6. NUMBERS HAVE LOTS OF DIFFERENT NAMES!

There are lots of number games that can make you look clairvoyant. One such
game goes something like this:

- YOU (speaking to another person): Think of a number, but don’t tell me
 what it is! Do (this and this and this) to the number. I’ll bet you ended up
 with (some number)—am I right?
- OTHER PERSON: You’re right! How did you do that?

One such game is described below. A couple examples of ‘playing the game’
are given after the instructions.

Get yourself a piece of paper and a pencil, and follow the instructions as you
read through these steps. Use a calculator if needed.

- STEP 1: Take the number of pets you own (0, 1, 2, etc.), and add 2 to
 this number. Write down your result, and circle it. If you own fewer than
 two pets, go on to STEP 2. Otherwise, skip to STEP 3.

- STEP 2: (Only do this step if you own fewer than 2 pets.) Subtract
 the number of pets you own from 2. (That is, go ‘2 − number of pets’.)
 Multiply the result by your circled number. Write down the result, and put
 a box around it. Skip to STEP 4.

- STEP 3: (Only do this step if you own 2 or more pets.) Take your number
 of pets, and subtract 2. (That is, go ‘number of pets − 2’.) Take the
 opposite of your result. Multiply by your circled number. Write this new
 number down, and put a box around it. Go to STEP 4.

- STEP 4: Take the number of pets you own, multiply it by itself, and add
 this result to the boxed number.

Providing the instructions are given and followed correctly, you’ll always
end up with the number 4!

Here are a couple examples of playing the game.

3 pets

First, suppose you own 3 pets (use a calculator as needed):

- STEP 1: \(3 + 2 = 5\); write down the number \(\boxed{5}\), and circle it.
 Since you own more than 2 pets, go to STEP 3.

- STEP 3: \(3 - 2 = 1\); opposite is \(-1\); \((-1) \cdot \boxed{5} = \boxed{-5}\)
 Write down the number \(\boxed{-5}\) and put a box around it.

- STEP 4: \(3 \cdot \boxed{-5} = 9\); \(9 + \boxed{-5} = 4\)

1 pet

Now, suppose you own 1 pet:

- STEP 1: \(1 + 2 = 3\); write down the number \(\boxed{3}\), and circle it.
 Since you own fewer than 2 pets, go to STEP 2.

- STEP 2: \(2 - \boxed{1} = 1\); \(1 \cdot \boxed{3} = \boxed{3}\); write down the number \(\boxed{3}\),
 and put a box around it. Go to STEP 4.

- STEP 4: \(\boxed{1} \cdot \boxed{1} = 1\); \(1 + \boxed{3} = 4\)
game variations

You can vary the game as much as you’d like by replacing the ‘number of pets’ with anything you might not know about the other person:
- the person’s age
- how many cavities the person has
- the number of cookies the person ate yesterday
- how many times the person exercised last week
... and on and on and on.

Why does this work? Why does this work? It’s a consequence of an extremely important aspect of mathematics: numbers have lots of different names. All the author did in constructing this particular little ‘game’ was to come up with two slightly unusual names for the number 4. (These names are given below; however, you may not yet have the mathematical tools needed to recognize them as the number 4.)

\[4 = -(x - 2)(2 + x) + x^2 \]

EXERCISES

Using a calculator, if needed:
1. Play the game, beginning with the number 0.
2. Play the game, beginning with the number 7.

English synonyms

In English, words that look different, but have (nearly) the same meaning, are called synonyms. For example, ‘anxious’ and ‘fretful’ are synonyms. But, there is no language in the world where the idea of ‘different name, same meaning’ is more prevalent than in the language of mathematics.

Different names can reveal various properties that a number has. For example, suppose that you have 36 pieces of candy. Here’s the type of information that four different names for 36 might reveal:

<table>
<thead>
<tr>
<th>name for 36</th>
<th>information revealed by name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 \cdot 12</td>
<td>36 pieces of candy can be evenly distributed among 3 kids, by giving 12 pieces to each</td>
</tr>
<tr>
<td>2 \cdot 8 + 5 \cdot 4</td>
<td>give 8 pieces to each of 2 kids, and 4 pieces to each of 5 kids</td>
</tr>
<tr>
<td>5 \cdot 7 + 1</td>
<td>give 7 pieces to each of 5 kids, with 1 piece left over</td>
</tr>
<tr>
<td>(72)(\frac{1}{2}))</td>
<td>give half a piece to each of 72 kids</td>
</tr>
</tbody>
</table>
EXERCISES

3. The same name for a number can sometimes reveal different information, depending upon its interpretation. For example, the name ‘36 = 3 · 12’ might be interpreted as: ‘36 pieces of candy can be evenly distributed among 12 kids, by giving 3 pieces to each’. (Compare this with the previous interpretation.) Give interpretations, different from those in the previous table, for the names:

 (a) 2 · 8 + 5 · 4
 (b) 5 · 7 + 1

4. Fill in the blanks below, by providing either the appropriate name for the number 60 (thought of as 60 pieces of candy), or the information revealed by the given name:

 name for 60 information revealed by name

 6 · 10

 60 pieces of candy can be evenly distributed among
 3 kids, by giving 20 pieces to each
 16 · 3 + 2 · 6

 give 7 pieces of candy to each of 8 kids, with 4
 pieces left over
 1 \frac{1}{3} (180)

getting a name that is useful to you

The ability to take a number, and get a name for that number that is useful to you, is a key to success in mathematics. There are two favorite ways to get a new name for a number (without changing where the number lives on a number line):

- by adding zero; or
- by multiplying by one.

Indeed, the numbers zero (0) and one (1) have very special properties in our number system: look below to see how you might be told about these properties, using the language of mathematics. Afterwards, the word ‘theorem’ (THEOREM) is discussed; and then the power that these seemingly trivial properties give us is investigated.

THEOREM

special properties of 0 and 1

For all real numbers \(x \),

\[x + 0 = x \quad \text{and} \quad x \cdot 1 = x. \]

For all nonzero real numbers \(x \),

\[\frac{x}{x} = x \cdot \frac{1}{x} = 1. \]

What is a ‘Theorem’?

A theorem is the name that mathematicians give to something having two properties:

- it is true; and
- it is important.

★

The author just told a little white lie. Actually, a theorem is a true, important, statement that has been proved.
proving a result

Fortunately, mathematicians have very careful ways of verifying that a result is true. The process of showing that a result is true is called proving the result. (A non-mathematician once asked a mathematician: “What do you do?” The mathematician’s answer? “I prove theorems.”)

However, people don’t always agree about how important something is. Mathematics is no exception. Things that don’t seem quite worthy of being called ‘theorems’ are given other names:

- A proposition (prop-a-ZI-shun) is not quite important enough to be called a theorem.
- A lemma (LEM-ma) is usually a stepping-stone to a theorem.
- A corollary (KORE-a-larry) is usually an interesting consequence of a theorem.

theorems are to a mathematician, as tools are to a carpenter

Theorems are to a mathematician, as tools are to a carpenter. With the correct use of appropriate tools, a carpenter can build a beautiful, structurally sound building. With the correct use of appropriate theorems, mathematicians can give beautiful, structurally sound solutions to a wide variety of problems.

translating the previous theorem

Next, let’s discuss the content of the previous theorem. The following exercises lead you through the translation of the first part:

EXERCISES

5. What is the universal set for \(x \) in the sentence ‘\(x + 0 = x \)’? How do you know?

6. Translate: ‘For all real numbers \(x \), \(x + 0 = x \).’ That is, what is this ‘for all’ sentence telling you that you can DO?

7. What is the universal set for \(x \) in the sentence ‘\(x \cdot 1 = x \)’? How do you know?

8. Translate: ‘For all real numbers \(x \), \(x \cdot 1 = x \).’ That is, what is this ‘for all’ sentence telling you that you can DO?

names for 0

The sentence

‘For all real numbers \(x \), \(x + 0 = x \)’

informs us that adding zero does not change where a number lives; it only provides a new name for the number. That is, no matter what number \(x \) is currently ‘holding’, \(x \) and \(x+0 \) live at exactly the same place on a real number line:

\[
x + 0 \quad \downarrow \quad x
\]

zero has lots of different names!

When we rename a number by adding zero, we usually don’t use the name ‘0’ for zero. (Like all other numbers, zero has lots of different names!) So, what name(s) for zero are usually used? Since a number, when added to its opposite, always yields zero, we have the ability to get lots of different names for zero:

- Want to bring 2 into the picture? Then you might choose to add 0 in any of these forms:
 \[
 2 + (-2) \quad \text{or} \quad (-2) + 2 \quad \text{or, most simply,} \quad 2 - 2.
 \]
- Want to bring \(\frac{1}{3} \) into the picture? Then you might choose to add 0 in any of these forms:
 \[
 \frac{1}{3} + (-\frac{1}{3}) \quad \text{or} \quad (-\frac{1}{3}) + \frac{1}{3} \quad \text{or, most simply,} \quad \frac{1}{3} - \frac{1}{3}.
 \]
EXERCISE

9. Get names for zero that use each of the following numbers:
 (a) 5
 (b) \(\frac{1}{2}\)
 (c) 3.2
 (d) \(-7\)

names for 1

Similarly, when we rename a number by multiplying by one, we usually don’t use the name ‘1’ for one. (Like all other numbers, ‘1’ has lots of different names!) Indeed, the second part of the previous theorem provides us with a multitude of names for the number 1:

\[
\frac{x}{x} = x \cdot \frac{1}{x} = 1.
\]

Translation: As long as \(x\) isn’t zero, then ‘\(\frac{x}{x}\)’ and ‘\(x \cdot \frac{1}{x}\)’ are both just different names for the number 1:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\frac{x}{x})</th>
<th>(x \cdot \frac{1}{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>(\text{undefined})</td>
<td>(\text{undefined})</td>
</tr>
<tr>
<td>(1)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\frac{1}{x})</td>
<td>(x \cdot \frac{1}{x})</td>
<td>(x \cdot \frac{1}{x})</td>
</tr>
</tbody>
</table>

Why are ‘\(\frac{x}{x}\)’ and ‘\(x \cdot \frac{1}{x}\)’ names for ‘1’?

The name ‘\(\frac{x}{x}\)’ for ‘1’ (which is the ‘horizontal fraction’ form of \(x \div x\)) is a consequence of the fact that any nonzero number, when divided by itself, gives 1. For example,

\[
\frac{5}{5} = 5 \div 5 = 1 \quad \text{and} \quad \frac{1/2}{1/2} = \frac{1}{2} \div \frac{1}{2} = 1 \quad \text{and} \quad \frac{-1.35}{-1.35} = -1.35 \div (-1.35) = 1.
\]

everything can be done with multiplication

Now, how about the name ‘\(x \cdot \frac{1}{x}\)’ for ‘1’? First, it must be understood that division is superfluous—it’s not needed. Everything can be done with multiplication alone.

the reciprocal of a nonzero real number

To accomplish this, we first define the reciprocal (re-SI-pro-kul) of a nonzero number \(x\) to be the new number \(\frac{1}{x}\).

For example, the reciprocal of 2 is \(\frac{1}{2}\), and the reciprocal of 1.3 is \(\frac{1}{1.3}\).

Then, dividing by \(x\) is the same as multiplying by the reciprocal of \(x\). That is,

\[
x \div x \quad \text{is the same as} \quad x \cdot \frac{1}{x}.
\]

‘1’ has lots of different names!

Now you have the ability to get lots of different names for ‘1’:

- Want to bring 2 into the picture? Then you might choose to multiply by 1 in any of these forms:
 \[
 \frac{2}{2} \quad \text{or} \quad 2 \cdot \frac{1}{2} \quad \text{or} \quad \frac{1}{2} \cdot 2
 \]

- Want to bring \(\frac{1}{2}\) into the picture? Then you might choose to multiply by 1 in any of these forms:
 \[
 \frac{1}{3} \quad \text{or} \quad 3 \cdot \frac{1}{3} \quad \text{or} \quad \frac{1}{3} \cdot 3
 \]
EXERCISE

10. (Compare with exercise 9.) Get names for ‘1’ that use each of the following numbers:
 (a) 5
 (b) $\frac{1}{2}$
 (c) 3.2
 (d) -7

A common mathematical shorthand which deserves some attention was introduced in the previous theorem. The sentence

$$\frac{x}{x} = \frac{1}{x} = 1$$

has the form

$$a = b = c$$

that is,

$something = something = something$.

When people write ‘$a = b = c$’, they really mean to write

$$a = b \text{ and } b = c,$$

but they get lazy. That is,

‘$a = b = c$’ is a shorthand for ‘$a = b$ and $b = c$’.

In order for a sentence of the form ‘$a = b = c$’ to be true, BOTH ‘$a = b$’ and ‘$b = c$’ must be true. That is, a must equal b, and b must equal c. It follows that a must equal c.

Consequently, when a sentence of the form ‘$a = b = c$’ is TRUE, this means that a, b, and c are just different names for the same number:

\[
\begin{array}{c}
\hline
 a \\
 b \\
 c \\
\hline
\end{array}
\]

Precisely: For all real numbers a, b, and c,

$$a = b = c \iff (a = b \text{ and } b = c).$$

The mathematical word ‘AND’ is defined via the following truth table:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>$A \text{ AND } B$</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Thus, an ‘AND’ sentence is true only when both subsentences are true.

The mathematical words ‘AND’ and ‘OR’, and the symbol \iff, will be discussed in future sections.
EXERCISES

11. Decide whether each sentence is true, false, or sometimes true/sometimes false:

 (a) $\frac{4}{5} = 4 \cdot \frac{1}{5}$

 (b) $2 + 3 = 5 + 1 = 6$

 (c) $1 + 2 + 3 = 1 + 5 = 6$

 (d) $1 = \frac{t}{t} = \frac{1}{t} = t \cdot \frac{1}{t}$

 (e) $4 = 4 + 0 = 0 + 4$

 (f) $1 + (2 + 3) + 4 = 5 = 1 + 5 = 6 + 4 = 10$

12. The sentence ‘$a = b = c = d$’ is a shorthand—for what?

Why isn’t ‘$\frac{0}{0}$’ a name for the number ‘1’?

Recall that 0 was excluded from the universal set for x in the sentence

$$\frac{x}{x} = x \cdot \frac{1}{x} = 1.$$

Why is this? That is, why isn’t ‘$\frac{0}{0}$’ a name for the number ‘1’? Here’s the idea. We want the pair of sentences

$$\frac{a}{b} = c \quad \text{and} \quad a = b \cdot c$$

to always have the same truth values. If one is true, so is the other. If one is false, so is the other. Study the examples below:

compare $\frac{6}{3} = 2$ and $6 = 3 \cdot 2$

compare $\frac{9}{5} = 3$ and $9 = 5 \cdot 3$

The idea is illustrated by the pair of (true) sentences ‘$\frac{6}{3} = 2$’ and ‘$6 = 3 \cdot 2$’:

$$\frac{6}{3} = 2 \quad \text{Take 6 objects and divide them into 3 equal piles by putting 2 in each pile.}$$

$$6 = 3 \cdot 2 \quad \text{Put the piles back together: 3 piles, with 2 in each, gives 6 objects.}$$
suppose that $'\frac{0}{0}'$ is to be a name for the number c. Keeping this in mind, let’s claim that $'\frac{0}{0}'$ is supposed to be a name for the number c. Then, the following two equations would need to have the same truth values:

\[
\frac{0}{0} = c \quad \text{and} \quad 0 = 0 \cdot c
\]

Notice, however, that the equation $'0 \cdot c = 0$' is true for all real numbers c! (Why? Any number, when multiplied by zero, gives zero.) Therefore, since the equations are supposed to have the same truth values, $'\frac{0}{0} = c$' would also need to always be true.

But if $'\frac{0}{0} = c$' is always true, then the symbol $'\frac{0}{0}$' would have to be a name for every possible real number. Think of the mass confusion that would result!

In one instance, $'\frac{0}{0}$' might represent the number 1. In another instance, it might represent the number -5. To avoid the problem entirely, it has been decided that $'\frac{0}{0}$' is undefined—it doesn’t represent any real number—it’s nonsensical—it’s not allowed. Sorry!

division by zero is not allowed

So, $'\frac{0}{0}$' is undefined. Similarly, the symbol $'\frac{a}{0}$' is undefined for all nonzero real numbers a. To see why, consider something like $'\frac{2}{0}$'. What number should $'\frac{2}{0}$' represent? Let’s claim that $'\frac{2}{0}$' is a name for the number c. Then, the following two equations must have the same truth values:

\[
\frac{2}{0} = c \quad \text{and} \quad 2 = 0 \cdot c
\]

Notice, however, that the equation $'2 \cdot c = 0$' is false for all real numbers c! (Why? Any number, when multiplied by zero, gives zero; and zero is not equal to 2.) Therefore, $'\frac{2}{0} = c$' is also always false. Consequently, the symbol $'\frac{2}{0}$' doesn’t represent any real number.

This discussion is usually summarized by saying that ‘division by zero isn’t allowed’.

the power of adding 0 and multiplying by 1

The seemingly trivial properties:
- adding 0 to a number doesn’t change it
- multiplying a number by 1 doesn’t change it

become incredibly powerful tools, when used in conjunction with other arithmetic skills. They give you the power to get a name for a number that is useful for you. Here’s an example:

making cornbread

The author has a favorite cornbread recipe: easy and quick to make, healthful, inexpensive, and delicious. The only problem is that making it required dirtying a 1-cup measure, a $\frac{1}{4}$-cup measure, and a $\frac{1}{3}$-cup measure. Why wash three utensils when only one would suffice? So, the author decided to ‘rename’ the ingredient amounts, so that only a $\frac{1}{4}$-cup measure is needed.

For example, the recipe calls for $\frac{1}{3}$ cup vegetable oil. A new name for $'\frac{1}{3}$' is needed, that expresses $\frac{1}{3}$ in terms of $\frac{1}{4}$. The re-naming process illustrated next exploits certain arithmetic skills: some re-grouping, re-ordering, and working with fractions and signed ($+/-$) numbers. For now, don’t worry if there are some steps that you don’t fully understand; concentrate mainly on the appearance of ‘adding zero’ and ‘multiplying by one’

\[
\frac{1}{3} = \frac{1}{3} + \left(\frac{1}{4} - \frac{1}{4} \right) \quad \text{Want to bring } \frac{1}{4} \text{ into the picture? Add zero in an appropriate form!}
\]
\[
= \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{4} \right) \quad \text{re-order; re-group}
\]
\[
= \frac{1}{4} + \frac{1}{12} \quad \text{arithmetic with fractions: } \frac{1}{3} - \frac{1}{4} = \frac{4}{12} - \frac{3}{12} = \frac{1}{12}; \text{ thus, } \frac{1}{3} - \frac{1}{4} \text{ goes by the name } \frac{1}{12}
\]
\[
= \frac{1}{4} + \frac{1}{12} \left(\frac{1}{4} \cdot 4 \right) \quad \text{Want to bring } \frac{1}{4} \text{ into the picture again? Multiply by 1 in an appropriate form!}
\]
\[
= \frac{1}{4} + \left(\frac{1}{12} \cdot 4 \right) \cdot \frac{1}{4} \quad \text{re-order; re-group}
\]
\[
= \frac{1}{4} + \frac{1}{3} \cdot \frac{1}{4} \quad \text{arithmetic with fractions: } \frac{1}{12} \cdot 4 \text{ goes by the simpler name } \frac{1}{3}
\]

The final name for \(\frac{1}{3}\) is much more useful: put in \(\frac{1}{4}\) cup, plus one-third of a \(\frac{1}{4}\) cup!

\[\text{one more time, with feeling}\]

The author could have gotten the 'new name' by applying the 'transforming tools' in a different way:

\[
\frac{1}{3} = \frac{1}{3} \cdot \left(\frac{1}{4} \cdot 4 \right) \quad \text{Want to bring } \frac{1}{4} \text{ into the picture? Multiply by 1 in an appropriate form!}
\]
\[
= (4 \cdot \frac{1}{3}) \cdot \frac{1}{4} \quad \text{re-order; re-group}
\]
\[
= \frac{4}{3} \cdot \frac{1}{4} \quad \text{arithmetic with fractions: } 4 \cdot \frac{1}{4} \text{ goes by the name } \frac{4}{3}
\]
\[
= (1 + \frac{1}{3}) \cdot \frac{1}{4} \quad \text{rename } \frac{4}{3} \text{ as } 1 + \frac{1}{3}
\]
\[
= 1 \cdot \frac{1}{4} + \frac{1}{3} \cdot \frac{1}{4} \quad \text{arithmetic}
\]
\[
= \frac{1}{4} + \frac{1}{3} \cdot \frac{1}{4}
\]

One thing you should be noticing is that although the ideas being used are simple—adding 0 and multiplying by 1—these ideas can’t be fully implemented without appropriate arithmetic skills.
simplifying an expression: a true mathematical sentence results

Remember that to *simplify an expression* means to get a different name for the expression, that in some way is simpler. In the previous example, the author simplified the expression $\frac{1}{3}$ to get the new name $\frac{1}{4} + \frac{1}{3} \cdot \frac{1}{4}$. In this situation, the ‘new name’ appears to be much more complicated than the original name, but is better suited for the current use.

Notice that the process of simplifying $\frac{1}{3}$ gave rise to a *true mathematical sentence* of the form:

\[
\begin{align*}
\text{original expression} &= \text{different name} \quad \text{(comment)} \\
&= \text{yet different name} \quad \text{(comment)} \\
&= \cdots \\
&= \text{desired name} \quad \text{(comment)}
\end{align*}
\]

There are two things to notice about this sentence:

- It’s a sentence of the form $a = b = c = d = \cdots$; it’s just being formatted in a slightly different way:

\[
\begin{align*}
a &= b \quad \text{(How did we get from } a \text{ to } b?) \\
&= c \quad \text{(How did we get from } b \text{ to } c?) \\
&= d \quad \text{(How did we get from } c \text{ to } d?) \\
&= \cdots
\end{align*}
\]

The different formatting is for aesthetic reasons (to be discussed momentarily), and to easily allow the addition of comments into the sentence.

- The sentence is *true*, because you’re just getting different names for the same expression.

Whenever you simplify an expression, a true mathematical sentence of the form $a = b = c = \cdots$ results.

Why the special formatting when simplifying an expression?

The format that has been illustrated for simplifying an expression is desirable for the following reasons:

- The original expression stands out at the top of the first (left-most) column.
- The final (desired) name stands out at the bottom of the second column.
- The third (optional) column lets you comment on how you are getting each new name in the simplification process.

‘stringing it out’ looks cluttered

Notice how cluttered the renaming of $\frac{1}{3}$ to $\frac{1}{4} + \frac{1}{3} \cdot \frac{1}{4}$ looks if the simplification is ‘strung out’: $\frac{1}{3} = \frac{1}{3} + \left(\frac{1}{3} - \frac{1}{3}\right) = \frac{1}{3} + \left(\frac{1}{3} - \frac{1}{3}\right) = \frac{1}{4} + \frac{1}{12} = \frac{1}{4} + \frac{1}{12} \cdot \left(\frac{1}{4} \cdot 4\right) = \frac{1}{4} + \left(\frac{1}{12} \cdot 4\right) \cdot \frac{1}{4} = \frac{1}{4} + \frac{1}{3} \cdot \frac{1}{4}$.

If there aren’t too many steps required in simplifying an expression, then you can certainly ‘string it out’ on one line. But, in general, if you can’t fit it on one line, then you should use either the illustrated format, or a slight variation that is appropriate for longer expressions, as discussed next.

SIMPLIFYING AN EXPRESSION
PREFERRED FORMATS

To simplify an expression means to get a name for the expression that is, in some way, simpler. The process of simplifying an expression results in a mathematical sentence of the form \(a = b = c = d = \ldots \) that is always true. The preferred formats for simplifying an expression are:

\[
\text{original expression} = \text{alternate name}_1 \\
= \text{alternate name}_2 \\
= \ldots \\
= \text{final name}
\]

The original expression stands out in the first column; the final (desired) name stands out at the bottom of the second column. Be sure to line up the ‘\(=\)’ signs!

\[
\text{very long original expression} \\
= \text{alternate name}_1 \\
= \ldots \\
= \text{final name}
\]

If the original expression is very long, don’t even try to put the first simplification on the same line. Go down to the next line, indent a bit, and start lining up the ‘\(=\)’ signs from there.

Comments can optionally be included in either format, as a third column.

If the process of getting from the original expression to the final (desired) name is very short, then you can certainly put it all on one line, like this:

\[
\text{original expression} = \text{alternate name}_1 = \ldots = \text{final name}
\]

Regardless of the formatting used, all these sentences give the same information: they tell us that

\[
\text{original expression}, \ \text{alternate name}_1, \ \text{alternate name}_2, \ \ldots, \ \text{final name}
\]

are just different names for the same expression! They can be used interchangeably. The final name is the name that is currently desired.

AVOID ‘dangling’ equal signs

It is considered poor mathematical style to leave an equal sign ‘dangling’ at the end of a sentence, like this:

\[
\frac{1}{3} = \frac{1}{3} + \left(\frac{1}{4} - \frac{1}{4} \right) = \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{4} \right) = \ldots
\]

DON’T DANGLE!

simplifying an expression versus solving a sentence

One reason so much time has been spent in this text helping you to distinguish between expressions and sentences is that you do different things with expressions than you do with sentences.

The most common thing to do with an expression? Simplify it!

The most common thing to do with a sentence? Solve it!

The process of ‘solving a sentence’, and the format to be used when solving a sentence, will be discussed in future sections.
One of the most common applications of ‘multiplying by 1 in an appropriate form’ occurs in the context of unit conversion.

Often, in life, you’re required to convert a quantity from one unit to another. For example, you might need to convert centimeters to inches; miles to feet; tablespoons to teaspoons; or feet/second (read as ‘feet per second’) to miles/hour. In such cases, you have a quantity of interest, but are seeking a new name for that quantity.

All unit conversion problems can be accomplished by multiplying by 1 in an appropriate form!

A bit of terminology is needed. In any fraction \(\frac{N}{D} \), the quantity ‘upstairs’ (\(N \)) is called the numerator (NEW-mer-a-tor). The quantity ‘downstairs’ (\(D \)) is called the denominator (dee-NAHH-mi-nah-tor). Read \(\frac{N}{D} \) as ‘\(N \) divided by \(D \)’, or ‘\(N \) over \(D \)’.

Let’s re-visit the true sentence \(\frac{x}{x} = 1 \) (for nonzero real numbers \(x \)). This fact says that whenever you have a fraction where the numerator and denominator are equal, then the fraction represents the number 1:

- Since 1 inch = 2.54 centimeters,
 \[
 \frac{1 \text{ inch}}{2.54 \text{ centimeters}} = 1 \quad \text{and} \quad \frac{2.54 \text{ centimeters}}{1 \text{ inch}} = 1 .
 \]

- Since 1 tablespoon = 3 teaspoons,
 \[
 \frac{1 \text{ tablespoon}}{3 \text{ teaspoons}} = 1 \quad \text{and} \quad \frac{3 \text{ teaspoons}}{1 \text{ tablespoon}} = 1 .
 \]

- Since 1 mile = 5280 feet,
 \[
 \frac{1 \text{ mile}}{5280 \text{ feet}} = 1 \quad \text{and} \quad \frac{5280 \text{ feet}}{1 \text{ mile}} = 1 .
 \]

EXERCISE 13. Give two names for the number 1 that are a consequence of the following facts:

(a) 1 pint = 2 cups

(b) 1 m = 100 cm \((m = \text{meter}; \ cm = \text{centimeter})\)

(c) 1 bleep = 3.4 blops \((\text{made-up units!})\)

(d) 10 kilometers = 6.21 miles \((\text{Actually, 10 kilometers is only approximately equal to 6.21 miles. However, people often use ‘\(= \)’ to mean ‘close enough to be called equal, for the current use’.)} \)
working with fractions: a preview

A quick preview of arithmetic with fractions is needed here. No explanations are offered—you’re only being given the ‘HOW’, not the ‘WHY’!

- To multiply fractions, you multiply ‘across’:

\[
\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}
\]

For example,

\[
\frac{2}{3} \cdot \frac{5}{7} = \frac{2 \cdot 5}{3 \cdot 7} = \frac{10}{21}.
\]

- A number sitting ‘next to’ a fraction can be moved into the numerator:

\[
\frac{a}{b} \cdot \frac{c}{d} = \frac{a}{1} \cdot \frac{b}{c} = \frac{ab}{c}
\]

- When multiplying fractions involving numbers with units:
 - Any unit that appears in both the numerator and denominator can be ‘cancelled’—it disappears.
 - Group together all the numbers, and write these first. Then, group together any units that haven’t been cancelled, and write these last.
 - Simplify the numerical part.

Here’s an example:

\[
\frac{(12 \text{ ft})(1 \text{ yd})}{3 \text{ ft}} = \left(\frac{12 \text{ ft}}{3 \text{ ft}}\right) (1 \text{ yd})
\]

Cancel any units that appear in both the numerator and denominator.

\[
= \frac{12 \cdot 1}{3} \text{ yd}
\]

Group together all the numbers, and write these first. Write any surviving unit(s) last.

\[
= 4 \text{ yd}
\]

Simplify the numerical part.

(★ Cancel any common numerical factors first, if you know how to do this.)

These ideas are put together in the following examples.

some 1-step conversions

First, some ‘one-step’ conversions. (These only require multiplying by the number 1 once.)

Any unit of length can be converted to any other unit of length. For example,

\[
42 \text{ in} = 42 \text{ in} \cdot \left(\frac{1 \text{ ft}}{12 \text{ in}}\right) = \frac{42 \cdot 1}{12} \text{ ft} = 3.5 \text{ ft}
\]

(Use a calculator if needed.) Here, the name \(\frac{1 \text{ ft}}{12 \text{ in}}\) was used for the number 1.

However, if feet are being converted to inches, then a different name for the number 1 is needed:

\[
3.5 \text{ ft} = 3.5 \text{ ft} \cdot \left(\frac{12 \text{ in}}{1 \text{ ft}}\right) = \frac{3.5 \cdot 12}{1} \text{ in} = 42 \text{ in}
\]
Resist the temptation to modify your original expression!

When you’re converting units, as in the previous examples, don’t modify the original expression (like 42 in) after you’ve written it. That is, you should write:

Don’t modify this!

\[\frac{42 \text{ in}}{12 \text{ in}} \times \frac{1 \text{ ft}}{12 \text{ in}} = \frac{42 \cdot 1}{12} \text{ ft} = 3.5 \text{ ft} , \]

NOT

\[42 \text{ in} \times \frac{1 \text{ ft}}{12 \text{ in}} = \frac{42 \cdot 1}{12} \text{ ft} = 3.5 \text{ ft} . \]

When you look back at your work, you’ll want to remember what you had started with: if you’ve modified your ‘starting expression’, then this will not be easy to see.

Next, some ‘multi-step’ conversions are illustrated. These require multiplying by the number 1 more than once.

A shorthand for repeated multiplication makes its appearance in the next example:

\[x^3 \] is a shorthand for \[x \cdot x \cdot x \]

The expression ‘\(x^3 \)’ is read as ‘\(x \) cubed’ or ‘\(x \) to the third power’.

Using this shorthand,

\[\text{‘ft}^3 \text{’ is another name for ‘(ft)(ft)(ft)’} \]

Suppose that you need to buy sand to fill a sandbox. The sandbox is 4 feet wide, 7 feet long, and 1.5 feet deep. To completely fill it will require \((4)(7)(1.5) = 42 \) cubic feet of sand. (One cubic foot is \((1 \text{ ft})(1 \text{ ft})(1 \text{ ft}) = 1 \text{ ft}^3 \).) However, sand is sold in quantities of cubic yards (\(\text{yd}^3 \).) How much sand should you buy?

Answer: We need to make the units of \(\text{ft}^3 \) (cubic feet) disappear, and make units of \(\text{yd}^3 \) (cubic yards) appear. Here we use the fact that 1 yd = 3 ft, so that \(\frac{1 \text{ yd}}{3 \text{ ft}} \) is a name for the number 1:

\[
42 \text{ ft}^3 = 42 \frac{\text{ft}^3}{1 \text{ yd}^3} \times \frac{1 \text{ yd}}{3 \text{ ft}} \times \frac{1 \text{ yd}}{3 \text{ ft}} \times \frac{1 \text{ yd}}{3 \text{ ft}} = \frac{42 \cdot 1 \cdot 1 \cdot 1}{3 \cdot 3 \cdot 3} \text{ yd}^3 \approx 1.6 \text{ yd}^3 .
\]

The verb \(\approx \) means ‘is approximately equal to’. It isn’t necessary to show multiplication by the number 1, so this could be more compactly written as:

\[
42 \text{ ft}^3 = 42 \frac{\text{ft}^3}{1 \text{ yd}^3} \times \frac{1 \text{ yd}}{3 \text{ ft}} \times \frac{1 \text{ yd}}{3 \text{ ft}} \times \frac{1 \text{ yd}}{3 \text{ ft}} = \frac{42}{3 \cdot 3 \cdot 3} \text{ yd}^3 \approx 1.6 \text{ yd}^3 .
\]

On the other hand, if we had an opportunity to buy 2.6 cubic yards of sand really cheap, and need to know if it’s enough to fill a sandbox requiring 65 cubic feet, then we’d multiply by the number 1 in a different form:

\[
2.6 \text{ yd}^3 = 2.6 \frac{\text{yd}^3}{1 \text{ yd}^3} \times \frac{3 \text{ ft}}{1 \text{ yd}} \times \frac{3 \text{ ft}}{1 \text{ yd}} \times \frac{3 \text{ ft}}{1 \text{ yd}} = \frac{2.6 \cdot 3 \cdot 3 \cdot 3}{1 \cdot 1 \cdot 1} \text{ ft}^3 = 70.2 \text{ ft}^3 .
\]

It’s enough! It isn’t necessary to show division by the number 1, so this could be more compactly written as:

\[
2.6 \text{ yd}^3 = 2.6 \frac{\text{yd}^3}{1 \text{ yd}^3} \times \frac{3 \text{ ft}}{1 \text{ yd}} \times \frac{3 \text{ ft}}{1 \text{ yd}} \times \frac{3 \text{ ft}}{1 \text{ yd}} = 2.6 \cdot 3 \cdot 3 \cdot 3 \text{ ft}^3 = 70.2 \text{ ft}^3 .
\]
To complete this section, we return to the ‘passing cars’ problem from an earlier section:

The author of this book usually drives the speed limit. Consequently, she often finds herself being passed by other cars on the freeway. Just how fast are those other cars going when they whiz by?

My car is 14 feet long. Suppose it takes about 2 seconds for the front of a passing car to travel from my rear bumper to my front bumper. Then, the passing car’s additional speed is \(\frac{14 \text{ ft}}{2 \text{ sec}} \). How many miles per hour is that?

\[
\frac{14 \text{ ft}}{2 \text{ sec}} = \frac{14 \text{ ft}}{2 \text{ sec}} \cdot \frac{1 \text{ mile}}{5280 \text{ ft}} \cdot \frac{60 \text{ s}}{1 \text{ min}} \cdot \frac{60 \text{ min}}{1 \text{ hr}} = \frac{14 \cdot 60 \cdot 60 \text{ miles}}{2 \cdot 5280 \text{ hr}} \approx 4.8 \text{ mph}
\]

Here’s what was done. Our first step was to make feet ‘disappear’, and bring miles into the picture, by multiplying by the number 1 in the form \(\frac{1 \text{ mile}}{5280 \text{ ft}} \).

Most people don’t immediately know how many seconds there are in an hour, so seconds are converted to hours in two steps. First, make ‘sec’ disappear and bring ‘min’ into the picture by multiplying by the number 1 in the form \(\frac{60 \text{ sec}}{1 \text{ min}} \).

Next, make ‘min’ disappear and bring ‘hr’ into the picture by multiplying by the number 1 in the form \(\frac{60 \text{ min}}{1 \text{ hr}} \).

The passing car is going about five miles/hour faster than the author.

EXERCISE

14. Then there’s the car that whizzes by in about 0.5 seconds (that is, half a second). How much faster than my car is it going?

END-OF-SECTION EXERCISES

For problems 15–20: Classify each entry as a mathematical expression (EXP) or a mathematical sentence (SEN).

If an EXPRESSION, then give a simplest name for the expression.

Classify the truth value of each entry that is a sentence: (always) true (T); (always) false (F); or sometimes true/sometimes false (ST/SF).

15. \(2 \cdot 8 + 5 \cdot 4\)
16. \(2 \cdot 8 + 5 \cdot 4 = 16 + 20 = 36\)
17. \(2 \cdot 8 + 5 \cdot 4 = 16 = 16 + 20 = 36\)
18. \(x + 0 = x\)
19. \(0 = 3 + (-3) = (-5) + 5 = 7 - 7\)
20. \(1 = \frac{1}{2} = \frac{-3}{-3} = \frac{3 \text{ ft}}{1 \text{ yd}} = \frac{1 + 5}{10 - 4}\)
21. \(\frac{(12 \text{ ft})(1 \text{ yd})}{3 \text{ ft}}\)
22. How would you rename the 1-cup measure in the cornbread recipe of this section? (Get a name involving \(\frac{1}{4} \).)
23. Perform each of the indicated conversions. Be sure to use a correct format for simplifying an expression!
 (a) convert 630 seconds to minutes
 (b) convert 525 seconds to hours
 (c) convert 20 feet/second to miles/min
 (d) convert \(\frac{20 \text{ ft}}{0.5 \text{ sec}}\) to miles/hour
SECTION SUMMARY

NUMBERS HAVE LOTS OF DIFFERENT NAMES!

<table>
<thead>
<tr>
<th>NEW IN THIS SECTION</th>
<th>HOW TO READ</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>special property of 0</td>
<td>(x + 0 = x). Adding zero to a number doesn’t change the number’s identity; it doesn’t change where the number lives on a number line; it only changes its name.</td>
<td></td>
</tr>
<tr>
<td>special property of 1</td>
<td>(x \cdot 1 = x). Multiplying a number by 1 doesn’t change the number’s identity; it doesn’t change where the number lives on a number line; it only changes its name.</td>
<td></td>
</tr>
<tr>
<td>theorem</td>
<td>‘THEE-rum’</td>
<td>A name that mathematicians give to something that is TRUE and IMPORTANT (★ that has been proved).</td>
</tr>
<tr>
<td>proving a result</td>
<td></td>
<td>the process of showing that a result (that is, a theorem, proposition, lemma, corollary, . . .) is TRUE</td>
</tr>
<tr>
<td>proposition</td>
<td>‘prop-a-ZI-shun’</td>
<td>a mathematical result that is not quite important enough to be called a theorem</td>
</tr>
<tr>
<td>lemma</td>
<td>‘LEM-ma’</td>
<td>a mathematical result that is usually a stepping-stone to a theorem</td>
</tr>
<tr>
<td>corollary</td>
<td>‘KORE-a-larry’</td>
<td>a mathematical result that is usually an interesting consequence of a theorem</td>
</tr>
<tr>
<td>usual names for 0: (x + (-x) = 0)</td>
<td></td>
<td>When we get a new name for a number by adding zero, we usually don’t use the name 0 for zero. Instead, we use the fact that a number, added to its opposite, always gives 0.</td>
</tr>
<tr>
<td>reciprocal</td>
<td>‘re-SI-pro-kul’</td>
<td>The reciprocal of a nonzero number (x) is the new number (\frac{1}{x}). For example, the reciprocal of 2 is (\frac{1}{2}).</td>
</tr>
<tr>
<td>usual names for 1: (\frac{x}{x} = 1)</td>
<td></td>
<td>When we get a new name for a number by multiplying by 1, we usually don’t use the name 1 for one. Instead, we use the fact that a nonzero number, divided by itself, always gives 1. Equivalently, a nonzero number, multiplied by its reciprocal, always gives 1.</td>
</tr>
<tr>
<td>NEW IN THIS SECTION</td>
<td>HOW TO READ</td>
<td>MEANING</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>sentences of the form (a = b = c)</td>
<td>Shorthand for (a = b) and (b = c). In order for the sentence (a = b = c) to be true, BOTH (a = b) and (b = c) must be true. When the sentence (a = b = c) is true, this means that (a), (b), and (c) are just different names for the same number.</td>
<td></td>
</tr>
<tr>
<td>What kind of sentence arises when you simplify an expression?</td>
<td>Whenever you simplify an expression, a true mathematical sentence of the form (a = b = c = \cdots) results.</td>
<td></td>
</tr>
</tbody>
</table>
| preferred format for simplifying an expression | \[\text{original expression} = \text{alternate name}_1 \]
\[= \text{alternate name}_2 \]
\[= \cdots \]
\[= \text{final name} \]
The original expression stands out in the first column; the final (desired) name stands out at the bottom of the second column. Be sure to line up the ‘=’ signs. |
| preferred format for simplifying a long expression | \[\text{very long original expression} \]
\[= \text{alternate name}_1 \]
\[= \cdots \]
\[= \text{final name} \]
If the original expression is very long, don’t even try to put the first simplification on the same line. Go down to the next line, indent a bit, and start lining up the ‘=’ signs from there. |
| numerator & denominator | ‘NEW-mer-\Pi-tor’
‘dee-NAAH-mi-n\Pi-tor’ | In any fraction \(\frac{N}{D} \), \(N \) is called the numerator and \(D \) is called the denominator. Read \(\frac{N}{D} \) as ‘\(N \) divided by \(D \)’, or ‘\(N \) over \(D \)’. |
| common names for 1 used in unit conversion | Whenever you have a fraction where the numerator and denominator are equal, then the fraction represents the number 1. For example, since 1 foot = 12 inches,
\[1 = \frac{1 \text{ foot}}{12 \text{ inches}} = \frac{12 \text{ inches}}{1 \text{ foot}}. \]
In particular, whenever two quantities are equal, you get two names for the number 1. |