CHAPTER 4. THE DERIVATIVE

Section 4.1 Tangent Lines

Quick Quiz:
1. Let \(f(x) = x \). Then:
 \[
 \lim_{h \to 0} \frac{f(2 + h) - f(2)}{h} = \lim_{h \to 0} \frac{(2 + h) - 2}{h} = \lim_{h \to 0} \frac{h}{h} = 1
 \]
 Thus, as expected, the slope of the tangent line to \(f \) at the point \((2, 2)\) is 1.
2. The dummy variable is \(h \). Using the dummy variable \(t \), the limit can be rewritten as:
 \[
 \lim_{t \to 0} \frac{f(x + t) - f(x)}{t}
 \]
3. In the limit, \(x \) represents the \(x \)-value of a point where the slope of the tangent line is desired.
4. In the limit, the difference quotient \(\frac{f(x+h) - f(x)}{h} \) represents the slope of a secant line through the points \((x, f(x))\) and \((x + h, f(x + h))\). This secant line is being used as an approximation to the tangent line at the point \((x, f(x))\).
5. The function \(f \) is graphed below. Since \(f \) is only defined to the right of 0, the limit is actually a right-hand limit:
 \[
 \lim_{h \to 0^+} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h^2 - 0}{h} = \lim_{h \to 0^+} h = 0
 \]
 The slope of the tangent line at the point \((0, 0)\) is 0.

End-of-Section Exercises:
1. EXP
3. SEN; CONDITIONAL
5. SEN; TRUE
7. \(g(0.1) = \frac{f(x+0.1) - f(x)}{0.1} \); \(g(\Delta x) = \frac{f(x+\Delta x) - f(x)}{\Delta x} \)
9. \(h \in \mathcal{D}(g) \iff (h \neq 0 \text{ and } x + h \in \mathcal{D}(f)) \)
11. When \(\lim_{h \to 0} g(h) \) exists, it tells the slope of the tangent line to the graph of \(f \) at the point \((x, f(x))\).

Section 4.2 The Derivative

Quick Quiz:
1. When the limit exists:
 \[
 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
 \]
2. \(f' \) is the derivative function; \(f'(x) \) is a particular output of this function, when the input is \(x \).
3. \(A - B = (0, 2) \cup (2, 4); B - A = \{4\} \)
4. $\mathcal{D}(f') = \mathbb{R} - \{1\}$; its graph is:

![Graph of f'](image)

5. TRUE. If the limit $\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$ exists, then, in particular, f must be defined at x (so that $f(x)$ makes sense).

End-of-Section Exercises:

1. The graph of f is shown below. Here, $\mathcal{D}(f) = \mathbb{R}$.

![Graph of f](image)

When $x > 2$, the slopes of the tangent lines equal 1.
When $x < 2$, the slopes of the tangent lines equal -1.
There is no tangent line at $x = 2$.
The graph of f' is shown at right. Here, $\mathcal{D}(f') = \mathbb{R} - \{2\}$.

3. The graph of f is shown below. Here, $\mathcal{D}(f) = \mathbb{R}$.

![Graph of f](image)

When $x > 1$, the slopes of the tangent lines equal 2.
When $x < 1$, the slopes of the tangent lines equal $2x$ (as per an example in the text).
There is no tangent line at $x = 1$.
The graph of f' is shown at right. Here, $\mathcal{D}(f') = \mathbb{R} - \{1\}$.
5. Note that \(f(2) = \frac{1}{2 - 1} = 1 \). Then:

\[
\lim_{h \to 0} \frac{f(2 + h) - f(2)}{h} = \lim_{h \to 0} \frac{\frac{1}{(2 + h) - 1} - 1}{h}
\]

\[
= \lim_{h \to 0} \frac{\frac{1}{1 + h} - \frac{1}{1 + h}}{h}
\]

\[
= \lim_{h \to 0} \frac{1 - (1 + h)}{h(1 + h)}
\]

\[
= \lim_{h \to 0} \frac{-1}{1 + h} = -1
\]

Thus, \(f'(2) = -1 \). That is, the slope of the tangent line to the graph of \(f \) at the point \((2, 1)\) is \(-1\).

7. \(y - 9 = 6(x - 3) \)

9. \(y = 1 \)

Section 4.3 Some Very Basic Differentiation Formulas

Quick Quiz:
1. \(f(x) = x^{3/2}; \ f'(x) = \frac{3}{2}x^{-1/2} = \frac{3}{2\sqrt{x}} \). In Leibniz notation: \(\frac{df}{dx} = \frac{3}{2\sqrt{x}} \)
2. TRUE. The derivative of a constant equals zero.
3. \(y' = 3x^2; \) the slope of the tangent line at \(x = 2 \) is \(y'(2) = 3(2^2) = 12 \). TRUE.
4. \[(a - b)^4 = (a + (-b))^4 = (1)a^4 + (4)a^3(-b) + (6)a^2(-b)^2 + (4)a(-b)^3 + (1)(-b)^4
\]

\[= a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4\]

5. \(g'(x) = e^x + \frac{1}{x} \)

End-of-Section Exercises:
1. Multiply out, differentiate term-by-term, and simplify: \(f'(x) = 6(2x + 1)^2 \)
3. \(h'(x) = \begin{cases} 6x - 2 & \text{for } x \geq 1 \\ 4 & \text{for } x < 1 \end{cases} \)

\(\mathcal{D}(h) = \mathcal{D}(h') = \mathbb{R} \)

Section 4.4 Instantaneous Rates of Change

Quick Quiz:
1. \(\frac{f(2) - f(1)}{2 - 1} = \frac{3^3 - 1^3}{1} = 8 - 1 = 7 \); this number represents the slope of the secant line through the points \((1, 1^3)\) and \((2, 2^3)\)
2. \(f'(x) = 3x^2; \ f'(1) = 3(1) = 3 \). This number represents the slope of the tangent line at the point \((1, 1^3)\).
3. less than; once we move to the right of \(x = 1 \), the rates of change increase
4. One correct sketch is given:

5. Since \(f \) is not continuous at \(x = 1 \), \(f \) is not differentiable at \(x = 1 \).
End-of-Section Exercises:
In all cases, the ‘predicted value’ for $f(x_2)$ from known information at x_1 is given by

$$f(x_2) \approx f(x_1) + (\Delta x)(f'(x_1)),$$

where $\Delta x_2 = x_2 - x_1$.

1. Here, $\Delta x = 2 - 1 = 1$; $f(2) \approx 3 + (1)(2) = 5$
3. Here, $\Delta x = 4 - 3 = 1$; $f(4) \approx -1 + (1)(5) = 4$

Section 4.5 The Chain Rule (Differentiating Composite Functions)

Quick Quiz:
1. See page 231. The Chain Rule tells us how to differentiate composite functions.
2. $f'(x) = 7\sqrt{2}(1-x)^6(-1) = -7\sqrt{2}(1-x)^6$
3. $\frac{dy}{dt} = \frac{du}{dx} \cdot \frac{dw}{dx} \cdot \frac{dv}{dx} \cdot \frac{du}{dt}$
4. ... tells us that to find out how fast $f \circ g$ changes with respect to x, we find out how fast f changes with respect to $g(x)$, and multiply by how fast g changes with respect to x
5. $f(x) = \frac{1}{3} \ln(2x+1), \quad f'(x) = \frac{1}{3} \cdot \frac{1}{2x+1} \cdot 2 = \frac{2}{3(2x+1)}$

End-of-Section Exercises:

1. $f'(x) = \frac{-e^x}{\sqrt{(e^x - 1)^3}} + 1$
3. $\frac{dy}{dx} = 3e^{3x}$
5. $y' = 33(3t - 4)^{10}$
7. $g'(t) = \frac{2t + 1}{\sqrt{t^2 + 2t + 1}}$
9. $f'(y) = -7e^{-y} + \frac{1}{y}$
11. $\frac{dy}{dx} = \frac{3}{x} \left(\ln x \right)^2$
13. $\frac{dy}{dt} = \frac{2\sqrt{t-1} + 1}{2\sqrt{t-1}(t + \sqrt{t-1})^2}$

Section 4.6 Differentiating Products and Quotients

Quick Quiz:
1. See page 239.
2. See page 244.
3. $f'(x) = x \cdot 5(x+1)^4(1) + (1)(x+1)^5$
4. Using the Quotient Rule:

$$f'(x) = \frac{e^{2x}(2) - (2x+1) \cdot 2e^{2x}}{(e^{2x})^2}$$

$$= \frac{2e^{2x}(1 - (2x+1))}{e^{4x}}$$

$$= -\frac{4x e^{2x}}{e^{4x}}$$
5. Using a ‘generalized’ product rule:

\[y' = (1)(x + 1)(x^2 + 1) + x(1)(x^2 + 1) + x(x + 1)(2x) \]

End-of-Section Exercises:
1. \[y' = 2(2 - x)^2(1 - 2x) \]
 \[y(0) = 0, \quad y(t^2) = t^2(2 - t^2)^3 \]
 \[y'(0) = 8, \quad y'(t) = 2(2 - t)^2(1 - 2t) \]
3. \[f'(x) = e^x \left(\frac{1}{x} + \ln x \right) \]
 \[D(f) = (0, \infty), \quad D(f') = (0, \infty) \]
 \[f'(e) = e^e \left(\frac{1}{e} + x \right), \quad f'(e^2) = e^{e^2} \left(\frac{1}{e^2} + 2 \right) \]
5. \[g'(x) = e^{x+e^x} \]
 \[\lim_{x \to 0} g(x) = e, \quad \lim_{x \to 0} g'(x) = e \]
 \[D(g) = \mathbb{R}, \quad g(g'(0))) = e^{e+e^e} \]
7. \[h'(x) = \frac{x}{x+1}; \text{ the tangent line is horizontal, and has equation } y = 0 \]
9. \[f'(x) = 4e^{2x}(2x + 1)^6(x + 4); \text{ the tangent line has equation } y = 16x + 1 \]
11. \[h(t) = \frac{-12e}{(3t-1)^2}; \text{ the tangent line has equation } y - e = -12e(t - \frac{2}{3}) \]
13. \[y' = 0 \iff (x = 3 \text{ or } x = -1 \text{ or } x = \frac{1}{2} \text{ or } x = \frac{3 \pm \sqrt{17}}{2}) \]

Section 4.7 Higher Order Derivatives

Quick Quiz:
1. The ‘higher derivatives’ of a function \(f \) are the derivatives of the form \(f^{(n)}(x) \) for \(n \geq 2 \). That is, the second derivative, third derivative, fourth derivative, etc., are the ‘higher derivatives’ of \(f \).
2. prime notation: \(f''(x) \)
 Leibniz notation: \(\frac{d^2 f}{dx^2}(x) \)
3. \[\sum_{i=1}^{3} i^{i+1} = 1^{1+1} + 2^{2+1} + 3^{3+1} = 1 + 8 + 81 = 90 \]
4. \[10 \cdot 9 \cdot 7 \cdot 6 = 10 \cdot 9 \cdot 7 \cdot 6 \cdot \frac{5!}{5!} = \frac{10!}{5!} \]
5. \[\frac{d}{dx} \sum_{i=1}^{n} f_i(x) = \sum_{i=1}^{n} f_i'(x) \]

End-of-Section Exercises:
1. SEN; TRUE
3. EXP
Section 4.8 Implicit Differentiation (Optional)

Quick Quiz:
1. \[
\frac{d}{dx}(xy^2) = \frac{d}{dx}(2)
\]
\[x(2y^1)\frac{dy}{dx} + (1)y^2 = 0\]
\[\frac{dy}{dx} = \frac{-y^2}{2xy}\]

2. For \(x > 0\):
\[
\ln y = \ln(x^{2x}) = 2x \ln x
\]
\[\frac{1}{y} \frac{dy}{dx} = (2x) \frac{1}{x} + (2) \ln x = 2 + 2 \ln x = 2(1 + \ln x)\]
\[\frac{dy}{dx} = y \cdot 2(1 + \ln x) = 2x^{2x}(1 + \ln x)\]

3. Put the equation in standard form, by completing the square:
\[x^2 - 2x + y^2 = 8 \iff (x^2 - 2x + (\frac{-2}{2})^2) + y^2 = 8 + 1\]
\[\iff (x - 1)^2 + (y - 0)^2 = 3^2\]

The equation graphs as the circle centered at \((1, 0)\) with radius 3.

4. There are many possible correct answers. Here are two:
- \(y\) given explicitly in terms of \(x\): \(y = x^2 + 2x + 1\)
- \(y\) given implicitly in terms of \(x\): \(xy^2 = x + y\)

End-of-Section Exercises:
1. The graph is the circle centered at \((-2, 1)\) with radius 1.
 \(y\) is NOT locally a function of \(x\) at the points \((-1, 1)\) and \((-3, 1)\). (There are vertical tangent lines here.)
 The equation of the tangent line at the point \((-2, 2)\) is \(y = 2\).
 The equation of the tangent line at the point \((-1, 1)\) is \(x = -1\).

3. The graph is the circle centered at \((-2, 1)\) with radius 2.
 \(y\) is NOT locally a function of \(x\) at the points \((0, 1)\) and \((-4, 1)\); there are vertical tangent lines here.
 The equation of the tangent line at the point \((-1, 1 + \sqrt{3})\) is:
\[y - (1 + \sqrt{3}) = -\frac{1}{\sqrt{3}}(x - (-1))\]
Section 4.9 The Mean Value Theorem

Quick Quiz:
1. See page 266.
2. The word ‘mean’ refers to ‘average’; the Mean Value Theorem guarantees (under certain hypotheses) a place in an interval (a, b) where the instantaneous rate of change is the same as the average rate of change over the entire interval.
3. The average rate of change of f on the interval $[1, 3]$ is:
 \[
 f(3) - f(1) \over 3 - 1 = 27 - 1 \over 2 = 13
 \]
 The instantaneous rates of change are given by $f'(x) = 3x^2$. We seek $c \in (1, 3)$ for which $f'(c) = 13$:
 \[
 f'(c) = 13 \iff 3c^2 = 13 \\
 \iff c^2 = \frac{13}{3} \\
 \iff c = \pm \sqrt{\frac{13}{3}}
 \]
 Choosing the value of c in the desired interval, we get $c = \sqrt{\frac{13}{3}}$.
4. If f WERE continuous on $[a, b]$, then there would have to be (by the MVT) a number $c \in (a, b)$ with $f'(c) = \frac{f(b) - f(a)}{b - a}$. Thus, it must be that f is NOT continuous on $[a, b]$; that is, f ‘goes bad’ at (at least one) endpoint.
5. If f WERE differentiable on (a, b), then the MVT would guarantee that there must be $c \in (a, b)$ with $f'(c)$ equal to the average rate of change of f over $[a, b]$. Therefore, we can conclude that f is NOT differentiable on (a, b). That is, there is at least one value of x in the interval (a, b) where $f'(x)$ does not exist.

End-of-Section Exercises:
1. The limit gives the slope of the tangent line to the graph of f at the point $(x, f(x))$, whenever the tangent line exists and is non-vertical.
3. There is a tangent line to the graph of f when $x = 2$, and its slope is 4.
5. Let $f(x) = -x^2$. Then:
 \[
 f'(x) := \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{-(x + h)^2 - (-x^2)}{h} \\
 = \lim_{h \to 0} \frac{-(x^2 + 2xh + h^2) + x^2}{h} = \lim_{h \to 0} \frac{h(-2x - h)}{h} \\
 = \lim_{h \to 0} (-2x - h) = -2x
 \]
7. Put a ‘kink’ in the graph when $x = 3$.
9.
 \[
 f'(x) = e^{2x} \ln(2 - x) + 2xe^{2x} \ln(2 - x) - \frac{x e^{2x}}{2 - x}
 \]
 \[
 \mathcal{D}(f) = (-\infty, 2), \quad \mathcal{D}(f') = (-\infty, 2)
 \]
 The tangent line when $x = 0$ has equation $y = (\ln 2)x$.