CHAPTER 7. THE DEFINITE INTEGRAL

Section 7.1 Using Antiderivatives to find Area

Quick Quiz:
1. The Max-Min Theorem guarantees numbers \(m \in [x, x + h] \) and \(M \in [x, x + h] \) for which \(f(m) \) is the minimum value of \(f \) on \([x, x + h]\), and \(f(M) \) is the maximum value of \(f \) on \([x, x + h]\).
2. If \(f \) is continuous at \(a \), then as \(x \to a \), it must be that \(f(x) \to f(a) \).
3. Any sketch where \(f \) IS defined at \(a \), but \(f \) is NOT continuous at \(a \), will work!
4. \(F(x) = x^3 \) is an antiderivative of \(f(x) = 3x^2 \). Then, the desired area is given by: \(F(2) - F(0) = 2^3 - 0^3 = 8 \)
5. The desired area is given by: \(F(d) - F(c) \)

END-OF-SECTION EXERCISES:
1. approximation by a triangle: \(\frac{1}{2}(1)(e - 1) \approx 0.86 \)
 actual area: Using integration by parts, an antiderivative of \(f(x) = \ln x \) is \(F(x) = x \ln x - x \). Then:
 \[
 F(e) - F(1) = (e \ln e - e) - (1 \ln 1 - 1) = (e - e) - (0 - 1) = 1
 \]
3. approximation by a trapezoid: \(\frac{1}{2}(4 - 1)(1 + 2) = \frac{1}{2}(9) = \frac{9}{2} = 4.5 \)
 actual area: An antiderivative of \(f(x) = \sqrt{x} = x^{1/2} \) is \(F(x) = \frac{2}{3}x^{3/2} = \frac{2}{3}\sqrt{x^3} \). Then:
 \[
 F(4) - F(1) = \frac{2}{3}\sqrt{4^3} - \frac{2}{3}\sqrt{1^3} = \frac{2}{3}(8) - \frac{2}{3}(1) = \frac{2}{3}(7) = \frac{14}{3} \approx 4.67
 \]

Section 7.2 The Definite Integral

Quick Quiz:
1. The indefinite integral \(\int f(x) \, dx \) gives all the antiderivatives of the function \(f \); by the Fundamental Theorem of Integral Calculus, if just one of these antiderivatives is known, then the definite integral \(\int_a^b f(x) \, dx \) can be computed!
2. See page 409.
3. The notation \(F(x) \big|_a^b \) means \(F(b) - F(a) \).
4. \(\int_{-1}^{1} x^2 \, dx = \left[\frac{x^3}{3} \right]_{-1}^{1} = \frac{1}{3}(2^3 - (-1)^3) = \frac{1}{3}(8 - (-1)) = \frac{1}{3}(9) = 3 \)
5. \(\int_{-1}^{1} x^3 \, dx = \left[\frac{x^4}{4} \right]_{-1}^{1} = \frac{1}{4}(1^4 - (-1)^4) = 0 \). On the interval \([-1, 1]\), there is the same amount of area above the graph of \(y = x^3 \), as there is below.

END-OF-SECTION EXERCISES:
1. \(\frac{48}{5} \)
3. \(-6\)
5. \(\frac{1}{3} \ln 2 \)
7. \(1 + e^2 \)
9. The desired area is: \(\frac{19}{24} + \frac{81}{8} = \frac{131}{24} \)
Section 7.3 The Definite Integral as the Limit of Riemann Sums

Quick Quiz:
1. A partition of an interval \([a, b]\) is a finite set of points from \([a, b]\) that includes both \(a\) and \(b\).
2. The length of the longest subinterval must be \(\frac{1}{2}\):
 \[
P_1 = \{1, 1.5, 2, 2.5, 3\}
 \]
 \[
P_2 = \{1, 1.3, 1.5, 2, 2.5, 3\}
 \]
3. There is NOT a unique Riemann sum for \(f\) corresponding to this partition; any number \(x^*_1\) may be chosen from the subinterval \([0, 1)\); any number \(x^*_2\) may be chosen from the second subinterval \([1, 2)\), etc.
4. Think of a rectangle with ‘width’ \(dx\) and ‘height’ \(f(x)\), where \(x\) is a number between \(a\) and \(b\).

END-OF-SECTION EXERCISES:
1. EXP
3. SENTENCE; TRUE
5. SENTENCE; TRUE
7. SENTENCE; TRUE
9. SENTENCE; TRUE

Section 7.4 The Substitution Technique applied to Definite Integrals

Quick Quiz:
1. \[
\int (2x - 1)^3 \, dx = \frac{1}{2} \int u^3 \, du = \frac{1}{8} x^4 + C ; \quad \mu = 2x - 1
\]
2. \[
\int_0^{\sqrt{2}} (2x - 1)^3 \, dx = \frac{1}{8} (2x - 1)^4 \bigg|_0^{\sqrt{2}} = \frac{1}{8} (0 - 1) = -\frac{1}{8}
\]
3. \[
\int_1^e \ln x \, dx = x \ln x \bigg|_1^e - \int_1^e x \cdot \frac{1}{x} \, dx
= (e \ln e - 1 \ln 1) - e \bigg|_1^e
= e - (e - 1) = 1
\]

END-OF-SECTION EXERCISES:
1. \(0\)
3. \(\approx 0.024\)
5. \(\approx 1.931\)

Section 7.5 The Area Between Two Curves

Quick Quiz:
1. \(\int_0^d (g(x) - f(x)) \, dx\)
2. The \(x\)-axis is described by \(y = 0\). The intersection points are found by:
 \[-x^2 + 1 = 0 \iff x^2 = 1 \iff x = \pm 1\]

 Using symmetry, the desired area is:
 \[
 2 \int_0^1 (-x^2 + 1) \, dx = (x - \frac{x^3}{3}) \bigg|_0^1 - \frac{1}{3} = \frac{2}{3}
 \]
3. A quick sketch shows that the phrase IS ambiguous; there are two regions with the indicated boundaries. Which is desired? Or, are both desired?
4. \[\int_0^1 (e^x - (-x)) \, dx = \int_0^1 (e^x + x) \, dx = (e^x + \frac{x^2}{2}) \bigg|_0^1 = (e + \frac{1}{2}) - e^0 = e + \frac{1}{2} - 1 = e - \frac{1}{2} \]

END-OF-SECTION EXERCISES:

1. \(\frac{2}{15} \)

2. \(\frac{32}{3} \)

3. \(\approx 2.438 \)

4. \(20 \frac{1}{4} \)

Section 7.6 Finding the Volume of a Solid of Revolution—Disks

Quick Quiz:

1. Revolve \(x = r \) about the \(y \)-axis; or revolve \(y = r \) about the \(x \)-axis.

2. Revolve \(y = -\frac{h}{r}x + h \) about the \(y \)-axis; or revolve \(y = \frac{h}{r}x \) about the \(y \)-axis. (There are other correct answers.)

3. \[\int_0^1 \pi (x^2)^2 \, dx = \pi \frac{x^5}{5} \bigg|_0^1 = \frac{\pi}{5} (1 - 0) = \frac{\pi}{5} \]

4. Intersection points of \(y = x^2 \) and \(y = 1 \): \(x^2 = 1 \iff x = \pm 1 \)

 Also: \(y = x^2 \iff x = \pm \sqrt{y} \)

 A typical ‘slice’ at a distance \(y \) has volume \(\pi (\sqrt{y})^2 \, dy \). The desired volume is:

 \[\int_0^1 \pi (\sqrt{y})^2 \, dy = \int_0^1 \pi y \, dy = \frac{\pi y^2}{2} \bigg|_0^1 = \frac{\pi}{2} (1 - 0) = \frac{\pi}{2} \]
END-OF-SECTION EXERCISES:

1. $\frac{4\pi}{3}$

3. $\frac{\pi}{2}$

5. 8π

7. $\frac{128\pi}{5}$

9. $\frac{8\pi}{3}$

11. $\frac{\pi}{4}$

Section 7.7 Finding the Volume of a Solid of Revolution—Shells

Quick Quiz:

1. ‘Cut’ the shell and unroll it; the volume is:

$$2\pi r \cdot h \cdot dx$$

2.

$$\int_{0}^{2} 2\pi x(x) \, dx = 2\pi \frac{x^3}{3} \bigg|_{0}^{2} = \frac{2\pi}{3} (8 - 0) = \frac{16\pi}{3}$$

3. To use horizontal disks would require disks ‘with holes’. Thus, in this case, shells are easier to use.

END-OF-SECTION EXERCISES:

1. $\frac{4\pi}{3}$

3. 2π