotients, differentiating), 261
composite functions:

associativity of function composition, 232
definition, 86
section on, 82–91

compound inequalities, 25
compounding (of interest), 102
concave (up and down), 299, 300
concise, 1
conditional sentences, 12
cone (finding volume using calculus), 439
conjecture, 44
conjure (What should the Leibniz notation conjure up?), 223
consequences

of the Intermediate Value Theorem, 281
of the Mean Value Theorem, 26

constant, 15
constant of integration, 345
contained in (subset), 83
continuity:

equivalent characterizations of, 224
idea, 108
on an interval, 149, 150
at a point (definition), 145
section on, 145–152
of sums, products, etc., 151

contradiction, 37, 134
logical justification for proof by contradiction, 135

contrapositive (of an implication), 176
conventions, 2

concerning definitions, 300
converse (of an implication), 290
conversely, 300
correspondence, (one-to-one), 92
counterexample, 168
counterpart antidifferentiation formula, 354
counting numbers, 22
critical points, 290
cube root, 213
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D
decimal expansions, 27
declarative, 2
decreasing functions, 276
decreasing info from the derivative, 278
definite integral, 408–417
definitions, 14
DeMorgan’s Laws, 325
derivative:

of a constant, 205
definition, 193
of ex, 211
of eg(x), 236
of (g(x))n, General Power Rule, 233–234
of lnx, 212
of ln g(x), 236
of xn, Simple Power Rule, 208
of sums and differences, 206
sliding constants out, 206

difference quotient, 184
differentiation, 193
direct proof (of an implication), 224
discontinuity:

definition, 146
nonremovable, 147
removable, 147

disk method, 436–443
distance:

between real numbers, 116, 428
between two points, 262

division, 35
do (facts can tell you what to do), 33
domain:

convention, 69
of a function, 69
of a sentence, 29

dominates (highest order term of a polynomial), 313
dummy variables:

in function notation, 61
of integration, 411
in limits, 109
in summation notation, 251

E
element, 22
empty set (∅), 24
end-of-proof marker, 133
end-of-section exercises, iv
endpoints, 23
English usage (versus math. usage):

of the words ‘open’ and ‘closed’, 150
of the word ‘or’, 47

equality:
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of functions, 156
of sets, 6

equivalence, 29–38
Esty, (Warren), 33
evaluate (a limit), 110
even functions, 318
even roots, 215
existence, 133
existence of antiderivatives, 425
explicit, 36, 257
exponential function, 99
exponents:

fractional, 216
in order of operations, 18
properties of, 216

expression, 1
extreme values and points, (local), 287
extreme (values, points), 171
F
fact, 33
factorable over the integers, 320
factoring quadratics, 320–322
factorial notation, 253
factoring, 80
falling object, 362–374
false sentences, 12
First Derivative Test, 295
First Derivative Test for endpoints, 295
for all (the mathematical phrase), 269–271
forms (indeterminate), 154
four-step process (for evaluating limits), 123
fractional exponent notation, 216
free-body diagram, 367
freshman’s dream, 19
functions:

even and odd, 318–319
equality of, 156
precise view of, 217
section on, 54–67

fundamental theorem of algebra, 15
fundamental theorem of differential calculus, 266
fundamental theorem of integral calculus, 409
G
general power rule (differentiating f(x)n), 234
global extrema, 288, 310
graphs:

common graphs, 45
section on, 39–53

gravity (acceleration due to), 367
greater than, 9
Greek letters, 7
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H
higher order derivatives:

Leibniz notation for, 255
prime notation for, 249
section on, 249–256

holes (solids with holes), 441
horizontal asymptotes, 331, 332
horizontal (lines), 48
horizontal line test, 56
hypothesis (plural, hypotheses):

of an implication, 167
of a theorem, 139

I
i (the imaginary number), 19
identity, 37
if A, then B, 165
implication

contrapositive, 176
form and intuition, 165
hypothesis and conclusion, 167
proving, direct proof, 224
truth table, 166

implicit, 36, 257
implicit differentiation, 257–265
implied domain, 29
increasing functions, 276
increasing info from the derivative, 278
indefinite integrals, 344
indeterminate forms, 154–159
induction (proof by), 245
inequality:

graphing (in 2 variables), 44
symbols, 9
triangle, 139

infinitesimal slice, 428, 437
infinity (∞), 24
infinity (behavior at, limits involving), 330–339
infinitely differentiable, 249
inflection points, 299, 303
inputs, 54
in-section exercises, iv
inspection, 32
instantaneous (rates of change), 220–226
integers, 20, 27
integral sign, 344
integrals, 345
integrand, 344
integrating:
ex, 359
1
x , 360, 361

integration, 345
integration by parts formula, 391
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with definite integrals, 426
intercept (slope-intercept form), 51
interchangeable, 29
interest:

compounding, 102
continuous compounding, 102
simple, 101

Intermediate Value Theorem, 160–169
intersection points, 433
intersection (of sets), 83
interval notation, 23
intuition (for developing formulas using the definite integral), 418
inverse functions:

finding f−1, 96
relationship between f and f−1, 95
relationship between graphs of f and f−1, 97
section on, 94–98

irrational numbers, 20
J
jigsaw puzzles, 434
K
keywords, v
L
language, iii, 1
Leibniz notation:

for the chain rule, 232
for the derivative, 204
for higher order derivatives, 255

less than, 9
limits:

definition, 121
the idea, 108–119
left-hand, 130
operations with, 138
of polynomials, 142
properties of, 136
right-hand, 130
uniqueness, 134

limits of integration (upper and lower, for integration), 408
linear equations, 44
linearity of differentiation, 347
linearity of integration, 348, 411
lines:

example, 44
horizontal, 48
non-vertical, non-horizontal, 49
point-slope form, 190
slope-intercept form, 51
standard form, 51
vertical, 48

list, 22
local extrema, 287
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locally (a function), 258
logarithm:

the natural logarithm function, 100
properties of, 218

logarithmic differentiation, 262
losing (a solution), 37
M
magnitude, 140
mapping diagrams, 60
MATLAB, iii
maximum (global), 310
maximum (local), 287
maximum (value), 171
Max-Min Theorem:

use in finding area under a graph, 402
precise statement, 174
section on, 171–177

mean (average), 266
Mean Value Theorem:

consequences of, 268
precise statement, 266
section on, 266–271

mentally solving an equation, 13
minimum (global), 310
minimum (local), 287
minimum (value), 171
minus, 8
motion along a line, 362–364
N
nth root, 213
n-tuple, 17
negating ‘A and B’, 325
negating ‘A or B’, 325
negative, 8
Newton’s Second Law, 367, 368
nondecreasing functions, 277
nonincreasing functions, 277
nonnegative, 27
nonpositive, 27
norm:

mathematical tool for measuring size, 419
of a partition, 419

notation (for the definite integral), 418, 421–422
noun, 1
number line approach, 282
O
oblique asymptotes, 334
odd functions, 318
odd roots, 214
one-to-one functions:

precise view of, 217
section on, 92–94
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one-sided limits, 130
open intervals, 150
operator ( d

dx operator), 204
or (the mathematical word, truth table), 47
order (higher order derivatives), 249
ordered pair, 41
origin, 40
outputs, 54
P
parentheses, 24
particular solutions, 358, 359, 381
partition (of an interval), 418
parts formula (integration by parts), 391
Pascal’s triangle, 210
pattern, 34
π, 20
place holders, 13
point, 41
point-slope form (for lines), 190
polynomial, 80
positive, 8
powerful, 1
precise, 1
predicting (nearby function values), 221
prime (notation for the derivative), 204
product of real numbers:

When is it negative?, 280
When is it positive?, 280

product rule for differentiation:
generalizing to more than 2 factors, 243
precise statement, 239

products (differentiating), 239
proving:

an implication, 224
punctured (graphs), 72
Q
quadrant, 40
quadratic formula, 24

for factoring quadratic polynomials, 322
quick quiz, v
quotients (differentiating), 239
quotient function, 85
quotient of integers, (Q), 27
quotient rule for differentiation, 244
R
radicals, 213
range (of a function), 88
rates of change:

average rate of change, 222
idea, 220
instantaneous, section on, 220–226

rationalizing, 158
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rational numbers (Q), 20, 27
Rational Root Theorem, 324
real numbers, 8
reconstructing a function from its derivative, 202
rectangular coordinate system, 39–40
relationship between differentiability and continuity, 223
Remainder Theorem, 328
removable discontinuity, 147
restricted equal sign, 155
revolution (solid of), 436
Riemann sums, 418, 420
right-hand limit, 130
root (of a polynomial), 80
roster, 22
S
secant line, 184
second derivative:

section on, 299–307
Second Derivative Test, 306
sentences, 2
set-builder notation, 23
sets:

intersection, 83
section on, 22–28
subset, 83
subtraction, 195
union, 64

shape (determined by f ′), 343
shell method, 444–449
shifting graphs left and right, 76
Simple Power Rule (differentiating xn), 208
Simple Power Rule (integrating xn), 355
singleton (‘treat it as a singleton’ technique), 142
slope:

definition, 49
formula for, 49
‘no slope’ versus ‘zero slope’, 199

slope-intercept form, 51
smooth (functions), 249
solution, 16
solution set, 24
solving an equation, 13
speed, 365
sphere, (finding volume using calculus), 438, 447
square root, 65–66, 213
standard form (of a line), 51
star symbol, iv
strength of operations, 18
stronger, (differentiability is ‘stronger than’ continuity), 224
subset, 83
substitution (direct substitution for limits), 136
substitution technique for integration, 376–384
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substitution technique applied to definite integrals, 423–427
subtraction:

set subtraction, 195
a special kind of addition, 34

sum function, 85
summation notation, 251
summation (definite integral, infinite summation process), 422
symmetry:

about line y = x, 97
about the origin, 318
about y-axis, 318

synthetic division, 327–328
systematic approach to graphing, 309
T
tangent lines, 182–190
TEX , v
text style:

for limits, 109
for sums, 251

theorem, 15
topological, 174
transforming problems, 376
translating mathematical sentences, 33
triangle inequality, 139
triangle, Pascal’s, 210
truth of sentences, 4, 12
truth table:

definition, 26
for ‘and’, 26
for ⇐⇒ , 271
for =⇒ , 166
for ‘or’, 47

n-tuple, 17
two-column format, iii
U
unambiguous, 11
undefined, (00), 19
undoing differentiation, 342
union (set), 64
unique (related to functions), 54
uniqueness (a typical uniqueness argument), 133
universal set:

definition, 13
sometimes omitted in ‘for all’ sentences, 270

V
values (versus points), 310
variable:

dummy, 61
section on, 12–17

vectors, 366
velocity, 363, 365 vertical asymptotes, 330
vertical lines, 48
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vertical line test, 56
volume of a solid of revolution:

using disks, 436–443
using shells, 444–448

volume of a sphere, 54
W
well-defined, 22
X
x-axis, 40
Y
y-axis, 40
Z
zahlen, 27
zero factor law, 46–48
zero of a polynomial, 80



Cover image by Olga
https://studio.envato.com/users/CrArt

The cover cats are very special
in my extended family:

Mr. Nels took care of the litter
after his mother died. 

I've always pictured him as the fierce protector!

Kitsa is so regal!
Nothing fazes her.

I think of her as the queen of the four cats.

Don Paquito is totally lovable,
and totally driven by food.

Amelia was rescued as a kitten
on a road named after Amelia Earhart.
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