EXAMPLES:
Question:
Combine into a single fraction:
[beautiful math coming... please be patient]
$\displaystyle\,\frac{2x}{5} + \frac{1}{3}$
Solution:
Notice that the
least common denominator is $\,15\,$.
[beautiful math coming... please be patient]
$\displaystyle
\,\frac{2x}{5} + \frac{1}{3}
\ \ =\ \ \frac{2x}{5}\cdot\frac{3}{3} + \frac{1}{3}\cdot\frac{5}{5}
\ \ =\ \ \frac{6x}{15} + \frac{5}{15}
\ \ =\ \ \frac{6x+5}{15}
$
Question:
Combine into a single fraction:
[beautiful math coming... please be patient]
$\displaystyle\,\frac{2}{9t} - \frac{1}{6}$
Solution:
Notice that the least common denominator is $\,18t\,$.
[beautiful math coming... please be patient]
$\displaystyle
\,\frac{2}{9t} - \frac{1}{6}
\ \ =\ \ \frac{2}{9t}\cdot\frac{2}{2} - \frac{1}{6}\cdot\frac{3t}{3t}
\ \ =\ \ \frac{4}{18t} - \frac{3t}{18t}
\ \ =\ \ \frac{4-3t}{18t}
$
Master the ideas from this section
by practicing the exercise at the bottom of this page.
When you're done practicing, move on to:
Divisibility Equivalences