This week we’ll review functions and properties of exponents.

FUNCTIONS

A FUNCTION is a rule that assigns to each input exactly one corresponding output. You can think of a function as ‘acting on’ an input and producing an output. Using normal function notation, if \(f \) is the name of the rule, and \(x \) is the input, then \(f(x) \) (pronounced as “\(f \) of \(x \)”) is the corresponding output.

![Diagram showing function notation]

So, what is \(g(3) \)? It is the output from the function \(g \), when the input is 3. What is \(f(x + h) \)? It is the output from the function \(f \), when the input is \(x + h \).

The SAT use more creative notation to illustrate the process of taking number(s), doing something to them, and getting a unique output.

For example, they might define \(\begin{vmatrix} x & y \end{vmatrix} \) to mean \(x + 3y \).

Then, \(\begin{vmatrix} 2 & 5 \end{vmatrix} \) represents \(2 + 3 \times 5 = 17 \).

Verbalizing functions (rules) as SEQUENCES OF OPERATIONS

The best way to think of any function rule is as a sequence of operations.

For example, \(2x + 3 \) represents the rule: take a number, multiply by 2, then add 3.

The rule \(3x^2 \) represents the rule: take a number, square it, then multiply by 3.

The rule \((3x)^2 \) represents the rule: take a number, multiply by 3, then square the result.

TRY THESE:

(a) In words, what does the function notation \(f(3) \) represent?

(b) Put the rule \(f(x) = 5x - 1 \) into words: take a number, ...

(c) Suppose that \(\begin{vmatrix} x & y \end{vmatrix} \) means mean \(2x + y \).

Find \(\begin{vmatrix} 1 & 3 \end{vmatrix} \).

(d) Use a mathematical expression to represent this rule: take a number, multiply it by 5, then subtract 3.
If you’re shooting for a 600 on the Math SAT, then you should work at the pace of about one minute, thirty seconds per multiple-choice problem.

Get a feel for this pace by trying the following function problems:

1. For all positive numbers, x represents the nearest even integer greater than x.
 If $x = 5$, then $\Rightarrow x$ is

 (A) 4 (B) 5 (C) 6 (D) 7 (E) 8

2. Let x be any positive integer. The operation $* x$ is defined in the following way:
 x^* represents the least prime number greater than x.
 If $x = 18$, then $x^* =$

 (A) 15 (B) 17 (C) 19 (D) 20 (E) 23

3. Let a “k-triple” be defined as $(\frac{k}{2}, k, \frac{3}{2}k)$ for some number k.
 Which of the following is a k-triple?

 (A) (0, 5, 10) (B) (4\frac{1}{2}, 5, 6\frac{1}{2}) (C) (25, 50, 75) (D) (250, 500, 1000) (E) (450, 500, 650)

4. If $\begin{bmatrix} w & x \\ y & z \end{bmatrix}$ is defined to equal $wy - xz$, and $\begin{bmatrix} w & x \\ y & z \end{bmatrix} - K = 0$, then $K =$

 (A) $wy - wz$ (B) $xz + wy$ (C) $-xz$ (D) $xz - wy$ (E) $wy - xz$

The next two questions refer to the following definition:

$\begin{bmatrix} W & X \\ Y & Z \end{bmatrix}$ is a number square if $W + Z = X + Y$ and $2W = 3X$.

5. If $\begin{bmatrix} 3 & X \\ Y & 5 \end{bmatrix}$ is a number square, then what is the value of Y?

 (A) 0 (B) 2 (C) 4 (D) 6 (E) 8

6. If $\begin{bmatrix} W & X \\ Y & W \end{bmatrix}$ is a number square, then $Y =$

 (A) $\frac{3}{4}W$ (B) W (C) $\frac{8}{3}W$ (D) $3W$ (E) $4W$

7. Let $\#$ be defined by $z \# w = z^w$.
 If $x = 5 \# a$, $y = 5 \# b$, and $a + b = 3$, then what is the value of xy?

 (A) 15 (B) 30 (C) 75 (D) 125 (E) 243
EXPONENT LAWS:

Exponent notation is a shorthand for repeated multiplication:

\[x^3 \text{ means } x \cdot x \cdot x \]
\[(a + b)^2 \text{ means } (a + b)(a + b) = a^2 + 2ab + b^2 \quad (\text{use FOIL}) \]

Here are the basic laws for working with exponents:

Things multiplied, same base, ADD the exponents:

\[x^m x^n = x^{m+n} \]
Example: \((2^3)(2^5) = (2 \cdot 2 \cdot 2)(2 \cdot 2 \cdot 2 \cdot 2 \cdot 2) = 2^{3+5} = 2^8\)

Things divided, same base, SUBTRACT the exponents:

\[\frac{x^m}{x^n} = x^{m-n} \]
Example: \[\frac{x^5}{x^3} = \frac{x \cdot x \cdot x \cdot x \cdot x}{x \cdot x \cdot x} = x^{5-3} = x^2\]

Something to a power, to a power, multiply the exponents:

\[(x^m)^n = x^{mn}\]
Example: \((x^2)^3 = (x^2)(x^2)(x^2) = (x \cdot x)(x \cdot x)(x \cdot x) = x^{2 \cdot 3} = x^6\)

Trade a negative exponent in for a "flip":

\[x^{-n} = \frac{1}{x^n} \text{ OR } \frac{1}{x^{-n}} = x^n\]
Example: \((a + b)^{-2} = \frac{1}{(a + b)^2}\)

Fractional exponents—the denominator tells the kind of root; the numerator is a power, which can go inside or outside:

\[x^{a/b} = (x^{1/b})^a = (\sqrt[b]{x})^a\] (usually, this name is easiest)
\[x^{a/b} = (x^a)^{1/b} = \sqrt[b]{x^a}\]
Example: \(8^{0/3} = (\sqrt[3]{8})^0 = 2^0 = 32\)

In particular, \(x^{1/2} = \sqrt{x}\).

Recall: \(\sqrt{x}\) is the nonnegative number which, when squared, gives \(x\):

Example: \(\sqrt{4} = 2\), even though both \(2^2 = 4\) and \((-2)^2 = 4\).

You can't take EVEN roots of NEGATIVE numbers: \(\sqrt{-4}\) is not defined.

SPECIAL CASES THAT YOU COME UP A LOT:
\[\sqrt{xy} = \sqrt{x}\sqrt{y}\] (only when \(x\) and \(y\) are BOTH positive)
\[\sqrt[\frac{\sqrt{x}}{\sqrt{y}}} = \frac{\sqrt{x}}{\sqrt{y}}\] (only when \(x\) and \(y\) are BOTH positive)

TRY THESE:
(a) \(\sqrt{(-2)(-2)} = \)
(b) \(\sqrt{\frac{9}{100}} = \)
(c) \(\sqrt{x^2} = \) (Be careful!)
(d) \((27)^{2/3} = \) (Do this WITHOUT a calculator.)

\[b = \varepsilon = \varepsilon \left(\frac{\text{LCM}}{\varepsilon} \right) = \varepsilon \left(\text{LCM} \right) \quad (p) \quad \text{or} \quad (q) \quad \varepsilon (\gamma) \]
Now, you try these:

1. If $2^y = 8$ and $y = \frac{x}{2}$, then $x =$
 (A) 6 (B) 5 (C) 4 (D) 3 (E) 2

2. If $x = 5^y$ and $y = z + 1$, then what is $\frac{x}{5}$ in terms of z?
 (A) x (B) $z + 1$ (C) 5^x (D) 5^{z+1} (E) 5^{z+1}

3. If $x + 1 = 7$, then $(x + 2)^2 =$
 (A) 25 (B) 36 (C) 49 (D) 64 (E) 81

4. If $\left(\frac{x + 1}{x}\right)^2 = 25$, then $\frac{1}{x^2} + x^2 =$
 (A) 23 (B) 24 (C) 25 (D) 27 (E) 624

5. If $(5^3)(2^5) = 4(10^k)$, then $k =$
 (A) 2 (B) 3 (C) 4 (D) 6 (E) 8

6. $\left[(2x^2y^3)^2\right]^3 =$
 (A) $4x^4y^6$ (B) $12x^4y^6$ (C) $64x^4y^6$ (D) $64x^{12}y^{18}$ (E) $64x^{64}y^{216}$

7. $a \cdot 3 \cdot b^2 \cdot \frac{1}{2} =$
 (A) a^3b (B) $1.5ab^2$ (C) $1.5a^2b^2$ (D) $3ab$ (E) $6ab^2$
EXTRA PROBLEMS:

1. For any sentence \(J \), the expression \(N_t(J) \) is defined to mean the number of times the letter "t" appears in \(J \). If \(J \) is the sentence "All cats are good luck," then \(N_t(J) = \)
 (A) 0 (B) 1 (C) 2 (D) 3 (E) 4

Questions (2) and (3) refer to the following definition:
\(< x >\) is defined as 1 less than the number of digits in the integer \(x \).
For example, \(< 100 > = 3 - 1 = 2 \).

2. If \(x \) is a positive integer less than 1,000,001, then \(< x > \) is at most
 (A) 5 (B) 6 (C) 7 (D) 999,999 (E) 1,000,000

3. If \(x \) has 1,001 digits, then what is the value of \(<<< x >>> \)?
 (A) 997 (B) 1 (C) 0 (D) -1 (E) It cannot be determined from the information given.

4. For all numbers \(x, y, \) and \(z \), if the operation \(\phi \) is defined by the equation
 \(x \phi y = x + xy \), then \(x \phi \phi \phi z = \)
 (A) \(x + xy + xyz \) (B) \(x + xyz \) (C) \(x + xy + z + xz \) (D) \(x + y + yz \) (E) \(x + y + xyz \)

Questions (5) and (6) refer to the following definition:
\[\frac{a \cdot b}{c} + \frac{b \cdot c}{a} + \frac{c \cdot a}{b} \] for all nonzero \(a, b, \) and \(c \).
For example,
\[\frac{2 \cdot 4}{6} + \frac{4 \cdot 6}{2} + \frac{6 \cdot 2}{4} = \frac{4}{3} + 12 + 3 = 16 \frac{1}{3} \]

5. \[\frac{3}{4} \]
 (A) 1 (B) 9 (C) 10 (D) 16 (E) 26

6. If \(x \neq 0 \), \[\frac{x^2}{x^3} = \]
 (A) \(x^6 + x^4 + x^2 \) (B) \(x^5 + x + \frac{1}{x} \) (C) \(x^4 + x^3 + 1 \) (D) \(x^4 + x^2 + 1 \) (E) \(x^2 + x + 1 \)