24. THE DISTRIBUTIVE LAW

One definition of tributive law is o how multiplication a different order of distributive law is sequences of this the next section is form $(a + b)(c + d)$	the English ve ne of the most of operations to deceptively sin law. One of to a memory dev).	erb 'to distr st frequent out' when i that can be nple. Many the most fa vice for corr	ribute' is 'to spread out'. The dis- ly used tools in algebra, and tells it interacts when addition—it gives e used. The basic statement of the y important tools, however, are con- mous is 'FOIL', which we'll see in rectly multiplying expressions of the
Before presenting expressions like (- with distributive l	the distribution $-abb$ and $-(-aw work)$.	we law, it's a , because	important to get comfortable with e these make frequent appearances
There are two cructions sion like $-x$; i.e., read $-x$ aloud as	cial viewpoints a variable, wit 'the opposite	that you signal that $x = x^2 + x^2$	hould have when you see an expres- sign in front of it. For the moment,
• Firstly, the sy is negative. If	mbol $-x$ deno x is negative,	then $-x$ is	posite of x. If x is positive, then $-x$ is positive. Study the chart below:
x	-x		comment
2	-2	x is posi	tive, so $-x$ is negative
-3	3	x is nega	ative, so $-x$ is positive
• Secondly, the be thought of used in the ch	expression $-x$ as multiplica art below:	is equal to tion by -1	$(-1)\boldsymbol{x}$. That is, the minus sign can . Notice how this interpretation is
<i>x</i>	-x = (-	1)x	comment
2	$(-1) \cdot 2 =$	-2	x is positive, so $-x$ is negative
-3	$(-1) \cdot (-3)$) = 3	x is negative, so $-x$ is positive
The symbol $-x$ can be correct, and both is a bit longer, it is this: when you you're dealing wit the number line). If you can say 'ne	an be read as are commonp 's also safer for say 'negative h a negative n Not necessaril gative x ' with	'the opposite opposi	ite of x ' or 'negative x '. Both are ough the phrase 'the opposite of x ' g students of algebra. The reason there is a temptation to think that , one that lies to the left of zero on x is negative, then $-x$ is positive. edge that it's not necessarily a neg-
	One definition of tributive law is on how multiplication a different order of distributive law is sequences of this the next section is form $(a + b)(c + d)$ Before presenting expressions like (- with distributive l There are two crues sion like $-x$; i.e., read $-x$ aloud as • Firstly, the sy is negative. If $\frac{x}{2}$ -3 • Secondly, the be thought of used in the ch $\frac{x}{2}$ -3 The symbol $-x$ c. correct, and both is a bit longer, it is value of the number line). If you can say 'ne	One definition of the English vertibutive law is one of the most how multiplication gets 'spread a different order of operations of distributive law is deceptively sin sequences of this law. One of the next section is a memory development form $(a + b)(c + d)$. Before presenting the distributive expressions like $(-a)b$ and $-(-with distributive law work.$ There are two crucial viewpoints sion like $-x$; i.e., a variable, with read $-x$ aloud as 'the opposite of • Firstly, the symbol $-x$ deno- is negative. If x is negative, x -x 2 -2 -3 3 • Secondly, the expression $-x$ be thought of as multiplica- used in the chart below: x -x = (-x) $2 (-1) \cdot 2 =$ $-3 (-1) \cdot (-3)$ The symbol $-x$ can be read as correct, and both are commonp- is a bit longer, it's also safer for is this: when you say 'negative you're dealing with a negative m the number line). Not necessaril If you can say 'negative x ' with	One definition of the English verb 'to dist tributive law is one of the most frequent how multiplication gets 'spread out' when a different order of operations that can be distributive law is deceptively simple. Many sequences of this law. One of the most fat the next section is a memory device for correst form $(a + b)(c + d)$. Before presenting the distributive law, it's expressions like $(-a)b$ and $-(-a)$, becaus with distributive law work. There are two crucial viewpoints that you signalize the opposite of x' . • Firstly, the symbol $-x$ denotes the opposite negative. If x is negative, then $-x$ is $\frac{x - x}{2}$ 2 - 2 x is position of a signalize the opposite of x' . • Secondly, the expression $-x$ is equal to be thought of as multiplication by -1 used in the chart below: $\frac{xx = (-1)x}{2}$ $2 (-1) \cdot 2 = -2$ $-3 (-1) \cdot (-3) = 3$ The symbol $-x$ can be read as 'the opposite is a bit longer, it's also safer for beginning is this: when you say 'negative x' aloud, you're dealing with a negative number (i.e., the number line). Not necessarily true! If x If you can say 'negative x' with full knowl

of x '.

EXERCISES	1.	Let $x = 3$.
		a. How is the expression ' $-x$ ' read aloud?
		b. Is x positive or negative?
		c. Does x lie to the right of zero or to the left of zero?
		d. Is $-x$ positive or negative?
		e. Does $-x$ lie to the right of zero or to the left of zero?
	2.	Let $y = -4$.
		a. How is the expression ' $-y$ ' read aloud?
		b. Is y positive or negative?
		c. Does y lie to the right of zero or to the left of zero?
		d. Is $-y$ positive or negative?
		e. Does $-y$ lie to the right of zero or to the left of zero?

Next, we look at products involving signed variables.

The product (-a)b can be written in a variety of ways:

products involving signed variables

use of parentheses

and centered dots

the opposite of a, times b a, times the opposite of b the opposite of ab= a(-b)-ab= (-a)b

The easiest way to understand this is to think of -a as (-1)a. The minus sign can be treated as a factor of -1:

$$\underbrace{\overbrace{(-1)ab}^{(-a)b}}_{(-1)ab} = \underbrace{\overbrace{a(-1)b}^{a(-b)}}_{(-1)ab} = \underbrace{\overbrace{(-1)ab}^{-ab}}_{(-1)ab}.$$

In all these cases, the same three numbers are being multiplied (-1, a, and b)so the result is the same.

People have different preferences as to how much or little they use parentheses, and how much or little they use the centered dot to denote multiplication. There are places where parentheses and centered dots are needed, but in other situations they're optional. You might see any of these:

$$ab = (a)b = a(b) = (a)(b) = a \cdot b = a \cdot (b) = (a) \cdot b = (a) \cdot (b)$$

juxta positionWhen two variables are juxtaposed (i.e., sitting next to each other), as in the of variables denotes multiplication with signed variables, parentheses are usually required

expression ab, the operation between them is multiplication. Thus, ab is the simplest way to denote a multiplied by b. When a signed variable is involved, parentheses are usually required. To mul-

tiply a by -b (in that order) we can't just just approve them and write a-bbecause this would look like subtraction. Thus, we must write a(-b).

even and odd numbers of factors of -1	When you see opposites in multiplication problems, just treat the minus sign as a factor of -1 , and recall these rules:			
	Any even number of factors of -1 is positive.			
	For example, $(-1)(-1)(-1)(-1) = 1$.			
	Any odd number of factors of -1 is negative.			
	For example, $(-1)(-1)(-1) = -1$.			
	Conventionally, the minus sign (if there is one) is pulled to the front of the expression, as illustrated in these examples:			
	(-a)(-b) = ab (two factors of -1)			
	-(-a)(b) = ab (two factors of -1)			
	-a(-b) = ab (two factors of -1)			
	-(-a)(-b) = -ab (three factors of -1)			
	(-a)(-b)(-c)(d) = -abcd (three factors of -1)			
EXERCISES	3. Which of the following are names for $(-c)d$? Circle all correct choices.			
	-cd $c(-d)$ $(-1)cd$ $c(-1)d$ $d(-c)$			
	d-c $(-d)c$ $-(cd)$ $-(dc)$ $-(-c)(-d)$			
	4. Simplify each of the following expressions:			
	a. $-(-a)(b)$			
	b. $a(-b)(-c)d$			
	c. $-(ab)(-c)$			
	d. $(-a)(-b)(-c)$			
	e. $-a(b)(-c)$			
	f. $-a(-b)c$			
using exponent laws	You'll also be using exponent laws:			
	$(-x)(-x)(x) = x^3$			
	$-(x)(-y)(-xy)(-y) = x^2y^3$			
	$-x^2(-x^3) = x^5$			
	$-x(-y)(x) = x^2 y$			
EXERCISES	5. Simplify.			
	a. $-x(-x)(-x)$			
	b. $-(-x)(x)$			
	c. $x(x^2)(-x^3)$			

d. $-x(x^2)(-x)$ e. $-x(-y)(xy)(-x^2)$ f. $-(xy)(-x)(-y^3)$

Now, we're ready to present the distributive law:

-(-5)(-43)(-1)

http://www.onemathematicalcat.org

THE	DIDUTT	VD	For all real numbers a, b , and c ,	
LAW	RIBUTI	VE	a(b +	c) = ab + ac .
unders the stat	tanding tement		The distributive law offers alternate same result. The expression $a(b+c)$ specifies this sum.	e orders of operation that always give the s order: add b to c ; then multiply a by this
			The expression $ab + ac$ specifies thi c ; then add these results.	s order: multiply a and b ; multiply a and
			Let's choose some values of a , b and	c and verify that the results are the same:
a	b	с	substitution into $a(b+c)$	substitution into $ab + ac$
2	3	4	2(3+4) = 2(7) = 14	(2)(3) + (2)(4) = 6 + 8 = 14
-2	3	-4	(-2)(3 + (-4)) = (-2)(-1) = 2	(-2)(3) + (-2)(-4) = -6 + 8 = 2
<u>1</u> 2	1	$\frac{1}{3}$	$(\frac{1}{2})(1+\frac{1}{3}) = (\frac{1}{2})(\frac{3}{3}+\frac{1}{3})$ $= (\frac{1}{2})(\frac{4}{3})$ $= \frac{4}{6} = \frac{2}{3}$	$(\frac{1}{2})(1) + (\frac{1}{2})(\frac{1}{3}) = \frac{1}{2} + \frac{1}{6}$ $= \frac{3}{6} + \frac{1}{6}$ $= \frac{4}{6} = \frac{2}{3}$
0.2	-0.4	-0.4	(0.2)(-0.4 + (-0.4)) = (0.2)(-0.8) = -0.16	(0.2)(-0.4) + (0.2)(-0.4) = -0.08 + (-0.08) = -0.16
unders	tanding		One effective visual way to understa	and the statement of the distributive law is

One effective visual way to understand the statement of the distributive law is to use areas.

the statement in terms of area

Form a rectangle with height $a\,,$ and width $b+c\,.$ The area of this rectangle is height times width: $a(b+c)\,.$

However, the area can also be found by summing the areas of the two smaller rectangles: ab + ac. Thus, a(b + c) = ab + ac.

EXERCISES	 6. For the given values of a, b, and c, evaluate both a(b+c) and ab+ac. Verify that you get the same results. Do the computations without a calculator. a. a = 3, b = 5, c = 7 b. a = -2, b = -1, c = -3 c. a = ¹/₃, b = -¹/₂, c = 1 		
using the distributive law	It helps some students first learning to use the distributive law to draw the following arrows: $\widehat{a(b+c)} = ab + ac$		
a(b-c) = ab - ac	Recall that subtraction is a special kind of addition—so mathematicians don't need to state separate results for subtraction. Addition covers it, like this: $(l = 1) = (l + (n_1)) = (l + (n_2))$		
	a(b-c) = a(b+(-c)) rewrite subtraction as addition of the opposite		
	= ab + a(-c) use the distributive law		
	= ab + (-ac) while $a(-c)$ as $-ac= ab - ac$ rewrite addition of the opposite as subtraction		
	Although all the steps are written out here, you need to be able to go from $a(b-c)$ to $ab-ac$ in only one step. The following paragraphs discuss strategies for doing this. First, some terminology:		
terms:	In a sum (things added), the things being added are called the <i>terms</i> .		
a term includes	In the sum $ab + ac$, the terms are ab and ac .		
its sign	In the expression $ab - ac$, which equals $ab + (-ac)$, the terms are ab and $-ac$. Note that a term includes its sign.		
	In the expression $a - b + ab - 1$, the terms are $a, -b, ab$, and -1 .		
EXERCISES	7. List the terms: a. $-x + y - xy + 4$ b. $\frac{1}{2} - x^2y + 3xy - (xy)^2$		

decide the sign of each term first When using the distributive law, it's usually easiest to determine the sign (plus or minus) of each term first. The thought process is detailed below:

$$-a(b-c) \underbrace{\overbrace{=-a(b+(-c))=}^{\text{think about it this way}}}_{-ab+ac}$$

The key is to *think* about the expression inside parentheses as b + (-c) (that is, focus on the terms), although you won't write this step down.

- Step 1: Multiply the -a and b; one factor of -1; write down the minus sign, then the ab.
- Step 2: Multiply the -a and -c; two factors of -1; write down the plus sign, then the ac.

Go through this thought process on all these problems:

-a(b+c) = -ab - aca(-b+c) = -ab + aca(-b-c) = -ab - ac-a(-b+c) = ab - ac-a(-b-c) = ab + aca(b-c) = ab - ac

EXERCISES	8. Simplify each of the following in one step:
	a. $-x(y+z)$
	b. $x(-y-z)$
	c. $-x(y-z)$
	d. $-x(-y-z)$
(a+b)c = ac + bc	Occasionally you'll see the distributive law with the multiplication on the right instead of the left, like this:
	(a+b)c = ac + bc

All the ideas are the same, for example:

$$(a-b)(-c) = -ac + bc$$

$$(-a+b)(-c) = ac - bc$$

$$(-a-b)c = -ac - bc$$

EXERCISES	9. Simplify each of the following in one step:	
	a. $(a - b)(-c)$	
	b. $(a+b)(-c)$	
	c. $(-a+b)c$	
	d. $(-a-b)(-c)$	
	e. $(a-b)c$	

$$(\frac{3}{2}+\frac{1}{2})(111-2)$$
 http://www.onemathematicalcat.org

-(a+b)

There is a special case that is so simple that it's hard. If you see a minus side outside of a group, with no number there, remember that it's really a factor of -1:

$$-(a+b) \underbrace{\overbrace{=(-1)(a+b)=}^{\text{think, but don't write}}}_{=a-b}$$

Every term inside the group gets multiplied by -1, so every term inside the group changes its sign. Thus, for example, we have:

$$-(a-b) = -a+b$$
$$-(-a-b) = a+b$$
$$-(-a+b) = a-b$$

EXERCISES	10. Simplify in one step:
	a. $-(x+y)$
	b. $-(x-y)$
	c. $-(-x+y)$
	d. $-(-x-y)$
problems like -2x(3y - 5z); constants and variables	When both constants (like 2) and variables (like x) appear in the terms, one little step is added to the thought process. Figure out the sign first, as usual, and write it down. Then, glance through the constants, multiplying as needed, and write this down. Take care of the variable part last. When a constant and a variable appear in the same term, it is conventional to write the constant first. Thus, write $2x$, not $x2$. Here's an example:
	-2x(3y-5z) = -6xy + 10xz
	Again, you want to do this in one step. Here's the thought process:
	• Step 1: Think about the $-2x$ times $3y$. The sign is $-$; write it down. Glance through the constants (ignoring the signs, because you've already accounted for them) and multiply the 2 and 3; write down the 6. Finally, write down the variable part xy .
	• Step 2: Think about the $-2x$ times $-5z$. The sign is $+$; write it down. Glance through the constants (ignoring the signs, because you've already accounted for them) and multiply the 2 and 5; write down the 10. Finally, write down the variable part xz .
EXERCISES	11. Simplify in one step:
	a. $2a(3b-c)$
	b. $-a(-2b+3c)$
	c. $-3a(b-5c)$
	d. $a(-2b+c)$

$$(2.9+0.1)(72+1)$$

EXAMPLES

This section is concluded with some more complicated problems:

$$-x(3x^{2} - y) = -3x^{3} + xy$$
$$x^{2}(-3x - 4xy^{5}) = -3x^{3} - 4x^{3}y^{5}$$
$$-xy(4 - 5x^{3}y^{4}) = -4xy + 5x^{4}y^{5}$$

EXERCISES	12. Simplify: a. $-2a(3ab^2 - 5a^3)$ b. $-a^2(-a + a^2b)$ c. $3ab(ab - 2b^3a)$ d. $4a^2b(b - ab)$
EXERCISES web practice	Go to my homepage http://onemathematicalcat.org and navigate to my Algebra I course, which has about 170 sequenced lessons. It can be used as a complete year-long high school course, or one semester in college. You're currently looking at the pdf version—you'll see that the HTML version has unlimited, randomly-generated, online and offline practice in every section. It's all totally free. Enjoy!

SOLUTION TO EXERCISES: THE DISTRIBUTIVE LAW

- 1. a. the opposite of x, or negative x
- b. positive
- c. right of zero
- d. negative
- e. left of zero
- 2. a. the opposite of y, or negative y
- b. negative
- c. left of zero
- d. positive
- e. right of zero

3. (-c)d = -cd = c(-d) = (-1)cd = c(-1)d = d(-c) = (-d)c = -(cd) - (dc) = -(-c)(-d); the only one that isn't a name for (-c)d is d - c.

- 4. a. -(-a)(b) = ab
- b. a(-b)(-c)d = abcd
- c. -(ab)(-c) = abc
- d. (-a)(-b)(-c) = -abc
- e. -a(b)(-c) = abc
- f. -a(-b)c = abc

5. a.
$$-x(-x)(-x) = -x^3$$

b. $-(-x)(x) = x^2$
c. $x(x^2)(-x) = x^4$
d. $-x(x^2)(-x) = x^4$
e. $-x(-y)(xy)(-x^2) = -x^4y^2$
f. $-(xy)(-x)(-y^3) = -x^2y^4$
6. a. $a(b+c) = 3(5+7) = 3(12) = 36$; $ab + ac = (3)(5) + (3)(7) = 15 + 21 = 36$
b. $a(b+c) = -2(-1+(-3)) = -2(-4) = 8$; $ab + ac = (-2)(-1) + (-2)(-3) = 2 + 6 = 8$
c. $a(b+c) = \frac{1}{3}(-\frac{1}{2}+1) = \frac{1}{3}(-\frac{1}{2}+\frac{2}{2}) = \frac{1}{3}(\frac{1}{2}) = \frac{1}{6}$;
 $ab + ac = (\frac{1}{3})(-\frac{1}{2}) + (\frac{1}{3})(1) = -\frac{1}{6} + \frac{1}{3} = -\frac{1}{6} + \frac{2}{6} = \frac{1}{6}$
7. a. $-x + y - xy + 4$: the terms are $-x$, y , $-xy$, and 4
b. $\frac{1}{2} - x^2y + 3xy - (xy)^2$: the terms are $\frac{1}{2}$, $-x^2y$, $3xy$, and $-(xy)^2$
8. $-x(y+z) = -xy - xz$
b. $x(-y-z) = -xy - xz$
b. $x(-y-z) = -xy + xz$
d. $-x(-y-z) = xy + xz$
9. a. $(a-b)(-c) = -ac + bc$
b. $(a+b)(-c) = -ac + bc$
c. $(-a+b)c = -ac + bc$
d. $(-a-b)(-c) = ac + bc$
d. $(-a-b)(-c) = ac + bc$
d. $(-a-b)(-c) = ac + bc$
10. a. $-(x+y) = -x - y$
b. $-(x-y) = -x + y$
c. $-(-xy) = x + y$
11. a. $2a(3b-c) = 6ab - 2ac$
b. $-a(-2b + 3c) = 2ab - 3ac$
c. $-3a(b-5c) = -3ab + 15ac$
d. $a(-2b+c) = -2ab + ac$
12. a. $-2a(3ab^2 - 5a^3) = -6a^2b^2 + 10a^4$
b. $-a^2(-a+a^2b) = a^3 - a^4b$
c. $3ab(ab - 2b^3) = 3a^2b^2 - 6a^2b^4$
d. $4a^2b(b-a) = 4a^2b^2$